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Abstract We discuss the problem of the uniqueness of the solution to the Cauchy problem for second-
order, linear, uniformly parabolic differential equations. For most uniqueness theorems the solution must
be uniformly bounded with respect to the time variable t, but some authors have shown an interest in
relaxing the growth conditions in time.

In 1997, Chung proved that, in the case of the heat equation, uniqueness holds under the restriction:
|u(x, t)| � C exp[(a/t)α + a|x|2], for some constants C, a > 0, 0 < α < 1. The proof of Chung’s theorem
is based on ultradistribution theory, in particular it relies heavily on the fact that the coefficients are
constants and that the solution is smooth. Therefore, his method does not work for parabolic operators
with arbitrary coefficients. In this paper we prove a uniqueness theorem for uniformly parabolic equations
imposing the same growth condition as Chung on the solution u(x, t). At the centre of the proof are the
maximum principle, Gaussian-type estimates for short cylinders and a boot-strapping argument.
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1. Introduction

In this paper we are concerned with the question of uniqueness of solutions of the initial-
value problem

Lu = g on R
n × (0, T ), (1.1)

u(x, 0) = f(x) on R
n. (1.2)

Here 0 < T � ∞ and L is a second-order parabolic operator in divergence form (D) or
non-divergence form (ND):

Lu = Dtu(x, t) −
n∑

i,j=1

Di(aij(x, t)Dju(x, t)) = ut − (D, aDu), (D)

Lu = Dtu(x, t) −
n∑

i,j=1

aij(x, t)Diju(x, t) = ut − (aD, Du), (ND)
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where Dju = ∂u/∂xj , Diju = DiDju, Dtu = ∂u/∂t in R
n × (0, T ). We assume that the

matrix of coefficients a = a(x, t) = (aij(x, t)) is bounded, smooth and uniformly positive
definite, that is aij = aij(x, t) ∈ C∞(Rn × (0, T )) and for all X = (x, t) ∈ R

n × (0, T ),
ξ = (ξ1, . . . , ξn) ∈ R

n,

ν|ξ|2 �
∑
i,j

aij(X)ξiξj , max
i,j

|aij(X)| � ν−1, (1.3)

with a constant ν ∈ (0, 1]. The assumption aij ∈ C∞ is qualitative, in the sense that
none of the estimates depend on the smoothness of aij . By the standard approximation
technique, all the results are extended to the parabolic equations with measurable aij in
the divergence case, and with continuous aij in the non-divergence case.

2. Known results for the heat equation

The initial-value problem for the heat equation consists of finding a solution u(x, t) of

(Dt − ∆)u(x, t) = 0 on R
n × (0, T ), (2.1)

u(x, 0) = f(x) on R
n, (2.2)

where we require u ∈ C2 for x ∈ R
n, t > 0, and u ∈ C0 for x ∈ R

n, t � 0. A formal solu-
tion is obtained immediately by Fourier transformation; in particular, if f is continuous
and bounded on R

n, then

u(x, t) = (4πt)−n/2
∫

exp(−|x − y|2/4t)f(y) dy. (2.3)

Notice that we may not have any solution at all if the initial-value function grows too
fast. For example, there is a blow up in the case

u(x, 0) = f(x) = exp(ε|x|2+ε), ε > 0.

Indeed, for arbitrarily fixed small t we have the representation

u(x, t) =
∫

f(x − y)
c

tn/2 exp(−|y|2/4t) dy,

and for x = 0 we see that

u(0, t) = c(t)
∫

exp(ε|y|2+ε − |y|2/4t) dy = ∞.

Formula (2.3) represents only one of the infinitely many solutions of the Cauchy prob-
lem (2.1), (2.2), indeed it is well known that the temperature of the infinite rod is not
uniquely determined by its initial temperature, as Tychonoff’s famous example shows:
consider the function

u(x, t) =
∞∑

n=0

ϕ(n)(t)
x2n

(2n)!
,
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where

ϕ(t) =

{
e−1/t2 if t > 0,

0 if t � 0.

