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Abstract. Let / be a continuous map from the circle into itself of degree one, having
a periodic orbit of rotation number p/q^O. If (p, q) = 1 then we prove that / has
a twist periodic orbit of period q and rotation number piq (i.e. a periodic orbit
which behaves as a rotation of the circle with angle 2-rrp/q). Also, for this map we
give the best lower bound of the topological entropy as a function of the rotation
interval if one of the endpoints of the interval is an integer.

1. Introduction and results
Let S1 be the circle. We denote by C^S1) the set of all continuous maps from S1

to itself of degree one. For x e S1, we say that x is periodic if there exists a positive
integer n such that f"(x) = x The period of x is the smallest integer satisfying this
relation. Let P(f) be the set of periods of / If x e S1 is a periodic point of period
n, then the orbit of x is the set {fk(x): k=l,2,...,n}. We refer to such an orbit
as a periodic orbit of period n.

Let /e ^(S 1 ) , F its lifting to the covering space U and e(X) = exp (2mX) the
natural projection of R-» S\ We note that F is not denned uniquely; nevertheless,
if F and F' are two liftings of / then F = F'+m with mel. Since deg (/) = 1 we
have F(X + 1) = F(X) + 1 for all XeR. If x is a periodic point of/ of period n
and e(X) = x, then F"(X) = X + k where k e Z. We shall call k/ n the rotation number
(or F-rotation number, if necessary) of x and we denote it by p(x) or pF(x). We
denote by L(/) or LF(f) the set of all rotation numbers of/ The following statements
are known (see [2] and [5]):

(1) p(x) does not depend on the choice of X. Actually, it depends on the periodic
orbit.
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(2) If F=F'+ m then pF(x) = pF.(x) + m.
(3) pF"(x) = mpF(x).
(4) If a<k/n<c, a,ceL(f) and k,neZ with H > 0 , then fc/«eL(/) and

neP(f).
(5) L(f) n Z * 0 if and only if 1 € P(f).
(6) If am e L(f) for m = 1, 2 , . . . and a = lim,,^ am e Q, then a € L(/).
(7) If /has no periodic points, then limn^oo(F"(X)-X)/n exists for all X, it is

independent of X and is irrational.
From the above statements, we can write L{f) = [a, d]nQ for some a, b e U. That

is, L(f) is a closed interval (possibly degenerated to one point) on Q and, from
now on, we shall call it the rotation interval of / If / has no periodic points, one
can take a = b = \imn^aa (F"(X)- X)/n.

From now on for a rational number p/q we always assume q>0. Le t /e C^S*)
and Wbea periodic orbit of/ of period q and rotation number p/ q with (p, q) = 1.
Let F be a lifting of/ such that p/' q& LF(f). Suppose that F is order preserving
on the set e~l( W). Then we say that W is a twist periodic orbit (from now on TPO)
of/ of period q and rotation number p/ q. Notice that every periodic orbit of period
1 is a TPO.

Let x, y e S\ We denote by (x, y) (resp. [x, y]) the open (resp. closed) arc of S1

from x counterclockwise to y. Let W = {x, , . . . , xq} be a periodic orbit of/ of period
q and rotation number p/q with (/>, 9) = 1. Suppose that either (x,, x,+1) nW = 0
for i = l , 2 , . . . , q-\ and (xq,xx)n W=0 if p/q>0, or (x,+1,x,)n W = 0 for 1 =
1, 2 , . . . , q -1 and (x,, x,) n W = 0 if p/g < 0. To give a geometrical interpretation
of a TPO on the circle, we shall prove that if W is a TPO then

f(xt) = x.+ipK^d,, for i = 1, 2 , . . . , q

and the converse is not true (see lemma 1). Note that the notion of TPO of period
q and rotation number p/q characterizes the simplest behaviour of the graph of a
map which has this rotation number.

THEOREM A. Let / e C^S1). Then the following hold:
(a) Ifr/s, with (r, s) = l, is an endpoint of L(f), then all periodic orbits of f of

period s and rotation number r/s are TPO.
(b) If p/qe L(f) with (p,q) = l, then there exists a TPO of f of period q and

rotation number p/q.

In the first version of this paper, we assumed in theorem A (b) that also Oe L(f).
Then this result was generalized by one of the authors (see [6]). The proof given
here is much simpler than the one from [6]; (this theorem has been proved (in
another simple way) independently by A. Chenciner, J.-M. Gambaudo and Ch.
Tresser (C.R. Acad. Sci. Paris, t. 299, Ser. I (1984), 145-148). It is based on the
methods used by R. Hall for the case of twist maps of the annulus.

