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Boundary effects on ideal fluid forces and
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The electrostatic force on a charge above a neutral conductor is generally attractive.
Surprisingly, that force becomes repulsive in certain geometries (Levin & Johnson, Am.
J. Phys., vol. 79, issue 8, 2011, pp. 843–849), a result that follows from an energy
theorem in electrostatics. Based on the analogous minimum energy theorem of Kelvin
(Camb. Dublin Math. J., vol. 4, 1849, pp. 107–112), valid in the theory of ideal fluids,
we show corresponding effects on steady and unsteady fluid forces in the presence of
boundaries. Two main results are presented regarding the unsteady force. First, the added
mass is proven to always increase in the presence of boundaries. Second, in a model of
a body approaching a boundary, where the unsteady force is typically repulsive (Lamb,
Hydrodynamics, 1975, § 137, University Press), we present a geometry where the force can
be attractive. As for the steady force, there is one main result: in a model of a Bernoulli
suction gripper, for which the steady force is typically attractive, we show that the force
becomes repulsive in some geometries. Both the unsteady and steady forces are shown to
reverse sign when boundaries approximate flow streamlines, at energy minima predicted
by Kelvin’s theorem.

Key words: flow-structure interactions, general fluid mechanics

1. Introduction

It is generally stated that the electrostatic force on a charge above a conductor is
attractive (Griffiths 2013, p. 99). However, Levin & Johnson (2011) showed that the
force may be repulsive in certain geometries (see figure 1c). Repulsion occurs when
the electric field energy depends non-monotonically on the charge-conductor separation
distance. Non-monotonicity occurs when conductor geometries resemble natural contours
of electrical potential, as follows from the energy theorem of Thomson (Lord Kelvin)
(Jackson 1999, p. 53). An analogous energy theorem due to Kelvin (1849) holds in an ideal
fluid. Whereas repulsion occurs in electrostatics when conductors resemble equipotential
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Figure 1. (a) Schematic illustration of the electrostatic energy of the geometry given in panel (c).
(b) Schematic illustration of the ideal fluid kinetic energy of the geometry given in panel (d). (c) The
electrostatic geometry considered by Levin & Johnson (2011) is shown, where an electric point charge is placed
above a semicircular neutral conducting arc. (d) An ideal fluid geometry is given where, when y = 0, the slits
do not perturb the source flow.

lines, we show surprising effects on fluid forces when boundaries resemble streamlines. In
this paper we analyse ideal fluid forces in such geometries, through consideration of both
unsteady and steady components of force (Sedov 1965, p. 17).

The unsteady force on a submerged body is relevant during transient motions. It is
often characterized by an effective added mass that limits large accelerations (Newman
2018; McKee & Czarnecki 2019) and alters the natural vibration frequencies of submerged
structures (Valentín et al. 2014; Newman 2018). Moreover, unsteady forces play a critical
role in swimming mechanisms (Saffman 1967; Childress 1981; Weymouth & Triantafyllou
2013; Steele, Weymouth & Triantafyllou 2017) of cephalopods and biomimetic robots
(Bujard, Giorgio-Serchi & Weymouth 2021).

The steady force is relevant even when there is no acceleration, and vanishes (along the
direction of motion) in an infinite fluid according to d’Alembert’s paradox (Batchelor
2000, pp. 404–405). The steady force is generally non-zero in higher connectivities;
for example, there is a non-zero steady force between two interacting circular cylinders
(Wang 2004; Tchieu, Crowdy & Leonard 2010). Notably, the steady force is exploited for
industrial applications in non-contact Bernoulli grippers (Davis, Gray & Caldwell 2008;
Giesen et al. 2013), in which a fluid source creates a region of high velocity and low
pressure, resulting in an attractive lift force that can be used to manipulate objects (see
Ralph W Earl Company Inc. (2014) for a video).

