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Abstract

We provide an algorithm for calculating the Alexander polynomial of a two-bridge link by putting
every two-bridge link in a special type of Conway diagram. Using this algorithm, some necessary
conditions for a polynomial to be the Alexander polynomial of a two-bridge link are given, in
particular, certain alternating and monotonicity conditions on the coefficients, analogous to corre-
sponding known properties of the reduced Alexander polynomial.

1980 Mathematics subject classification (Amer. Math. Soc): 57 M 25.

Hartley [4] gave a necessary condition for a polynomial to be the Alexander
polynomial of a two-bridge knot or the reduced Alexander polynomial of a
two-bridge link. He showed how the coefficients of the polynomial may be read
straight from the extended diagram, which is derived from Schubert's normal
form of a two-bridge knot or link, and showed the following theorem: If
A(0 = 2f=0(-l)'a,f' where a, > 0, is the Alexander polynomial of a two-bridge
knot or the reduced Alexander polynomial of a two-bridge link, then for some
integer s, a0 < a, < • • • < as — as+l = • • • = an_s > • • • > an. On the other
hand, using surgery techniques, Bailey [1] presented an algorithm for calculating
the Alexander polynomial of a two-bridge link from Conway diagram. As a
corollary to this he proved a conjecture of Kidwell about the linking complexity
or geometric intersection numbers of a link in the special case of two-bridge links.

The main results of this paper are Theorems 1 and 3. The former provides
another algorithm for calculating the Alexander polynomial of a two-bridge link
from a special type of Conway diagram. The latter gives some necessary condi-
tions for a polynomial to be the Alexander polynomial of a two-bridge link. These
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conditions are analogous to Hartley's theorem above. Theorem 2 and Corollary 1
also give some properties of the Alexander polynomial of a two-bridge link,
including the Torres condition [8]. Corollary 2 is the above-mentioned conjecture
of Kidwell in the case of two-bridge links.

In Section 2, we give some lemmas for Theorems 1 and 2. In Section 3, we
summarize some properties of two-bridge links. In Section 4, we state the
above-mentioned results. In Section 5, we prove Theorem 3.

1. Preliminaries

In this paper, a link L will mean a piecewise linear embedding of two oriented
circles AT, and K2 in the 3-sphere S3. Two links L and L' are called equivalent, if
there is an orientation preserving autohomeomorphism of S3, which maps L onto
L'. The Alexander polynomial A(x, y) of L is an element of the polynomial ring
Z[x, x'\ y, y~x\ = A, and is determined only up to multiplication by a unit
±x'yJ. Let G = w,(53 — L), and let G' be its commutator subgroup. Then
A = Z[G/G']; the basis {x, y) of G/G' is always taken to be represented by the
meridians of K{ and K2 respectively.

Throughout this paper, we will often abbreviate a polynomial/(x, y) in A t o /
and will use the following notation;

(xy)1 if n > 0,

0 if n = 0,
- l

2 ' if «<0.

y) =

In the figures of this paper we will use the concept of a tangle [2], which is a
portion of the link diagram containing two arcs. An integral tangle, which is
represented by a circle labeled " /" or "- /" , where / is a non-negative integer, is a
2-braid with / or -i crossings, in the manner indicated in Figure 1.

FIGURE 1
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2. Lemmas

61

LEMMA 1. Let L{q, r, s, t) be a link as shown in Figure 2, where T is any tangle.
Let A(q-r's'') be the Alexander polynomial of L(q, r, s, t). If we set A = A ( < ? r s ' ) ,
Ao = A(*'r-°-0) and A m = A<°'0'0-°>, then

(2.1) A = {s{x - \)(y - \)F, + 1}AO + ^

where r ¥* 0.

FIGURE 2

LEMMA 2. Besides the notation in Lemma 1, let A'o = A<<?r00 and A('(>) — tfi-r-s-'»\
Then

(2.2) A = s(x

(2.3) A<"

(2.4) A(" + xyA('~2) =

REMARK. (1) In the above notation A(o = A and A(0) = Ao.
(2) (2.4) is a special case of Conway's result [2, page 338], see also [5, page 462].