From now on, £( • ) will denote the integer part function. Let ceU, c#0 . For
z > 1 we define

Qc(z) = z + 1 - 2 £ z-*<"/H>.
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Let f}c be the largest zero of the equation Qc(z) = 0. If / e Cj(Sl) then h{f) denotes
the topological entropy of /

THEOREM B. Let fsC^S1) and suppose that L{f) contains either [0, c ] n Q or
[c, 0] n Q with c^O. Then Ji(/) — log pc Moreover, for every c € Q, c 5* 0 there exists
a mapfe C^S1) such that L(f) is either [0, c]nQ or [c, 0 ] n Q and /i(/) = log/3c.

For a rational number p/q^O such that (p, q) = 1, <? > 0, we define the following
polynomial

We denote by ap / ? the largest root of H p / y

THEOREM C. The following statements hold:
(a) For CT*0 the function QC has a unique root (larger than 1).
(b) Forp/q*Oand(p,q) = lwehaveHp/q(z) = (zq-l)Qp/q(z). Thenap/q = pp/q.
(c) The function /3.: R\{0}-»(l,oo) is strictly increasing on the positive numbers.

Moreover /3_c = pc Hence it is strictly decreasing on the negative numbers.
(d) The function /3. is continuous from the left at every c> 0 (and from the right at

every c<0) .
(e) The function p. is continuous at all irrational points.
(f) The function /3. is discontinuous from the right at all positive rational numbers

(and from the left at all negative rational numbers).
(g) For every neN, the jump of p. occurring at n is l+s/n2 + 2n-Jn2+l which

belongs to the interval (2 — l/n, 2 —l/(w + l ) ) ; the sum of all other jumps occurring
between n and n + l is 2/(Vn2 + 2n+Vn2 + 2n + 2) < \/n.

Theorems A, B, and C are proved in §§ 3,4.

FIGURE l(a)
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S(a,Sl) =

FIGURE l(b)

FIGURE 1. This shows the graph of the map /3.. In (a) c lies in [0,16], j8 in [1,16 + V257]. In (b) c lies
in [0,1], /3 in [1.2 + V5]. Each large division is equal to one unit.

Remark 1. In [5] the following result is shown. Let/e C^S1) and L(f) = [a, b]nQ.
Then, there exist su s2eNu{2°°} such that P(f) = S(a, s,)u M(a, fc)uS(fe, s2),
where

M(a, b) = {neN: a<k/n<b for some keZ},

0, ifa£Q;

{n • 2m: m eMu {0} and a = k/n with (k, n) = 1},
ifaeQands,=20°;

{n • s: a = k/n with (fc, n) = 1 and 5 is larger than
or equal to s, in the Sarkovskii's ordering},
if a e Q and s, * 2°°.

S(b, s2) is as S(a, s,) with b and s2 instead of a and s,, respectively. Moreover, for
every set AcN of the above form, there exists a continuous map fe C^S1) with
the corresponding rotation interval and P(/) = A.

From this result it is easy to see that if a e Z or fe € Z then P(f) = N if b - a > j .
Moreover, suppose that 6 - a e [ l / n , l / ( n - l ) ) with n>2. Then

M(a, b) u S(fe, s2) = {«, n +1,.. .} if a € Z,

and

M(a, 6)uS(a, s,) = {«,« +1,. . .} iffeeZ.

Clearly, this implies that there are a lot of maps of the circle of degree one with
different rotation interval and the same set of periods. Thus, for/e C^S1) the study
of lower bounds of the topological entropy must be more precise using the rotation
interval than using the set of periods P(f).
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Remark 2. Theorem B gives us the best lower bound of the topological entropy of
a map / e Ci(S') depending on its rotation interval if one of the endpoints of the
interval is an integer. Now we improve this lower bound taking into account the
set of periods due to the endpoints of the rotation interval. That is, using the notation
of remark 1 and taking a = 0, from theorem 3.2 of [2] we have that

h(f)> (log \q)/2
m

if Si = 2mq with q > 3 odd, where A, is the largest root of the polynomial zq - 2zq~2 - 1 .
Then we have

h(f) a max {(log A,)/2m, log &},

where either st = 2mq, c = b if a = 0, or s2 — 2mq, c = a if b = 0, and q > 3 is odd.
Moreover, if {a, b}nZ^0, then it is easy to see (from theorem B of [1], [4] and
statement (c) of theorem C) that

(A,)2"m<A3s)3c if b-a^i

Therefore, if b - a > 5 and {a, 6 } n Z # 0 , then we only need theorem B to give good
lower bounds of the topological entropy.

Remark 3. From [5] we have that i f / e C^S1) and Oe Int L(f) then /i(/)>log3.
On the other hand, from lemma 23 we have that, if \c\ \ 0 (resp. \c\ / n, \c\\ n
where neN) we have /3C \ 1 (resp. /3C /> n + (n2+l)h, /3C \ M + l + [(n + l ) 2 - l ] i ) .
Therefore, theorem B gives better lower bounds of the topological entropy in the
case that L(f) is of one of the following types:

(a) [0, c] with 0 < c < 1;
(b) [c, 0] with -1 < c<0; or
(c) [a, b] such that - K a < 0 , and ft>l.