In the presence of boundaries, ideal fluid forces have been studied in various
contexts. Basset (1888, p. 215) gave the exact added mass of a cylinder in a concentric
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Boundary effects on ideal fluid forces

confining cylinder. Lamb (1975, § 93) solved the spherical version of that problem, which
was verified experimentally by Ackermann & Arbhabhirama (1964). Confinement effects
were studied further in the context of nuclear reactor core oscillations at the Argonne
National Laboratory (Chung & Chen 1984; Wambsganss, Chen & Jendrzejczyk 1974).
Brennen (1982) then provided an extensive review of added mass and analysed boundary
effects in various geometries. Later, Wang (2004) presented analytical formulae for the
fluid forces in the two-cylinder problem. More recently, Tchieu et al. (2010) formulated
the two-body problem using a conformal map approach and revisited the two-cylinder
problem.

In all these studies, boundaries were found to increase the added mass, relative to
the boundary-free problem. One might wonder if there exists a boundary geometry in
which the added mass of a body can actually be decreased. If this were possible, strategic
boundary placement could give large accelerations during transient motions. We prove that
no such boundary geometry exists, a result that follows from the minimum energy theorem
of Kelvin (1849). We then use Kelvin’s minimum energy theorem to make a direct analogy
with the electrostatic results of Levin & Johnson (2011). This analogy is discussed in detail
in § 2.2 and illustrated in figure 1.

Specifically, the unexpected repulsive forces found by Levin & Johnson (2011) stem
from a non-monotonic dependence of the electric field energy on the conductor-charge
distance. If the energy is non-monotonic, then the force must take both positive and
negative values, since force is related to the gradient of energy. Using an energy theorem
of electrostatics, Levin & Johnson (2011) showed that a non-monotonic energy results
when conductors resemble contours of potential. By analogy, we pose the question: Does
the ideal fluid kinetic energy of a system always depend monotonically on its separation
distance to a boundary? We answer this question in the negative and analyse the effect of
energy non-monotonicity on ideal fluid forces.

The remainder of this paper is arranged as follows. In § 2.1 we state Kelvin’s minimum
energy theorem along with an important corollary regarding boundaries. In § 2.2 we use
the results of § 2.1 to demonstrate that the fluid kinetic energy can be non-monotonic
in the boundary-separation distance, if boundaries approximate streamlines. Section 3 is
dedicated to unsteady force effects. In § 3.1 we show that boundaries cannot decrease
the added mass. In § 3.2 we analyse the unsteady force by revisiting a calculation of
Lamb (1975, § 137), but with a streamline-approximating boundary. In § 4 we analyse the
steady force through two models of a Bernoulli gripper, which we solve exactly using
the framework of Crowdy (2020). In both §§ 3.2 and 4, forces reverse sign near energy
minima predicted by Kelvin’s minimum energy theorem, when boundaries approximate
streamlines.

2. Ideal fluid energy and Kelvin’s theorem

2.1. Kelvin’s minimum energy theorem
We begin by stating the minimum energy theorem of Kelvin (1849), which will be
generalized thereafter. The statement is as follows.

THEOREM 2.1. Consider an ideal fluid domain D ⊆ R
2, with velocity field v(x) = ∇φ(x)

satisfying ∇2φ = 0 with no-flux boundary conditions on ∂D, where φ is single valued.
Further assume the volume of each boundary does not change in time and the velocity
vanishes at infinity. Then any other incompressible flow q(x), satisfying the boundary
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conditions on ∂D, will possess kinetic energy greater than or equal to that of v,

1
2ρ

∫
D

‖v‖2 dV ≤ 1
2ρ

∫
D

‖q‖2 dV, (2.1)

when ‖v‖2 contains no non-integrable singularities.

When there exist source singularities in D, the integrals in (2.1) are not well defined. This
point is important since our model in § 4 involves point sources. We reserve a discussion
of this technicality for § 4.1. In these analyses we show that all results of § 2 still hold if the
flow possesses a source singularity, as long as the energy is defined appropriately. Until
§ 4, we will continue to assume that there are no non-integrable singularities in the flow.
We now present the proof of Kelvin’s minimum energy theorem as stated in Theorem 2.1,
when the flow possesses no singularities.