Lemma 1 can be shown by using Fox's free differential calculus, see [3], [8]. The
proofs of these lemmas are standard, so we omit them.

3. Two-bridge links

According to Conway [2], every two-bridge link can be put in the form as
shown in Figure 3. It will be denoted by C(a}, a2,... ,an), including the indicated
orientation of each component. The diagram is slightly different in the cases
n = 2k and n = 2k + 1, as indicated in Figure 3. From this projection we can see
that a two-bridge link is a link with two components each of which is a trivial
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knot. Moreover a two-bridge link is interchangeable, that is, there is an isotopy of
S3 which interchanges the two components. This follows immediately from
Schubert's normal form [6], or Bailey [ 1, page 48] also proves this using Conway's
diagram.

FIGURE 3

Let a(> 0) and /? be the coprime integers computed from the continued
fraction:

Then a is even and 0 <| /? |< a. This link is equivalent to the link with Schubert's
normal form (a, /?), denoted by S(a,/3) endowed with suitable orientations.
According to Schubert [6, page 144], S(a, /}) and S(a', /?') are equivalent if and
only if a = a' and /?*' = fi' (mod 2a). Furthermore, if fi' = fi + a (mod 2a) or
/?/?' = a + 1 (mod 2a), then S(a, ft) differs from S(a, fi') only by the orientation
of one of the components (see [7, page 7]).

The two-fold cover of S3 branched over S(a, ft) is the lens space L(a, /8), see
[2], [6], [7]. If we neglect the difference between S(a, 0) and S(a,-P) and the
orientations of S(a, fi), this sets up a one-to-one correspondence between two-
bridge links and the lens spaces up to homeomorphism.
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We can obtain easily another continued fraction:

P 2b2 2bm

where w is odd. C(2bu2b2,...,2bm) is then equivalent to C(au a2,....,aj and
will be denoted by D(b],b2,.. -,bm). In the following we will consider every
two-bridge link to be put in this form (see [7, page 13]).

4. Main theorems

From Lemma 1, we have

THEOREM 1. Let Lo = D(0) and for n > \ let

Ln = D(P\'al> - P 2 » < 7 2 > - - > / ? n - l > < 7 n - l > Pn)>

where II "=1 PjU"Z\ 1j ̂  0. Let An(x, y) be the polynomial inductively defined as
follows:

(4.1) Ao = 0;

+ (xyy"-'-^(An_l-An_2), forn^l.
Pn- 1

Then AM(x, y) is the Alexander polynomial of Ln.

In the following, by the Alexander polynomial of a two-bridge link we mean
the polynomial defined in Theorem 1 and we will use the following notation
besides that in Theorem 1. Let A(,f' be the Alexander polynomial of
D(px,qx,p2,q2,...,pn-X,qn-Vp); thus A(/-_» = AB and A<°> = An_,. Let /„ =
S"=! p^ that is, the linking number of Ln. Let /„ = 2"=, |/>, | .

From Lemma 2, we have

THEOREM 2.

(4.2) An = qn_x{x - \){y -

(4-3)

(4.4)
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Using (4.4) or Theorem 1 we can easily prove each of the following formulae.

COROLLARY 1.

(4.5) bn(x,y) = *n(y,x);

(4.6) An(x,y)=Fln(x,y) m o d ( x - l){y - 1);

(4.7) An(x,y) = (xy)'"-iAn(x-l,y-])-

The fact that a two-bridge link is interchangeable assures us of (4.5). From
(4.6), we have immediately

(4.8) A n (x , l ) = F,n(x,l).

(4.7) and (4.8) constitute the Torres conditions [8] for two-bridge links.

DEFINITION 1. Let / (x , y) be a polynomial in A. If f(x, y) ¥= 0, then d e g x / =
(maximum x-power of any term of / ) minus (minimum x-power of any term of
/ ) . If f(x, y) = 0, then d e g x / = - 1 . We define d e g r / i n the same way.

DEFINITION 2. A + I ( r , s) denotes the set of all polynomials f(x, y) —
2rsS, J<is aijX'yi in A satisfying the following conditions.