It is easy to see that it satisfies the heat equation for t > 0 and u(x, 0+) = 0 for each
x ∈ R.

For the uniqueness problem, it suffices, by linearity, to consider only the homogeneous
case f ≡ 0. With additional growth conditions there are uniqueness theorems.

2.1. Uniform growth conditions in time

In 1924, Holmgren [8] proved uniqueness in the class of solutions of the one-dimensional
Cauchy problem satisfying

|u(x, t)| � C exp(a|x|2 log |x|), for |x| > 1, t ∈ R. (HC)

The following is the uniqueness theorem that was originally proved by Tychonoff in
1935 [16].

Theorem 2.1. Let u(x, t) be a continuous function on R
n × [0, T ] satisfying the heat

equation (2.1) and such that for some constants a > 0 and C > 0

|u(x, t)| � C exp(a|x|2) in R
n × [0, T ]. (TyC)

Then u(x, 0) = 0 implies u(x, t) ≡ 0 in R
n × [0, T ].

Tychonoff also constructed a non-trivial solution of the homogeneous Cauchy problem
such that

|u(x, t)| � C exp(a|x|2+ε), for (x, t) ∈ R
n × (0, T ).

In 1936, Täcklind [15] relaxed Tychonoff’s condition and generalized Holmgren’s, showing
that there is only one solution to the Cauchy problem for the heat equation which satisfies

|u(x, t)| � C exp[a|x|p(|x|)] for t ∈ (0, T ), |x| > 1, (TaC)

where the function p(r) is any positive continuous function on R
+ such that∫ ∞ dr

infs�r p(s)
= +∞.

It is easy to see that choosing p(r) = r log r we obtain (HC), while choosing p(r) =
r we obtain (TyC). Täcklind demonstrates necessity of condition (TaC) by explicitly
constructing a non-trivial solution of the homogeneous problem using Carleman’s theory
of analytic functions.

It is remarkable that even a unilateral condition, a lower bound for u, can ensure
uniqueness. The basic result here is due to Widder [17], and states that there is at most
one solution u which is non-negative (for example, when u is the absolute temperature)
in the infinite strip R × [0, T ].

https://doi.org/10.1017/S001309150000095X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150000095X


332 E. Ferretti

2.2. Non-uniform growth conditions in time

For most uniqueness theorems the solution u(x, t) must be uniformly bounded with
respect to the t variable. Some authors have shown an interest in relaxing the growth
conditions in time.

In 1966, Shapiro [14] showed that if the solution u(x, t) of the heat equation is bounded
in every substrip of the form 0 < t0 < t < T and if ‖u(x, t)‖∞ = o(t−1) for t → 0+, then
u ≡ 0. In 1994, Chung and Kim [3] needed to strengthen the continuity assumption on
the solution, replacing it with the hypothesis

lim
t→0+

∫
u(x, t)φ(x) dx = 0, (CK1)

for all φ ∈ C∞(Rn) such that for some fixed a > 0 and for every h > 0,

sup
x∈Rn,α

|∂αφ(x)|exp(2a|x|)
h|α|α!

< ∞,

to be able to show that there is only one solution satisfying (CK1) and, for C > 0,

|u(x, t)| � C exp
[
a

(
1
t

+ |x|2
)]

in R
n × (0, T ). (CK2)

In 1999, Chung [2] went back to the classical continuity hypothesis and proved the
following theorem.

Theorem 2.2. Let u(x, t) be a continuous function on R
n × [0, T ] satisfying the heat

equation (2.1) in R
n × (0, T ) and the following conditions.

(i) There exist constants a > 0, 0 < α < 1 and C > 0 such that

|u(x, t)| � C exp
[(

a

t

)α

+ a|x|2
]

in R
n × (0, T ). (ChC)

(ii) u(x, 0) = 0 for x ∈ R
n.