2. Preliminary results
LEMMA 1. Letfe C^S1) and let T = {xu x2,..., xq) be a TPO of period q and rotation
numberp/ q. Suppose that either (xf, x,+1)n T = 0fori = 1, 2 , . . . , q — 1 and (xq, x^n
T = 0 ifp/q>0, or (xi+u xt)n T = 0 for i = l,2,... ,q-\ and (xuxq)r\ T = 0 if
p/q<0. Then we have that f(xi) = xi+Mimodq) for i = \,2,...,q, and (p,q) = l.
Moreover, the converse is not true, i.e. the last assertions do not imply that the periodic
orbit is twist.

Proof. We suppose that p/q>0. For the case p/q<0 the proof is analogous. Let F
be the lifting o f / for which pF{xl)=p/ q. We have e~1(T) = {X1: ieZ}, with
• • • X_2 < X_, < Xo < Xx < X2 • • •. We may assume that e(X,) = xx. Then, clearly we
have Xi+kq = Xt + k and e(Xi+kq) = x, for k e Z and i=l,2,... ,q. Since F on e ' \ T)

is one-to-one and order preserving, we have F(Xt) = Xi+v for some veZ and all i.
But

and therefore v=p, and /(*,) = xi+pimodq) for all i. Since T is an orbit (not a union
of several orbits) we obtain (p, q) = \.

To see that the converse is not true, look at figure 2 for an example with pi q = 2/5.
•
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From now on we assume that the notions and techniques of [2] are known to the
reader.

L E M M A 2 (see [2]). Letfe C j (S ' ) . IfJ0-*J,-*•••-*/„_,-> Jo is a loop in an A-graph

off, then there exists a fixed point x off" such thatf(x)eJifori = 0,l,...,n-l.

Let/e C^S1) and A = {au ..., an} be an invariant set (i.e. f(A) c A). Let X, < X2 <
• • • <Xn <X, +1 be such that e(X,) = a, for 1" = 1,2,..., n. Let F be a lifting off.
We denote by F the map such that

(1) F(X, + k) = F(X, + k) for i = l,2,...,n and fceZ;
(2) F|[Xj+fciX(+1+kj is linear for 1 = 1,2,..., n -1 and k e Z;
(3) F|[xn+fc,x,+*+i] is linear for keZ.

We call F the A-linearization of F. We denote by / the map of the circle of degree
one which has F as a lifting. We say also that / is the A-linearization off. If F = F,
that is, f=f, then we say that F and / are A-linear.

LEMMA 3. Let g be an increasing map (not necessarily continuous) of a closed interval
I into itself. Then g has a fixed point.

Proof. Take X = sup{Y: g(Y)> Y}. If g(X)>X then for every Ye(X,g(X))
we have g( Y) > g(X) > Y and this is a contradiction. If g{X) < X then for
every Ye{g(X), X) we have g(Y)<g(X)< Y, again a contradiction. Therefore,

x. a
Let / be an interval of R. We denote by I + n the set {X + n: Xe I}.

LEMMA 4. Letfe C^S1) with lifting F and let A be a finite invariant set under f. Let
fbe the A-linearization off and suppose that f has a TPO T of period s and F-rotation
number r/s with (r, s) = 1, where F is the lifting of f obtained by A-linearization of F.
If T<£ A and F is increasing at every point of e~x(T), then f has a TPO of period s
and F-rotation number r/s.
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Proof. Let X, < X2 < • • < Xn < Xx +1 be such that e({Xu X2,...,Xn}) = A, /, =
[Xb X,+1] for i = 1,2,..., n - 1 and /„ = [Xm X, +1]. Let U be the partition of U
given by the points of e'\A). Since T<£ A is a periodic orbit and A is invariant
for/, they are disjoint. Hence, if we choose xe T, then there is a unique ij e { 1 , . . . , n}
such that there exists X e /,, with e(X) = x. Analogously, there are unique ij e
{ 1 , . . . . n} and n} e 1 such that Fj'l(X) &Iij + nj,j = 2,... ,s + \. Since FS(X) = X + r,
we have is+l = it and ns+s = r. In such a way we obtain the following path in the
l/-graph of F:

/,-,-» J,2 + «2^ » /,-, + ns -» /,, + r.