( i )degJ C/= d e g y / = s - r.
(ii) Both

and

are symmetric matrices.
(iii) Qjj > 0 if / + j is even, and a,y < 0 if / + j is odd.
(iv) Let bu = ai+rJ+r. Then \bkja\<\bk_ul \< • • • <\bk_uJ , and \bkfl\<

l ^ + i i ^ • ' • ̂ I fy t+ol for 0 < A : < J - r, where u - [k/2]* and v = [(s - r -

Furthermore A"'(r, s) denotes the set of all polynomials/(x, y) in A such that
-f(x,y)<EA+\r,s).

THEOREM 3. For n > 1, An £ AE"(rn, .$„), where

L-I, and sn='-

*[ ] denotes the Gaussian symbol.
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N o t e that rn < 0 < sn, rn - /•„_, = $(/>„ ~ I/>J) a n d sn - * „ _ , = \(pn + \pn\).
The proof of Theorem 3 will be given in Section 5.

Let A(/ ) = 2J 'Lo(~l) ' a / ' '> where m is odd , b e the reduced Alexander polynomial
of Ln. Since A(/) = enr2r"(l - t)£in(t, t), we have 0 < a0 < a, < • • • <
a<m-i)/2 anc^ a* = ~am-k from Theorem 3. This is a weaker result than that of
Hartley [4] stated in the beginning of this paper.

For the sake of Corollary 2 below, we need some preliminaries.

DEFINITION 3. Let L = Kx U K2 be a link and S be a Seifert surface for Kx

with S and K2 in general position. If ys — 2(genus of 5) plus (the number of
times K2 intersects 5), then y, = min5 ys is the linking complexity of K2 with Kv

We define y2 in the same way. We call the ordered pair (YI,Y2)
 t n e Unking

complexity of the link L.

This definition follows Bailey [l,page 45], see also [5].

PROPOSITION. (Kidwell) //A(x, y) is the Alexander polynomial of a link L with
linking complexity (y,, y2), then y] — 1 3* deg^ A(x, y).

PROOF. See [l,page 46].

COROLLARY 2. Let (ylt y2) be the linking complexity of Ln. Then

(4-9) y, = y2;

(4.10) d c g ^ O c j O + l = * = / „ .

R E M A R K . The first equali ty of (4.10) is Proposi t ion 6 of [ l , p a g e 57].

P R O O F . (4.9) follows from interchangeabi l i ty of a two-bridge link or (4.10). F o r
(4.10), from the d iagram of Ln, we see tha t Yi < /„. By T h e o r e m 3, deg^ An + 1 =
/"„ and by Proposi t ion, Yi > d e g x An + 1.

5. Proof of Theorem 3

In this section we use the following trivial lemma without mention.

LEMMA 3. Let f G A£(r, s) and g G Ae(r - k, s + k) (k > 0). Then f+g
A%r - k,s + k).
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LEMMA 4.LetfG Ae(r, s). Then

Ae(r,s + n - 1) if n>0,
~e(r + n,s- 1) if « < 0 ,

GJ G A(-ir"'£(r, s + n - 1) */ « > 0,

where Gn(x, y) = x"~lFn(x'\ y).

PROOF. We show t h a t / G A+ 1(r , s) implies F n / G A+l(r, s + n - 1) if n > 0.
The other cases can be proved similarly. It is clear that Fn f satisfies the conditions
(i), (ii), (iii) and the first inequality of (iv) in Definition 2 for A + I ( r , s + n — 1).
The second inequality of (iv) can be reduced to the sublemma below.

SUBLEMMA. Let f(x) = 2"= 0 atx', where at — an_t and 0 < a0 < a, < • • • <

a[n/2]. Let (2J=ox
J)f(x) = lT=o"bkx

k. Then bk = bm+n_k and 0<bo<bi^

We omit the proof, as it is straightforward to prove it directly.

A(p)^ ,A e ( ' - , s+p-l) if P>0,

LEMMA 5. / /A B _ , £ A-'(r, s - 1) and ^ G A%r, s), then

// p>0,
// p<0.