Proof . We now prove Theorem 2.1. We choose to decompose q according to q = v + w,
where w is finite in D. Since v already satisfies the appropriate boundary conditions, w
must satisfy the no-flux condition w · n = 0 on the boundary, x ∈ ∂D. Noting that (‖q‖2 −
‖v‖2) = 2∇φ · w + ‖w‖2, we find that

1
2ρ

∫
D

(
‖q‖2 − ‖v‖2

)
dV = ρ

(∫
C

φw · n dA −
∫

D
φ∇ · w dV

)
+ 1

2ρ

∫
D

‖w‖2 dV,

(2.2)
where C is equal to ∂D, since we took φ to be single valued. Then the first integral
on the right-hand side vanishes by the no-flux condition on w. The second integral on
the right-hand side vanishes by the incompressibility of q. Meanwhile, the last term is
non-negative. �

In general, there is no unique solution to the Laplace problem with Neumann boundary
conditions: solutions are only determined up to an unspecified amount of circulation
around each boundary. In the above proof, assuming that φ was a single-valued function
specified a particular solution to the Laplace problem. This solution is defined by the
property that the flow ∇φ possesses no circulation in the sense that

∫
γ

∇φ · dl = 0 around
any closed loop γ . Hence, Theorem 2.1 is applicable to the solution that possesses no
circulation. As was noted by Gonzalez & Taha (2022), the correct conclusion is that the
minimal kinetic energy solution is the one possessing no circulation; in their paper, it is
argued that the true solution is the one minimizing curvature. However, in the present
paper, we focus on the zero circulation solution.

In Appendix B we present a generalization of Theorem 2.1 to the case where arbitrary
circulations may exist around each flow boundary. When circulation is present, the above
proof is modified because the contour C cannot be taken equal to ∂D; instead, C must
be chosen not to cross branch cuts associated with a multivalued φ. It turns out that
Theorem 2.1 is still applicable even when there is circulation, provided that a particular
flux condition is satisfied across branch cuts (see Appendix B).

We emphasize again that in the present paper we restrict our attention to the behaviour of
the zero circulation solutions, to which Theorem 2.1 applies. We proceed by showing that
an added stationary boundary never decreases the energy. This corollary will be important
in establishing the result of § 2.2, regarding energy non-monotonicity.

COROLLARY 2.2. Suppose a stationary impenetrable body C, with boundary ∂C ⊂ D, is
added to the previous flow. Then a potential flow solution exists with velocity ∇φC defined
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Boundary effects on ideal fluid forces

over D\C, where ∇2φC = 0. Furthermore, the kinetic energy of that flow is greater than
the boundaryless potential flow solution,

1
2ρ

∫
D\C

‖∇φC‖2 dV ≥ 1
2ρ

∫
D

‖v‖2 dV. (2.3)

Proof . The ideal flow, in the region D\C, has a solution by standard existence theorems
(Thomson 1848). That solution has no flux into the region C and a perfectly valid choice
of an incompressible flow q defined over all D, as defined in Theorem 2.1, is

q(x) =
{∇φC, x ∈ D\C,

0, x ∈ C.
(2.4)

This flow has precisely the kinetic energy of the potential flow solution in the presence
of the boundary. However, by Theorem 2.1, the flow possesses more energy than the
boundaryless flow. Note that ∂C has measure zero, v is defined over D and ∇φC over
D\C. �

In the proof of Theorem 2.1, it may have appeared that the reason q has more energy
than v is either that the former is rotational or possesses non-zero circulation. However,
we have demonstrated a third possibility via corollary 2.2. Namely, if q is irrotational and
possesses zero circulation, but is subject to additional boundary conditions, it will also
possess an energy greater or equal to that of v. This statement is understood most simply by
appealing to a variational argument; see, for example, Whitham (1974, p. 434) for a deeper
discussion of the variational formulation of potential flow. The general argument is as
follows. A solution to the Laplace equation φ can be viewed as a function that extremizes
the energy functional S[φ(x)] = (ρ/2)

∫
(∇φ · ∇φ) dV , so that δS = 0, subject to a given

set of constraints. In other words, φ(x) can be thought of as the result of a constrained
optimization of S[φ(x)]. In potential flow, the extremization occurs at a minimum of
S[φ(x)] and the constraints are given by the boundary conditions of the flow. It follows
that imposing additional boundary conditions (constraints) on the constrained optimization
problem can never result in a better minimization of S[φ(x)].