Then u(x, t) ≡ 0 in R
n × [0, T ].

The proof of this theorem is based on ultradistribution theory, in particular it relies
heavily on the fact that the coefficients are constants and the solution is smooth. There-
fore, it is not possible to generalize such a proof to parabolic operators with non-constant
coefficients via standard comparison techniques.

The growth condition on the space variable is optimal since it is known (see [16] or [6])
that for every ε > 0 there exists a C∞ function u(x, t) not identically zero, satisfying

(a) (∆ − Dt)u(x, t) = 0 on R
n × (0, T );

(b) u is continuous on R
n × [0, T );

(c) |u(x, t)| � Cε exp(|x|2+ε) on R
n × (0, T ); and

(d) u(x, 0) = 0 on R
n.
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Chung and Kim [3] also prove that the growth condition in the time variable is the
optimal one by showing that Theorem 2.2 fails if we replace the assumption 0 < α < 1
with α = 1.

The example they have obtained is the following.

2.3. Example

Denote by Γ (x, t) the fundamental solution of the heat equation:

Γ (x, t) =

{
(4πt)−1/2 exp(−|x|2/4t) for t > 0,

0 for t � 0.

Let DK be a domain in the complex plane C given by

DK = {z ∈ C | z = x + iy, x � K, −π � y � π}, K � 0,

and let CK be the boundary of DK . Define a function u(x, t) on R × (0, ∞) by

u(x, t) =
1

2πi

∫
CK

Γ (x − ζ, t) exp(eζ) dζ, (2.4)

where the integral is taken counterclockwise. Such an integral is convergent because the
function exp(eζ) decreases very rapidly as Re ζ → ∞ along the curve CK and it is easy to
see that u(x, t) satisfies the heat equation in R × (0, ∞). Moreover, by Cauchy’s Integral
Theorem, u(x, t) does not depend on K � 0. We have

|u(x, t)| � A(K) sup
ζ∈DK

|Γ (x − ζ, t)|,

where
A(K) =

1
2π

∫
CK

|exp(eζ)| |dζ| < ∞.

If we write ζ = ξ+iη, the condition ζ ∈ DK is equivalent to ξ � K and |η| � π, therefore
we have

sup
ζ∈DK

|Γ (x − ζ, t)| =
1√
4πt

sup
ζ∈DK

exp
[
− (x − ξ)2 − η2

4t

]

=
1√
4πt

exp
(

π2

4t

)
sup
ξ�K

exp
[
− (x − ξ)2

4t

]
.

Then there is a constant a > 0 such that

|u(x, t)| � A(K) exp
(

a

t

)
exp

[
−d(x, DK)2

4t

]
, (2.5)

where d is the Euclidean distance.
It follows that

|u(x, t)| � A(K) exp
(

a

t

)
in R × (0, ∞). (2.6)
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Now let r > 0 be arbitrarily fixed and x � r. Since the integral (2.4) is independent of
K we may choose K > 0 large enough so that (K − r)2 > 4a.

Then (2.5) implies

sup
x�r

|u(x, t)| � A(K) exp
[
4a − (K − r)2

4t

]
, for t > 0. (2.7)

This shows that u(x, t) converges uniformly to 0 as t approaches 0+ in every half-line
(−∞, r], because the right-hand side of (2.7) converges to 0 as t → 0+. Therefore, we
obtain the continuity of u(x, t) in R × [0, ∞), and u(x, 0) = 0.