PROOF. (4.2) in Theorem 2 states that A(/) = Fp^ - xyFp_lhn_t. The case
p = 1 is the hypothesis. If p > 2, then using Lemma 4, FpA^ G A%r, s + p — 1)
and -xyFp_xbn_x G A\r + \, s + p - 2). Thus A(

n
p) E Ae(r, s + p - 1). If /> <

- 1 , then ^A<'>, - j c y ^ . A , , . , G A~%r + p, s - 1), so A<f > G A"e(/- + p, j - 1).

LEMMA 6. Le/ A^m> fee the Alexander polynomial of

D(pl,qi,...,pH-m,qn-m,\,qn-m+i,\,...,qn-X,\).

Then we have

m

+ (x-\)(y-\) 2 (on^+\)GkAn.k,
k=\

where the last term denotes zero if m = 0.

PROOF. We prove (5.1) by induction on m. For m = 0, it is clear that
<°> = An. Assume that (5.1) is proved for m — 1. Substituting pn_m+x — 1 in
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A<,m~'> we have

A<"> = GmA<|>_m+I - ^ G m _ , A < ° L m + 1

m-\

+ (x-l)(y-\) 2 (qn-k+\)Gk^_k.
k=\

By (4.2), A<|>_m+1 = qn-m{x - \)(y - l)An_m + A<,'—+1>. Thus we have

A<m> = Gm{-(x - 1)(>- - l)An_m + A<f -+»}

k=\

By (4.4), A<^-+1> = (xy + l)An_m - x y ^ a ^ . Thus we have

A<«> = {{x + y)Gm -

+ {x-\)(y-\)
k=l

Since (x + y)Gm - xyGm^x = Gm+l, we have (5.1).

Now we are in position to prove Theorem 3. We use induction on n. For n = 1,
the theorem is clear. Assume the theorem proved for At , where 1 < k < n — 1.
Without loss of generality we may suppose that qn_l < 0. By Lemma 5 we only
have to prove for the case/?,, = 1. Then there exists an integer m such that:

( I ) 1 < m < / i - \,pn_m+] =pn_m+2= ••• = / > „ _ , = \,pn-m¥= 1 a n d qn_m,

q«-m+\>---<qn-\ < 0 >

(II) 1 < m < n - 2, pn_m = pn-m+x = Pn-m+2 = • • • = P»-\ = 1, ? n - m .
?„_„+„...,?„_, <0and^_m_, >0,or

( i i i ) w = « - \ , p i = p 2 = ••• = p n - \ = i , q \ , q 2 , - > q n - \ < o .
To prove Theorem 3, it suffices to prove that An_m G A%r, s) implies An E.

A{~l)me(r, s + m), where by Lemma 6

(5.2) An = Gm+, An_m

^ = l

By Lemma 4, we have

(5.3) G m + , A B _ m 6 A < - ' ) " ' ( M + m ) .

By inductive hypothesis, An_^ E A'"1'™ e(r, 5 + m — k) for 1 < k «£ m. Then by
Lemma 4, Gkkn_k G A*"1'™ 'e(r, 5 + m — 1); hence we obtain

f = 0 if qn_k = -1 for any k,
(5 .4) (* - 1)(>- - 1 ) 2 (<?„-* + l ) G , A n _ J .

6=1 G A1 ' (r, s + m) otherwise.
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Case (I). Upn_m¥zl, then by inductive hypothesis,

^ J ^ ' - i ) if Pm.m>2,

\A*(r-\,s) if pn-m<-l.

Thus, using Lemma 4, we have

/ x i n [A<"I)'"£(A-+ 1,5 + w - 1) if pn m>2,

(5.5) - ^ G m A ( / - - » e
[AW'(r,S + m) if ft_m<-l.

Case (II). \ipn_m = 1 and <7n_m__! > 0, then by inductive hypothesis,

A<f— -I> = A ( 1 _ m _ 1 e A ' ( r , J - l ) .

Thus, using Lemma 4, we have

(5.6) -.xyG^P.-j-V G A ( -Te ( r + ^ , + w _ !).

Case (III). Since m = n — 1 and/?, = 1, we have

(5.7) -xyGmfy--m--l> = 0.
From (5.2) ~ (5.7), we have An e A("ire(r, 5 + m). This completes the proof of

Theorem 3.
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