Now we define the following maps (perhaps non-continuous):

M J : V . + "J+I "* h + nJ {oTJ = 1,2,..., s - 1 ,
such that M;(X) = inf {Y e It. + rtj-. F( Y) = X}. Since F is increasing on every interval
It. + rij, j = 1, 2 , . . . , s, these maps are increasing (see, for instance, figure 3, where
Y^MjiZj), i"=l,2,3). Therefore, the map M-.I^+r-*Iit + r such that M =
M] o M2 o • • • ° Ms + r is increasing. By lemma 3, M has a fixed point Z' e /,, + r. Let
Z = Z ' - r€ / i , . Obviously, F*(Z)e 7j.+1 + n,-+, for y = 0 , 1 , . . . , 5 - 1 , and FS(Z) =
Z+re 7,-, + r. Therefore {e(Z),f(e(Z)),... ,/s"1(e(Z))} is a periodic orbit of period
5 and rotation number r/s. To see that it is a TPO, one has to look at {FJ(Z):j =
0, . . . , 5 - l} + Z and compare it with e~'(T). To decide which of two given points
of such a set is to the left and which to the right, one has to check first to which
elements of the 17-partition they do belong. If these intervals are different, then the
answer is obvious. If they are the same, then one has to go along the orbits of these
two points and keep checking. Since we only use increasing pieces of the maps F
and F, we have that the procedure and criteria are the same in both cases (i.e. in
the case of {F'{Z):j = 0 , 1 , . . . , s - 1} + Z and the case of e~l(T)), and the ordering
of these two sets is the same. Hence, since T is a TPO, so is

\ U

3. Twist periodic orbits
Let/e CxiS1) and F be a lifting off. We define the maps Fr and F, as follows (see
figure 4):

): Y>X}.F,(X) = in
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We write / and / for the maps of the circle which have as a lifting Fr and F,,
respectively. Obviously /„ / e C^S1).

(n,m + 2) (n + 2 , m + 2)

(n, m)

FIGURE 4. - - - denotes Fr; •

(n + 2, m)

• denotes F ; • • • denotes F,.

LEMMA 5. Let fe C^S1) and let W be a periodic orbit of f of period q and rotation
number p/q such that 0<p/q < 1 and (p, q)=\. Suppose that W is not a TPO. Then
the following hold:

(a) fhas a TPO R of period s and rotation number r/s with (r, s) = 1 and p/q < r/s.
(b) f has a TPO L of period n and rotation number m/n with (m, «) = 1 and

m/n<p/q.

Proof. We prove (a) and (b) in the case when / is W-linear. Also, in this case, we
prove that F is increasing on e~\R) and e~'(L). Then we may use lemma 4 and
we obtain (a) and (b) in the general case. We deal with statement (a); the case (b)
is similar.

Let U be the partition of S1 by the elements of W. Since f is onto, for every
Ie U there exists Je U such that //r-covers /. Therefore, since the number of
intervals of U is finite, we have a loop of length s in the t/-graph of fr with 1 ^ s < q.
In addition we assume that this loop is the shortest one of the [/-graph of fr

Moreover, since W is not TPO at least one interval Ie U satisfies /r|/ = constant.
Then s<q. From lemma 2, this loop gives us a periodic orbit R of fr of period s
and rotation number r/s. Since s < q, we have R ^ W. All intervals on which Fr is
constant are mapped to elements of W, and hence Fr is increasing at every point
of e~1(R). Consequently F|e->(/?) = Fr\e-\R). Since Fr is non-decreasing, R is a TPO
for/,. Hence, it is a TPO for/ From lemma 1 it follows that (r, s) = 1.

To finish the proof of (a) we only need to show that r/s 2:p/q. Since Fr is
non-decreasing and Fr>F, we have F">F" for all n. Hence, if Xe e~l(R), Ye
e~l(W) a n d X > Y, then

r/s=lim F"(Y)/n

>lim F"(Y)/n = lim (F"{Y)- Y)/n = p/q. •
Now we consider the space ££ of all liftings of maps from C^S1), with the topology
of uniform convergence. The maps F, G, F,, Gn will be liftings of the maps /, g, /„
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gn respectively. We fix peZ and qeZ+ such that p and g are coprime and denote
the set of all twist periodic orbits (non-twist periodic orbits) of g of period q and
rotation number p/q for G by T{G) (N(G) respectively).

LEMMA 6. Let GeJ£ and assume that both T(G) and N(G) are non-empty. Then
there exist points X,, V, e R (i = 0,l,...,q) such that

