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Abstract

We provide an algorithm for calculating the Alexander polynomial of a two-bridge link by putting
every two-bridge link in a special type of Conway diagram. Using this algorithm, some necessary
conditions for a polynomial to be the Alexander polynomial of a two-bridge link are given, in
particular, certain alternating and monotonicity conditions on the coefficients, analogous to corre-
sponding known properties of the reduced Alexander polynomial.

1980 Mathematics subject classification ( Amer. Math. Soc.): 57T M 25.

Hartley [4] gave a necessary condition for a polynomial to be the Alexander
polynomial of a two-bridge knot or the reduced Alexander polynomial of a
two-bridge link. He showed how the coefficients of the polynomial may be read
straight from the extended diagram, which is derived from Schubert’s normal
form of a two-bridge knot or link, and showed the following theorem: If
A(t) = 27_y(~1)a;t" where a, > 0, is the Alexander polynomial of a two-bridge
knot or the reduced Alexander polynomial of a two-bridge link, then for some
integer s,a,<a,<---<a,=a,,,=---=a, ;> ->a, On the other
hand, using surgery techniques, Bailey [1] presented an algorithm for calculating
the Alexander polynomial of a two-bridge link from Conway diagram. As a
corollary to this he proved a conjecture of Kidwell about the linking complexity
or geometric intersection numbers of a link in the special case of two-bridge links.

The main results of this paper are Theorems 1 and 3. The former provides
another algorithm for calculating the Alexander polynomial of a two-bridge link
from a special type of Conway diagram. The latter gives some necessary condi-
tions for a polynomial to be the Alexander polynomial of a two-bridge link. These
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conditions are analogous to Hartley’s theorem above. Theorem 2 and Corollary 1
also give some properties of the Alexander polynomial of a two-bridge link,
including the Torres condition [8). Corollary 2 is the above-mentioned conjecture
of Kidwell in the case of two-bridge links.

In Section 2, we give some lemmas for Theorems 1 and 2. In Section 3, we
summarize some properties of two-bridge links. In Section 4, we state the
above-mentioned results. In Section 5, we prove Theorem 3.

1. Preliminaries

In this paper, a link L will mean a piecewise linear embedding of two oriented
circles K| and K, in the 3-sphere S°. Two links L and L’ are called equivalent, if
there is an orientation preserving autohomeomorphism of S3, which maps L onto
L’. The Alexander polynomial A(x, y) of L is an element of the polynomial ring
Z{x,x™", y, y"'1=A, and is determined only up to multiplication by a unit
+x'y/. Let G=m(S*— L), and let G’ be its commutator subgroup. Then
A = Z[G/G']; the basis {x, y} of G/G’ is always taken to be represented by the
meridians of K| and K, respectively.

Throughout this paper, we will often abbreviate a polynomial f(x, y) in A to f
and will use the following notation;

((n—1

S () if n>0,
i=0
F(x,y)=+0 if n=0,

-1 )
- > (xy) if n<o.

In the figures of this paper we will use the concept of a tangle [2], which is a
portion of the link diagram containing two arcs. An integral tangle, which is
represented by a circle labeled “i” or “—i”, where i is a non-negative integer, is a
2-braid with i or —i crossings, in the manner indicated in Figure 1.

i i

FIGURE 1
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2. Lemmas

LeMMA 1. Let L(q, r, s, t) be a link as shown in Figure 2, where T is any tangle.
Let A9™>" be the Alexander polynomial of L(q,r, s, t). If we set A = A5
A, = X900 gand A oy = MO0 then

@) A= {s(x=1)(y - DE+ 1)Ag+ %(xy)’mo — Ag),

where r # 0.

X1

FIGURE 2

LEMMA 2. Besides the notation in Lemma 1, let Ay = A970 gnd Al'o) = Al4:rs:t0),

Then

(2.2) A=s(x~1(y—1FEA, + Ay
(2.3) A = FAD — xyF,_Aq;
(2.4) AD + xyATD = (1 + xp)AUTY,

REMARK. (1) In the above notation AV = A and A? = A
(2) (2.4) is a special case of Conway’s result [2, page 338], see also [5, page 462].