This is in contrast to the electrostatic problem with a neutral conducting boundary. In
the electrostatic problem, surface charge is allowed to distribute itself on the surface of
the conductor, as long as the net charge is zero. The presence of surface charge affects
the relevant energy functional. Hence, the addition of a conducting boundary presents an
additional degree of freedom in the optimization of the electrostatic energy functional, and
so neutral conducting boundaries decrease (or keep constant) the electrostatic energy.

2.2. Non-monotonic kinetic energy
We now demonstrate that the fluid kinetic energy need not vary monotonically with the
distance between a fluid system and a newly introduced boundary ∂C, a result that follows
from corollary 2.2. We define a fluid system by a collection of boundary conditions on ∂D
as in Theorem 2.1. A stationary boundary is introduced mathematically as an additional
no-flux boundary ∂C, as in corollary 2.2. As usual, slip is allowed in an ideal fluid. The
boundary-separation distance is defined as the distance between a chosen point attached
to ∂C and one in ∂D. We now demonstrate by example, referring to figure 2, as follows.

Consider D to be the exterior to a unit circle that translates vertically at unit
velocity. We choose a boundary ∂C comprising a pair of infinitely thin arcs resembling
streamlines, which are drawn in three distance configurations, labelled A, B, C.
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Figure 2. A cylinder of unit radius and unit speed is pictured with its boundaryless streamlines.
Configurations of a streamline-approximating boundary are superimposed and labelled A, B, C.

The boundary-separation distance, labelled x, is taken as the vertical distance from
the centre of the circle to the bottom of the boundary. We call the kinetic energy
of the system T(x). When x → ∞, the boundaryless energy is recovered. At other
distances, T(x) ≥ T(∞) by corollary 2.2. However, when x = xB, the boundary does not
perturb the cylinder flow, as it coincides precisely with streamlines, and T(xB) = T(∞).
Therefore, T(xB) corresponds to a local minima of the kinetic energy as a function of
the boundary-separation distance. Hence, the kinetic energy dependence need not be
monotonic.

Similarly, one can conclude that the kinetic energy of the configuration in figure 1(d)
is non-monotonic in the boundary-separation distance, y. Since the perfect slits do not
perturb the source flow when y = 0, the kinetic energy T( y) satisfies T(0) = T(∞). At
other distances, T( y) ≥ T(∞). One can then deduce the schematic plot of the kinetic
energy given in figure 1(b). A main goal of our investigation will be to analyse the physical
manifestation of the change in sign of the slope of T( y), in the highlighted region y � 0.

The electrostatic energy of the configuration considered by Levin & Johnson (2011)
(see figure 1c) is plotted schematically in figure 1(a). An energy theorem of electrostatics
states that a neutral conducting boundary must decrease (or keep constant) the potential
energy. The curve shape then follows from the fact that V(0) = V(∞) and V(x) ≤ V(∞).
Thus, the electrostatic energy theorem predicts the non-monotonic shape of the curve in
figure 1(a), where the highlighted window manifests as a repulsive electrostatic force,
Fe = −dV/dx.

Although these discussions considered infinitely thin boundaries, we show in § 4.2 that
the corresponding effects on fluid forces persist for finite thicknesses.

3. The unsteady force

In § 3.1 we show that the added mass is always greater than or equal to that in the
boundaryless problem. An alternative derivation is given in Appendix A using a conformal
mapping approach, that does not appeal to Kelvin’s energy Theorem. In § 3.2 we show the
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Boundary effects on ideal fluid forces

unsteady force found by Lamb (1975, § 137) reverses sign when the boundary approximates
a streamline. Herein, we ignore intrinsic body mass.