(i) Xi<YJori = 0,l,...,q;
(ii) Xq = X0+p and Yq = Y0 + p ;
( i i i ) G(X,)<XI+1 and G ( Y , ) > Y j + 1 for i = 0 , l , . . . , g - l ;
(iy) ' / j . ̂ e ( 0 , 1. • • •. a~U and m,neZ then: either

m and Yj+i + n<Xk+1

or

n and Yk+1 + rn<Xj+l

Proof. Let Ae T(G), Be N(G). Take as X'o and Y'o two consecutive elements of
e~\A) and define X\ = G'(Xi), YJ = G'(Y£) for i = l,2,...,q. Then for XJ, YJ
conditions (i) and (ii) hold, (iii) holds with equalities instead of inequalities, and
(iv) holds with non-strict inequalities. Since the orbit B has the same period and
rotation number as A, but it is not twist, there are j , ke{0,l,..., q — l} and points
Ze(X; Y'j)ne-\B) and Te(X'k, Y'k)ne^(B) such that G(Z)<X'j+1 and
G(T)> Y'k+l. We set

i f i * / ri'J if iV ft;
' \Z if i =j* ' IT

for /' = 0 , 1 , . . . , q — 1 and

Then for Xf, Y? conditions (i) and (ii) still hold, (iv) holds with non-strict
inequalities, and instead of (iii) we have G(X';)<X"i+u G{Y1)>Y'i+x for i =
0 , 1 , . . . , q -1 and G(X'J) < XJ+U G{ Y"k) > Y"k+1. Thus, since G is continuous, we
can find e0, eu...,eq>0 such that eq = e0 and for the points X, = X" + e, and
Yf = Y" - e, the conditions (i)-(iv) are satisfied. •

LEMMA 7. (a) 77ie sef of those G e i? /or whic/t tliere exist points X,, Yf satisfying
(i)-(iv), is open.

(b) If there exist points Xh Y, satisfying (i)-(i\) for G e ££ then T(G) is non-empty.

Proof, (a) If the conditions (i)-(iv) are satisfied for some G e i ? and some X,, Y,,
then clearly they are satisfied for all F from some neighbourhood of G for the same
Xh Y,

(b) By (iii) we have G([X,, Yf])=>[Xi+1, Yi+1] for i = 0 , 1 , . . . , q-\ and con-
sequently there exists a point Ze[X 0 , Yo] such that G ' (Z)e[X, ,Y] for i =
0 , 1 , . . . , q and G'(Z) = Z + p. Hence, e(Z) is a periodic point for g of period q
and rotation number pi q. By (iv), its orbit is twist. •

LEMMA 8. The set of those Ge«2" for which T(G) is non-empty, is closed.
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Proof. Let Gn -> G as n -» oo and let Ane T(Gn). Taking a subsequence if necessary,
we may assume that we have lim,,^ Xn = X for some Xn e e~\An) and X eU. Since
G*(Xn) = X n +p for each n, we obtain G"(X) = X+p. Hence, e(X) is a periodic
point for g and its rotation number is p/q. Since p and g are coprime, its period
is q. By a continuity argument, G restricted to the orbit of X is non-decreasing,
and since the period of e(X) is q, it is strictly increasing. Hence the orbit of e(X)
is twist. •

LEMMA 9. Each FoeZ£ with an orbit Be N(F0) may be joined by a curve (F,)Os(s l

in i? to some Fx with T(F1) non-empty in such a way that F,\e-\B) = F0\e-\B) for all
'£[0,1].

Proof. We can find aeU such that the set {(k/q) + a}keZ is disjoint from e~\B),
and then deform Fo continuously in i? to F, (keeping Ft\e-\B) unchanged) in such
a way that

k + p
•• -+a forfceZ. •

Proof of theorem A. (a) If r/seZ then we are done. If not, let F be a lifting of/
such that r/s is the right endpoint of LF(f). The proof follows similarly when r/s
is the left endpoint. Let F'= F — E(r/s). Then

r'/s = r/s-E{r/s)eLP{f).

Note that (r', s) = 1 and r'/s e (0,1). Then, by lemma 5, all the periodic orbits of
period s and F'-rotation number r'/s are TPO. Hence, these orbits are TPO of
period s and F-rotation number r/s.

(b) Suppose that T(F) is empty. Then N(F) is non-empty and we can take a
curve (F,)os/==i with properties as in lemma 9 (here Fo= F). The set of those t for
which T(F,) is non-empty contains 1 by lemma 9, is open by lemmas 6 and 7
(remember that Be N(F,) for all t), and is closed by lemma 8. Hence, T(F0) is
non-empty - a contradiction. •

4. Topological entropy
Let p,qeN with (p,q) = l. There exist unique ke{l,..., q-l} and le
{0 ,1 , . . . , p -1} such that kp-lq = \. For each i e { 1 , . . . , p -1} there exists a unique
je{l,...,q} such that j = ik (mod g). We denote this j by tfrip/q, i). This defines
the function ifi(p/q, •):{!,.. .,p-1}-*{!,.. .,q}. Note that if p < q then it is one-to-

one.

For a rational number p/q T^O with (p, q) = 1, we define the polynomial

We denote by a,/ , the largest root of H'p/q. Note that if q = 1 then ^(|p|/qf, i) = 1
for i=l,...,\p\-l, and hence //p(z) = z2-2|/>|z-l.

PROPOSITION 10. LetfeC^S1). If 0,p/qeL(f) with {p,q) = l and p/q* 0, then
h(f)>\oga'p/q.
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Proof. We recall that we are using the notation and the standard techniques of [2].
We divide the proof into four cases.