Lemma I can be shown by using Fox’s free differential calculus, see [3], [8]. The
proofs of these lemmas are standard, so we omit them.

3. Two-bridge links

According to Conway [2], every two-bridge link can be put in the form as
shown in Figure 3. It will be denoted by C(a,, a,,...,a,), including the indicated
orientation of each component. The diagram is slightly different in the cases
n=2kand n = 2k + 1, as indicated in Figure 3. From this projection we can see
that a two-bridge link is a link with two components each of which is a trivial
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knot. Moreover a two-bridge link is interchangeable, that is, there is an isotopy of
S3 which interchanges the two components. This follows immediately from
Schubert’s normal form [6], or Bailey [1, page 48] also proves this using Conway’s
diagram.

Kl B .
e.a.e @. " Zk

a.@ nxz"'l

Let a(>0) and B8 be the coprime integers computed from the continued
fraction:

FIGURE 3

a 1 1

B a a,
Then a is even and 0 <| B|< a. This link is equivalent to the link with Schubert’s
normal form (a, 8), denoted by S(a, 8) endowed with suitable orientations.
According to Schubert [6, page 144}, S(a, 8) and S(«a’, 8’) are equivalent if and
only if @ = a’ and 8*' = B’ (mod 2«). Furthermore, if 8’ = 8 + a (mod 2a) or
BB’ = a + 1 (mod2a), then S(a, B) differs from S(a, 8’) only by the orientation
of one of the components (see {7, page 7]).

The two-fold cover of S3 branched over S(a, 8) is the lens space L(a, B), see
[2}, [6], [7]. If we neglect the difference between S(a, 8) and S(a,-B) and the
orientations of S(a, B8), this sets up a one-to-one correspondence between two-
bridge links and the lens spaces up to homeomorphism.
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We can obtain easily another continued fraction:

a 1 1

E—Zb‘+2bz+ +2b’
where m is odd. C(2b,,2b,,...,2b,) is then equivalent to C(a,, a,,-..,a,) and
will be denoted by D(b,, b,,...,b,). In the following we will consider every
two-bridge link to be put in this form (see (7, page 13]).

4. Main theorems

From Lemma 1, we have

THEOREM 1. Let Ly = D(0) and for n = 1 let

L,=D(py,q:> P2>92s-+>Pu=t>9n—1> Pn)>
where [1;_, p,I17= ,qj # 0. Let A (x, y) be the polynomial inductively defined as
follows:
(4.1) =90;
A —

l

An = {qn*l('x - 1)(.y - I)F;w,, + 1}An—l

F
£ (Y (B = 8,), forn>

Pn-1

Then A,(x, y) is the Alexander polynomial of L,,.

In the following, by the Alexander polynomial of a two-bridge link we mean
the polynomial defined in Theorem 1 and we will use the following notation
besides that in Theorem 1. Let A?) be the Alexander polynomial of
D(P\s > P2> Q25+ sPurs Qu—r» P); thus AP) = A and AP =A, . Let [, =
3", p;» that is, the linking number of L,. Let [, = 3, |p,| .

From Lemma 2, we have

THEOREM 2.
(4.2) A, =g, (x = 1)y~ 1F, 48, + Ap=pted;
(4.3) AP = F,AD — xyF, \A,_,;
(44) AP+ xyNP™D = (1 + xp)AP~D,
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Using (4.4) or Theorem 1 we can easily prove each of the following formulae.

COROLLARY 1.

(4.5) A(x,y)=A4,(y,x);
(4.6) A(x,y) =F(x,y) mod(x—1)(y—1);
(4.7) A(x, ) = ()" A (x7", y7).

The fact that a two-bridge link is interchangeable assures us of (4.5). From
(4.6), we have immediately

(4.8) Ax,1) = F,n(x, 1).
(4.7) and (4.8) constitute the Torres conditions [8] for two-bridge links.

DEFINITION 1. Let f(x, y) be a polynomial in A. If f(x, y) # 0, then deg, f =
(maximum x-power of any term of f) minus (minimum x-power of any term of
). If f(x, y) =0, then deg, f= —1. We define deg, f in the same way.