It remains to show that u(x, t) is not identically zero.
Suppose that u(x, t) ≡ 0 in R × [0, ∞). Then from (2.4) it follows that

∫
CK

exp
[
− (x − ζ)2

4t

]
exp(eζ) dζ ≡ 0

in R× [0, ∞). Applying the Lebesgue-dominated convergence theorem, because, for fixed
x, exp[−(x − ζ)2/4t] increases to 1 as t → ∞, we can see that

∫
CK

exp(eζ) dζ = 0. (2.8)

Because the integral expression in (2.4) does not depend on K � 0, we may choose
K = 0. Then (2.8) can be written as

0 = −
∫ ∞

0
exp(−eξ) dξ − i

∫ π

−π

exp(eiη) dη +
∫ ∞

0
exp(−eξ) dξ

= −2i
∫ π

0
exp(cos η) cos(sin η) dη

and this leads to a contradiction, since exp(cos η) cos(sin η) > 0 on [0, π].
Therefore, u(x, t) cannot be identically zero.

3. Uniqueness theorems for parabolic equations

For more general parabolic operators with bounded coefficients several uniqueness results
are known, but all of them control the growth of the solution uniformly in time. We
mention only a few.

3.1. Uniform growth conditions in time

In 1941, Krzyański [9] showed that the Tychonoff condition (TyC) guarantees unique-
ness for parabolic operators in non-divergence form provided the coefficients are bounded
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and continuous. The extension of Widder’s uniqueness theorem to solutions of equa-
tions of the form ut = a(x)uxx + b(x)ux + c(x)u with Hölder continuous and uniformly
bounded coefficients is due to Serrin [13]. In 1958, working with systems of parabolic
equations with bounded and sufficiently regular coefficients (e.g. C2,α), Zolotarev [18]
used Täcklind techniques to improve Krzyański’s result and demonstrate that there is
uniqueness if (TaC) holds. The regularity of the coefficients was needed to assure the
existence of a Green function from which some crucial estimates were derived. Under
the same regularity assumptions (to guarantee existence of the Green function) on the
coefficients of uniformly parabolic equations, Friedman (see [6] or [5]) proved uniqueness
in the class of solutions satisfying the following integral condition:∫ T

0

∫
Rn

exp(−c|x|2)|u(x, t)| dx dt < ∞, where c > 0. (FC)

Also, in 1966, Aronson and Besala [1] imposed an integral condition to prove unique-
ness of the solution for equations in divergence form, under mild assumptions on the
coefficients: ∫ T

0

∫
Rn

exp(−c|x|2)u2(x, t) dx dt < ∞, with c > 0. (AC)

In 1978, Hayne [7], studying the non divergence case, was able to remove Zolotarev’s
regularity assumption showing that uniqueness holds in the Täcklind class (TaC) only
when restrictions are imposed on the magnitude of the coefficients. He could derive cru-
cial estimates constructing a comparison function independent of coefficient regularity
through Carlo Pucci’s theory of elliptic extremal operators. In 1995, Polidoro [11] proved
that there is a unique non-negative or Tychonoff’s class solution to ultraparabolic equa-
tions in divergence form of type Lu = ut − (D, aDu) − (x, bDu), where a = aT and b is
a constant matrix. He relied on pointwise estimates for the fundamental solution of the
operator L.

Now we want to show that integral conditions of type (FC) or (AC) are equivalent to
the pointwise condition (TyC). For this purpose we will need the following Moser-type
estimates for non-negative solutions of equations in (D) or (ND) form (see [10] for (D),
see [4] for the general case).

Theorem 3.1. Let u be a non-negative solution of Lu � 0 on a standard cylinder
C2ρ, for some ρ > 0. Then for each p > 0

sup
Cρ

u � N‖u‖Lp(C2ρ), (3.1)

where N = N(n, ν, p) > 0.

Theorem 3.2. Let u be a solution to Lu = 0 in R
n × (0, T ). Then, for a suitable

choice of constants b, c, B, C > 0 and for any p > 0 we have∫ T

0

∫
Rn

exp(−c|x|2)|u(x, t)|p dx dt < C < ∞ ⇐⇒ (3.2)

|u(x, t)| � B exp(b|x|2) in R
n × (0, T ). (3.3)
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Proof. For simplicity we take p = 1.