Case 1. Suppose 0<p<q. From theorem A there exists a TPO of/ of period q and
rotation number pi q. Let A be the set consisting of a fixed point d with rotation
number 0 and all elements of the above TPO, and / be the A-linearization of/ Let
G be the A-graph of/ Since G is a subgraph of the A-graph of/ from lemma 1.5
of [2] it follows that h(f) > h(G). Now we are going to compute h(G).

Let F be a lifting of/ such that Oe LF(f) and D be a fixed point of F such that
e(D) = d. The points of e~l{A) give us a partition of [D, D+1] into intervals and
we call these intervals from the left to the right Iu I2, • • •, Iq+\- The map F looks
as in figure 5.

(D, D + 2)

V.

(D,D)

/
/ - *

/ /

/

/

1

/
/

/

\
\

/

1q~p+\ *q+\

FIGURE 5

It is clear that /, /-covers Ij with j =\,2,... ,p + l; Iq+l /-covers Ij with j =
1,2, . . . , p ; /,-p+i /-covers /, and J,+1, and J, /-covers /J+p(mod,) (when dealing
with indices from the set { 1 , . . . , q], by q (mod q) we mean q instead of 0) forj £ {1,

+ 1}. Then G has the following subgraph

where ./, =/jP+i(mod?)- Obviously Jo= h and /,_1 = /,_p+1. With this notation, we
have that Jo and Iq+1 /-cover, additionally, J, with je Bp/q = {j: 2 < 7 < q - l and
J, = /fc with 2<fc<p} = {/:2sj<<7-l and 2 </p +1 (mod q) < p}. Furthermore, /0

/-covers itself. In such a way we obtain the whole graph G.
In order to compute h(G) we take as a rome R = {RUR2} with R1 = Il and

#2 = /,+i. Now, we compute the elements a9(z) = £, w(t)z~'(1) of the 2x2 matrix
AR(z), where the summation is over all simple paths originating at Rt and terminating
at Rj, and w(t) is the width of the simple path t and l(t) is its length. Then we
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define V(z)=£J.ef l zJ~q~l. Since the length of the paths

K , J°

is q-j+l, we have an(z) = z'1 + z~q+V(z), al2(z) = z~" + V(z), a2l(z) =

Now, from theorem 1.7 of [2] it follows that h(G) is the logarithm of the largest
root of the polynomial

To finish the proof in case 1 it is enough to establish the following claim: the image
of { 1 , . . . , p - l } under ip(p/q, •) is Bp/q. Since both sets have cardinality p-\, it is
sufficient to show that for each ie{1,... ,p-1} we have ifrip/q, i)e Bp/q, that is

Since il/(p/q, i) = iA:(mod q), where kp — lq = l, we have tl/(p/q, i) = nq + ik for some
n eZ . Then

and hence

(/>(/»/ ̂ , i )p+1 = 1 + 1 (mod q).

This proves the claim.

Case 2. Suppose that 0<q<p with q^ 1. In a similar way to case 1, we have that
h{f)>h{G) where G is the A-graph of a piecewise linear map / which has a lifting
F as in figure 6. Therefore G is exactly the same as in case 1 adding the following
arrows: / , and Iq+i /-cover m times /, forj = 1 , 2 , . . . ,q + l, where Kp/q = m + r/q
with 0 < r < q. We define

W(z) = m £ z"J'.
J = I

Then, as above, it follows that h(G) is the logarithm of the largest root of the
polynomial

= z'+1-z«-z-l-2m £ zJ-2 I r*.
j = i ;£«,„

We only need to check that each element of { 1 , 2 , . . . , q) is attained by <{>(p/q, •)
either m +1 times if it is attained by \p{r/ q, •), or m times if it is not attained by
if>(r/q, •). Take ke{l,..., q-l} and Z'e { 0 , 1 , . . . , r - 1 } such that A T - /'<? = 1. Since
p = mq + r, for l=km + /' we have 0 < / ' < / < g / n + r - l = / > - l and kp-lq =
kmq + kr — kmq -l'q = \. From the definition of \fi it follows that if i runs over the
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(D, D + m + 1)

(D,D +

(D, D)

M/

Y

V

1

/ A
A

A
(D + l, D)

FIGURE 6

set {sq+1, sq + 2,..., (s + l)q} (where 0< s < m) then ip(p/q, i) runs over the set
{l,2,...,q} and that for ie{mq + l, mq + 2,..., mq + r-l} we have i(f(p/q, i) =
*(>(r/q, i~mq). This ends the proof of case 2.