DErINITION 2. A't!(r,s) denotes the set of all polynomials f(x, y)=
Z,<i j<s 4;;%'y’ in A satisfying the following conditions.

(iYdeg, f=deg,f=s—r.

(i1) Both

sr 55

and

a

rr rs

are symmetric matrices.
(i) a;; = 0if i + jiseven,and a;; < 0 if i + jis odd.

(v) Let b;=a,, ;, Then |bo|<|b_,\I< - S|by_, |, and |b, <
[bpsrnls - <S|bgypolforO<k<s—r, whereu=[k/21*and v =[(s — r —
k)/2].

Furthermore A'(r, s) denotes the set of all polynomials f(x, y) in A such that
_f(x’ Y) € A+I(r’ S).

THEOREM 3. Forn = 1, A, € A*(r,, s,), where

n —1 i 7
Pi " qf ln — ln ln + ln
€, = T —, r,= and s, = - L
igl lpll '1_——_I| Iqjl 2
J

*[ ] denotes the Gaussian symbol.

https://doi.org/10.1017/51446788700027336 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700027336

[71 Alexander polynomials of two-bridge links 65

Note that r, <0 <s,, 7, = r,_; = $(p, = 1P, and s, = 5,_; = (P, + P, .
The proof of Theorem 3 will be given in Section 5.

Let A(z) = 3™, (~1)a;t’, where m is 0dd, be the reduced Alexander polynomial
of L, Since A(t) =e,t72"(1 — t)A,(t,1), we have 0 <ag,<a, < ---<
a(n—1y, and a, = —a,,_, from Theorem 3. This is a weaker result than that of
Hartley [4] stated in the beginning of this paper.

For the sake of Corollary 2 below, we need some preliminaries.

DEFINITION 3. Let L = K, U K, be a link and S be a Seifert surface for K|,
with § and K, in general position. If y; = 2(genus of S) plus (the number of
times K, intersects S), then y, = ming v is the linking complexity of K, with K.
We define v, in the same way. We call the ordered pair (v,,Y,) the linking
complexity of the link L.

This definition follows Bailey [1, page 45], see also [5].

ProOPOSITION. (Kidwell) If A(x, y) is the Alexander polynomial of a link L with
linking complexity (v,, Y,), then v, — 1 = deg, A(x, y).

PROOF. See [1, page 46].

COROLLARY 2. Let (v, Y,) be the linking complexity of L,. Then
(4.9) Y = Y23
(4.10) deg, A (x,y)+1=vy,=1.

REMARK. The first equality of (4.10) is Proposition 6 of [1, page 57].

PROOF. (4.9) follows from interchangeability of a two-bridge link or (4.10). For
(4.10), from the diagram of L,, we see that y, <[ . By Theorem 3, deg, A, + 1 =
[ and by Proposition, v, > deg, A, + 1.

5. Proof of Theorem 3

In this section we use the following trivial lemma without mention.

LEMMA 3. Let f€ A(r,s) and g€ A(r — k,s + k) (k=0). Then f+ g €
A(r — k,s + k).
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LEMMA 4. Let f € A(r, s). Then
A(r,s+n—1) if n>0,

F fe
oS {A"”(r+n,s—1) if n<0,

G,fEAY S(r,s+n—1) if n>0,
where G (x, y) = x" 'F(x7!, y).

PROOF. We show that f € A*!(r, s) implies F, f € A*!/(r,s + n—1)if n > 0.
The other cases can be proved similarly. It is clear that F, f satisfies the conditions
(i), (ii), (iii) and the first inequality of (iv) in Definition 2 for A*'(r, s + n — 1).
The second inequality of (iv) can be reduced to the sublemma below.

SUBLEMMA. Let f(x) = Z",a,x', where a,=a,_, and 0 <ay<a, < --- <
ag, oy Let CToox))f(x) = 2725 byx*. Then b, =b,,, , and 0 <by<b <
"< bymtmy2r

We omit the proof, as it is straightforward to prove it directly.

LEMMA 5. IfA, | € A%(r,s — D and AV € A(r, 5), then

AP e A(r,s+p—1) if p>0,
" AN(r+p,s—1) if p<O.