(⇒). Suppose first that u � 0 in R
n × (0, T ). Let X0 = (x0, t0) be arbitrarily fixed

in R
n × (0, T ), with |x0| = r. Then Cρ(X0) = Bρ(x0) × (t0 − ρ2, t0) ⊂ R

n × (0, T ) for
some ρ > 0 and after rescaling we can assume ρ = 1. By the estimate (3.1), there is
N = N(n, ν) > 0 such that

u(X0) � sup
C1/2

u � N‖u‖1
L1(C1) = N

∫∫
C1

|u| dx dt

� N

∫∫
C1

|u| e−|x|2

minC1 e−|x|2 dx dt

� Ne(r−1)2
∫∫

C1

|u|e−|x|2 dx dt

� NCe(r−1)2 � Beb|x0|2 ,

for suitably chosen B and b. Since X0 is any point in the infinite strip we are done in the
case u � 0.

If u has arbitrary sign, then we set v = u2 to get

Lv = L(u2) = 2uLu − 2(Du, aDu) � −2ν|Du|2 � 0,

so that v satisfies the hypothesis of Theorem 3.1. Then, proving the above estimate for
v is equivalent to proving it for u.

(⇐). It is easy to see that for any c > b and some C > 0 we have

∫ T

0

∫
Rn

exp(−c|x|2)|u(x, t)| dx dt � B

∫∫
exp[(b − c)|x|2] dx dt � C.

�

3.2. Alternative proofs of classical results

Here we give an alternative proof of two theorems that take care of the uniqueness
problem in the class of solutions satisfying |u(x, t)| � NeN |x|2 or the unilateral condition
u(x, t) � −Ne−N |x|2 . The proofs are based mainly on the following known estimate for
short cylinders (see [12, Theorem 2.1]).

Theorem 3.3 (estimates for short cylinders). Let Q = Br(0) × (0, h) be a cylin-
der with h 
 r2 and u be a solution of Lu = 0 in Q, u = 0 on ∂tQ = Br(0) × {0}. Then,
for any t ∈ [0, h] we have

|u(0, t)| � exp
(

−β
r2

h

)
sup
∂xQ

|u|, (3.4)

where β = β(n, ν) > 0.
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The first theorem gives uniqueness of the solution in the Tychonoff class (TyC) for the
homogeneous Cauchy problem in both divergence and non-divergence cases.

Theorem 3.4. Let u be a solution of the Cauchy problem

Lu(x, t) = 0 in R
n × (0, T ), (3.5)

u(x, 0) = 0 on R
n, (3.6)

where 0 < T � ∞ and L is a uniformly parabolic operator of the form (D) or (ND). In
addition, assume

|u(x, t)| � NeN |x|2 in R
n × (0, T ). (3.7)

Then u ≡ 0.

Proof. Let 0 < h 
 1 be fixed and take any X = (x, t) ∈ R
n × (0, h). For r � 2|x|

consider the cylinder Br(x) × (0, h) and apply Theorem 3.3 to get

|u(x, t)| � exp
(

−β
r2

h

)
sup

∂Br(x)×[0,h]
|u| (3.8)

� exp
(

−β
r2

h

)
sup

∂B2r(0)×[0,h]
|u|, (3.9)

where the last inequality comes from the fact that Br(x) ⊂ B2r(0) and by using the
Maximum Principle. Now by (3.8), (3.9) and by assumption (3.7) we have

|u(x, t)| � N exp(N4r2 − βr2/h)

= N exp[r2(4N − β/h)] −−−→
r→∞

0

when we take 0 < h = h(n, ν) < (β/4N). Then u(X) = 0 for each X ∈ R
n × (0, h), that

is u ≡ 0 in R
n × [0, h].