Case 3. Suppose that p/q > 0 with q = \. Let A be the set consisting of a fixed point
with rotation number 0 and a fixed point with rotation number p. Let / be the
A-linearization of / and F be a lifting of / for which 0 and p are the rotation

(D, D+l)

(AD)

/I
/

I-
\\/
/

(A
FIGURE 7
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numbers of these points. Let D,D'eU such that F{D) = D and F(D') = D' + p, with
D< D'< D+l. Then F is as in figure 7. If G is the A-graph of/, then we have
that J, /-covers I, p +1 times and /-covers I2 p times, and I2 /-covers / , p times
and /-covers I2p-\ times, where It = [D, D'] and I2 = [£>', D + l ] . Now, if we take
as a rome R = {/,, I2}, we have

= z 2 - 2 p z - l .

Case 4. Suppose p/q<0. By replacing F(X) by —F(—X), we obtain one of the
cases 1, 2, 3. •

PROPOSITION 11. Let p/q ^ 0 with (p, q) = 1. Then there exists a mapfe Ci(S') such
that L(f) = [0,p/q]nQ (resp. L(f) = [p/q,0]nQ) ifp/q>0 {resp. p/q<0) and

/.(/)=log «;„.
Proof. We consider the case p/q>0 and q^l. For the other cases the proof is
similar. Let F: R -> U be the following continuous map:

(1) F(0) = 0 ,F( l ) = l;
(2) F(X) = X + p/q forXe[p/2q,l-p/2q];
(3) F is linear on [0,p/2q] and on [l-p/2q, 1];
(4) F(X + l) = F(X) + l forallXeR.

Le t / e Ci(S') such that F is a lifting of/ From [5] (see the proof of the theorem)
it follows that L(f) = [0, p/q] n Q. The graph G given in cases 1 and 2 of proposition
10 is the A-graph of such an / where A is the partition of S1 given by
e({0, \/2q, 3/2g, ...,(2q -\)/2q}). Let M be the transition matrix of G. It is well
known (see [3, p. 250]) that the entropy of/ is equal to the entropy of the subshift
of finite type with transition matrix M. By the computations made in the proof of
proposition 10, the largest eigenvalue of M is equal to a'p/q, and hence h(f) =
log <*'„„. •
LEMMA 12. For p, qeN with (p,q) = l there exists a permutation crp/q of the set
{ 1 , . . . , p -1} such that i/j(p/q, i) = E(ap/q(i)q/p) +1 for each i e { 1 , . . . , p -1}.

Proof. We take k e { 1 , . . . , q -1} and / e { 0 , 1 , . . . , p -1} such that kp-lq = \. Then
k = lq/p + l/p, and hence ik = E(ilp/q) + \ for each ie{l,...,p-l}. We set
crp/q(i) = H (mod/?) for i e { l , . . . ,p-\} (notice that / = 0 only if p = \). Since
{l,p) = 1, o-plq is a permutation of {1 , . . . , p - l } . We have 1< l + <rp/q(i)q/p<q + l
and E(ilq/p)= E(<rp/q(i)q/p) (mod q). Therefore

E(crp/q(i)q/p)+l = il,(p/q,i). •

From lemma 12 it follows immediately that H'p/q = Hp/q, and a'p/q = ap/q (Hp/q and
ap/q were defined in the introduction).

LEMMA 13. Forp, qeN and z> 1 we have
p—\ oo

y 2E(Ji/p)+i _ (zq _ j \ y z
J=l n=0
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Proof. We

and hence

have
oo
y z~E(nq/p)

n=0

(1

OO

= E
fc=O

CO

l - z - <

Py z-E((kp+i)q/p)

i = 0

p - 1

i=0

oo

') y z ~ E ( "« / p ) =
n = 0

oo

= I(

p-1

I

z-<<« P y Z-E(>"«/P)

3 i=O

z-E(i? /p)

For i e {1,2, . . . ,p — 1} the number iq/p is not an integer, and hence E(iq/p) +
E((p — i)q/p) + l = q. Therefore, using lemma 12, we obtain

V z~
E<-iqlp) = l + V z

E^/p~>+y-i = z-i y Z
£O«/P)+I + 1_

i = 0 fc=l 7 = 1

From this relation the lemma follows. •

Recall that'for c^O and z > l , we denned (?c(z) = z + l - 2 ^ = o z - ' ; w | c | ) . Then,
from lemma 13 it follows that:

LEMMA 14. Forp, qeN and z> 1 we have Hp/q(z) = (zq-l)Qp/q(z).

LEMMA 15. For every c > 0 the function QC:{1, oo)->|R is strictly increasing.

Proof. For every n > 0 we have - £ ( « / | c | ) < 0 and hence the function z>->z~E(n/^)

is non-decreasing. Since the function z >-* z +1 is strictly increasing, we obtain that
Qc is strictly increasing. •

LEMMA 16. For every c # 0 the equation Qc(z) = 0 has a unique root (which, of course,
is larger than 1). Ifc = p/q with (p, q) = 1, then this root is equal to ap/q, the largest
rootofHp/q(z).