PROOF. (4.2) in Theorem 2 states that A’ = F,AQ) — xyF, |A,_,. The case
p = 1 is the hypothesis. If p = 2, then using Lemma 4, F,AD € A(r,s +p — 1)
and —xyF,_A,_, € A(r+ 1,5 +p—2). Thus AP € A(r,s+p—1). If p<
~1, then F,AD, -xyF, A, , € A"(r + p,s — 1),50 AP € A%(r +p,s — 1).

LEMMA 6. Let A{™ be the Alexander polynomial of
D(pl’ ql""’pn*m’ 9n—m> 1’ qn—m+l’ l""’qn—l’ 1)
Then we have
(5.1) A = Gy By — X9G 8 Pm e D
+(x—Dy—-1 2 (g,— + DGA, 4,
k=1
where the last term denotes zero if m = 0.

ProOOF. We prove (5.1) by induction on m. For m =0, it is clear that
A" = A,. Assume that (5.1)is proved for m — 1. Substituting p,_,,., =1 in
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A{m 1 we have

Af.'") G A(r!) m+t xme lAn m+1

+(x—-D(y—1) E (‘In k I)Gk n—k-

By (4.2), A = q,_(x— D(y— l)An m T AZ7m*D Thus we have
A =G, {-(x = 1)(y — DA,_,, + Mprm*D} — xyG, A, _,,

FE= 00D S (@t DG,

By (4.4), APr-m*D = (xy + DA, _,, — xyAPr-m" D Thus we have
AL = {(x + )G, — G, 1}A,_,, = G, Az 0™

HE D0 D) 3 @+ DG,

Since (x + y)G, — xG,, ., = G,,,, we have (5.1).

Now we are in position to prove Theorem 3. We use induction on n. Forn = 1,
the theorem is clear. Assume the theorem proved for A,, where 1 <k <n — 1.
Without loss of generality we may suppose that g,_, < 0. By Lemma 5 we only
have to prove for the case p, = 1. Then there exists an integer m such that:

Misms<n—Lppi1=Pp-m+2= " =Pp1=Lp-,#land g, ,,
p-mttr s dn—1 <0,

) Ysm<n—=2, ppp = Pr-mt1 = Pr-m+2 = """ =Po1 = L Gpp>
An—m+10-- 99— <Oand In—m—1 > 0’ or

Am=n—-1Lp,=p,=- =Py =1L4,4,...,4,_, <0.

To prove Theorem 3, it suffices to prove that A,_,, € A%(r, s) implies A, €
ACD",(r s + m), where by Lemma 6

(52) An = Gm+IAn—m - xmeA(fl;nm_l)
+ (.X - 1)(y - 1) 2 (qn—k + 1)GkAn—k'
k=1

By Lemma 4, we have
(5.3) GoiiA,_, € AV(r, s+ m).
By inductive hypothesis, A,_, € A" *¢(r, s + m — k) for 1 < k < m. Then by
Lemma4d, G,A,_, € A" 'q(r s + m — 1); hence we obtain
{: 0 ifg,_, = -1foranyk,

54) (x=D(y—1) 2 (goi + VGiA,-
(54) (x—1(y 2 (4 Tkl € ACYe(r, s+ m)  otherwise.

k=1
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Case (I). If p,_,, # 1, then by inductive hypothesis,
APan=D) A(r,s—=1) if p,_,=2,
o AN(r—1,s) if p,_,<-l.
Thus, using Lemma 4, we have
AV (r+ 1,5+ m—1) if =2
(5.5) —xyG,APr-m"D e (r stm=1) it pn>2,
AYe(r, s + m) if p,_,,<-l.
Case (II). If p,_,, = 1and g, _,,_, > 0, then by inductive hypothesis,
Apnm™D =A € A(r,s —1).

Thus, using Lemma 4, we have

(5.6) —xyG AP D € AV (r + 1,5 + m — 1).
Case (II). Sincem = n — 1 and p, = 1, we have
(5.7) ~xy G, AProm=h = 0.
From (5.2) ~ (5.7), we have A, € A“Y"¢(r, s + m). This completes the proof of
Theorem 3.
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