Repeating the same argument in the strip R
n × [h, 2h] we get u ≡ 0 on R

n × [0, 2h],
then on R

n × [0, 3h], and so on until we obtain u ≡ 0 in R
n × [0, T ]. �

3.3. Non-uniform growth conditions in time

We will present a uniqueness theorem for uniformly parabolic equations imposing on
the solution u(x, t) the same growth condition as Chung for the heat equation (ChC). At
the centre of the proof are again the estimates for short cylinders (3.4) of Theorem 3.3.

Theorem 3.5. Let u(x, t) be a solution of the uniformly parabolic equation Lu = 0
on R

n × (0, T ), where L is in the form (D) or (ND), such that u(x, t) is a continuous
function on R

n × [0, T ], u(x, 0) ≡ 0 and for some constants a > 0, 0 < α < 1, we have

|u(x, t)| � exp[a(t−α + |x|2)] on R
n × (0, T ]. (3.10)

Then u(x, t) ≡ 0 in R
n × [0, T ].
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Proof. We follow a ‘backward-induction’ argument.
For arbitrary R0 � 1 and j = 0, 1, 2, . . . , we set

hj = 4−jh0, rj = 2(α−1)jR0, Rj = R0 + r1 + r2 + · · · + rj ,

where h0 is a sufficiently small constant. Since 0 < α < 1, for each j we have

Rj � R0 +
∞∑

j=0

rj � N0R0,

for N0 = 2/(2 − 2α) > 0, and notice that

r2
j

hj−1
=

4(α−1)jR2
0

41−jh0
= 4αj−1 R2

0

h0
. (3.11)

By assumption u(x, t) → 0, as t → 0+, uniformly on compact subsets of R
n, therefore

we can fix J � 1 such that |u(x, t)| � 1 in BN0R0(0) × [0, hJ ]. In particular we have

|u(x, t)| � 1 in BRJ
(0) × [0, hJ ]. (BJ)

Obviously, if t ∈ [hJ , h0], then t−α < h−α
J , so that from (BJ) and our growth condition

(3.10) we immediately obtain

|u(x, t)| � exp[a(h−α
J + N2

0 R2
0)] in BRJ

(0) × [0, h0]. (AJ)

Next we want to show that (AJ) ⇒ (BJ−1).
From the Maximum Principle and because u ≡ 0 on R

n × {0}, to estimate u(x, t) in
BRJ−1(0) × [0, hJ−1] it suffices to take |x| = RJ−1.

Considering the cylinder of axis |x| = RJ−1, height hJ−1 and radius rJ , and applying
the Gaussian estimates (3.4) in Theorem 3.3, with

h = hJ−1 = 41−Jh0 
 r2
J = 4αJ−J ,

we have, for |x| = RJ−1, 0 < t � hJ−1,

|u(x, t)| � exp[a(h−α
J + N2

0 R2
0)] exp

(
− βr2

J

hJ−1

)
� exp[a(4αJh−α

0 + N2
0 R2

0) − β4αJ−1h−1
0 R2

0]

� exp[R2
0(−β4αJ−1h−1

0 + aN2
0 ) + a4αJh−α

0 ]

� 1.

The last inequality occurs because the exponent has a negative sign, provided 0 < h0 <

min{1, (β/4aN2
0 )} and R0 is large enough.

Thus from (AJ) it follows that

|u(x, t)| � 1, in BRJ−1(0) × [0, hJ−1]. (BJ−1)
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Therefore,
(BJ) ⇒ (AJ) ⇒ (BJ−1) ⇒ · · · ⇒ (A1) ⇒ (B0),

where
|u(x, t)| � 1, for |x| � R0, 0 � t � h0. (B0)

Since R0 is arbitrarily large, taking the limit for R0 → ∞, we obtain |u(x, t)| � 1 on
R

n × [0, h0].
Then by Theorem 3.4 we have u ≡ 0 in R

n × [0, h0]. Repeating the argument in the
strip R

n × [h0, 2h0], then on R
n × [2h0, 3h0] and so on, we will finally get u ≡ 0 on

R
n × [0, T ]. �
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