Proof. We have limzNll Qc(z) = -oo and lim^o, Qc(z) = oo. Together with lemma 15,
this implies that the equation Qc(z)=O has a unique root. Let c = p/q. Then, by
lemma 14 the second part of the lemma follows. •

For c^O we define |3C as the unique root of the equation Qc(z) = O. We have
/3.:R\{0}-> (1, oo) such that /3C = /3_e. Then, from now on we only study Qc and )3C

for c>0.

LEMMA 17. For every z>\ the function Q.{z): (0, oo) -> U is strictly decreasing.

Proof. Let 0<c ,<c 2 . For every n we have -E(n/c2)^-E(n/cl) and for n such
that l/c2 < fc/n s 1/c, for some integer fc, the inequality is strict. Therefore <?C2(

Z) <
QCi(z) for all z > l . •

From lemmas 15 and 17 it follows immediately:

LEMMA 18. The function p.: (0, oo) -> (1, oo) is strictly increasing.

ForO<M set k(b, d) = min{n>0: E(n/d)* E(n/b)}.
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LEMMA 19. For every y > 1, ifb and d are bounded from above and k(b, d) -> oo , then 
| ( ? b ( z ) — Qd(z)\-*0 uniformly with respect to z e [y, o o ) . 

Proof. For b, d<a and z > y we have 

| < ? „ ( z ) - Q d ( z ) | = 2 £ ^ z - £ ( n / d ) _ z - E ( n / b ) ^ 

n=0 

< 4 £ z - H ( n / a ) 

n = fc(b, d) 

= 4z~k(b-d)/a/(l-z~1/a). 

For k(b,d)^a we obtain 

lQ b (z ) - Q d ( z ) M ; T f c ( b - d ) / 7 ( l - y ~ 1 / a ) . 

If k(b,d)^*<x> then this tends to zero. • 

LEMMA 20. (a) For every b>0, if d / b then k(b, d ) - » o o . 

(b) For every irrational b>0, if d-> b, then k(b, d) -» oo. 

Proof. Take n > 0 . In both cases, if d is sufficiently close to b, then there is no 
fraction with the denominator smaller than n in ( 1 / d, l/b] or (l/b, l/d] (depending 
on whether b < d or d < b). Then E(m/d) = E(m/b) for all m<n. Consequently 
k(b, d ) > n. Therefore, in both cases we obtain k(b, d ) - » o o . • 

L EMMA 21 . Let c, = p/q > 0 with (p, q) = 1. Then 

< ? „ ( * ) - l i m <?c(z) = 2 ( z - l ) / ( z « - l ) . 
e \ ,c , 

Proof. We have l i m c S i C | E(n/c) = E{n/cx) for all « except for n = kp with 
fc = l , 2 , . . . . For these exceptional n, E(n/c1) = kq, but l i m c N i C i E(n/c) = kq -1. 
Therefore, 

OO 

< ? C l ( z ) - l i m Qc(z) = 2 I ( z - ^ + 1 - z - ^ ) = 2 ( z - l ) / ( z " - l ) . • 

From lemmas 14 and 21 it follows: 

LEMMA 22. If p,qeN, (p,q) = l, then the number limcSiP/qf}c is the largest root of 
the polynomial Hp/q(z) — 2z + 2. 
Since H„{z) = z2-2nz-1 for all neN, from lemmas 18 and 22 it follows: 

LE MMA 23. For allneN we have pc / n + ( n 2 + l ) i and j8c \ n + l + ((n + l ) 2 - l ) i , 
if c Z1 n and c \ n, respectively. 

Proof of theorem C. This follows from lemmas 16, 14, 18, 15, 19, 20, 22 and 23 (to 
show that the j u m p of B. at n belongs to ( 2 - ( l / « ) , 2 - ( l / n + l ) ) , one can use 
the inequalities n + ( l / ( 2 n + 1 ) ) < V n 2 + 1 < n + ( l / 2 « ) and n +1 - ( l / ( 2 n + 1 ) ) < 
v V + 2 / j < / j + 1 - ( 1 / ( 2 m + 2)). • 

Proof of theorem B. The first part follows immediately from proposition 10, lemma 
12 and (b) , (c) and (e) of theorem C. The second part follows from proposition 11, 
lemma 12 and (b) of theorem C. • 
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Remark 4. In the above proof of theorem B we use theorem A via proposition 10.

But using lemma 5, (c) of theorem C and arguments similar to proposition 10, we

can prove theorem B without the use of theorem A.

Remark 5. If we define /30= 1, then the map /3. is continuous at zero. This means

that if L(f) = {0} then the contribution of the rotation interval to the topological

entropy is zero.

This paper was made possible by an invitation of the Universitat Autonoma de

Barcelona to M. Misiurewicz.
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