3.1. Added mass cannot decrease
Consider a single translating body in an unbounded ideal fluid. The Buckingham–Pi
theorem (Buckingham 1914) implies that the total fluid kinetic energy can be written as

Tf = Ca

2
ρVU2, (3.1)

where U is the body velocity, Ca is a dimensionless constant called the added mass
coefficient, and ρ and V are the fluid density and body volume, respectively. Considering
acceleration at a constant rate a, (3.1) gives the necessary work to move a distance δx,
δW = CaρVaδx. The resulting force is therefore F = −δW/δx = −CaρVa; the reaction is
equivalent to a mass augmentation of amount CaρV . Corollary 2.2 showed that boundaries
may not decrease the total kinetic energy Tf . Therefore, when the presence of a boundary
is modelled as an effective change in the added mass, increasing Tf implies an increased
Ca in (3.1).

Hence, boundaries cannot be used to decrease the added mass and attain higher
accelerations. The connection between boundary-induced added mass increase and
Kelvin’s theorem was mentioned by Lamb (1975, § 93). Although boundaries cannot
reduce the added mass, geometries such as those described in § 2.2 can lead to interesting
fluid force effects, to be analysed in the remainder of this paper. The effects presented in
the remainder of the paper rely on energy non-monotonicity as discussed in § 2.2, and are
thus in analogy with the electrostatic results of Levin & Johnson (2011).

3.2. Effect of non-monotonic energy on unsteady force
When a body translates toward a boundary, according to the added mass formulation, the
energy can be expressed as in (3.1) with Ca = Ca(x), where x is the separation distance
to the boundary. Motion can only be taken as one dimensional after either assuming a
constraint or by exploiting a symmetry in the y direction, as is present in figure 2. This
assumption is made to simplify the calculation and illustrate our main argument. Note
again that we will ignore the intrinsic mass of the cylinder. If the cylinder had mass mc,
then one should replace every Ca with Ca + mc/(ρV) in the following analysis.

For one-dimensional free motion toward the boundary, the Euler–Lagrange equation is

2
∂Ca(x)

∂x
ẋ2 + 2Ca(x)ẍ − ∂Ca(x)

∂x
ẋ2 = 1

ẋ
d
dt

(
Ca(x)ẋ2

)
= 0, (3.2)

or Ca(x)ẋ2 = const. since ẋ /= 0. Lamb (1975, § 136) justified the Lagrangian formulation,
and the validity of (3.1), in the context of a body approaching a boundary with such a
symmetry. In analysing the motion of a sphere toward a plane wall, Lamb (1975, § 137)
deduced from (3.2) a repulsive force since ∂Ca/∂x was always negative there. However,
this need not always be the case as discussed in § 2.2: if the boundary coincides, at
some finite x, with the streamlines of a travelling body then there is a local minima
of Ca(x). The equation of motion (3.2) implies, setting the constant to 1, that ∂ ẋ/∂x =
−C−3/2

a (∂Ca/∂x)/2 which switches sign at the local minima.
Consider the geometry of figure 2. A circle translates vertically and its boundaryless

streamlines, which are a function of velocity, are drawn for reference. The circle

959 A40-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

17
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.174


K.I. McKee

Im

Re

π/2–αD

y

y

m m

x

α

B

∂B

(a) (b)

Figure 3. (a) Geometry of a source above a boundary. A source of strength m is located at x + iy and a
stationary ellipse centred on the origin and tilted at angle α. When α = 0 and x = 0, this is a 2-D model
of a Bernoulli gripper above a plate extending into the page. (b) Geometry of a source m above a doubly
connected body, consisting of a pair of slits. When α = π/2, this is a 2-D model of a Bernoulli gripper above
an object with a central hole.

approaches a boundary that approximates flow streamlines. If, as the circle evolves
according to (3.2), at some moment the free streamlines coincide with the boundary (as
pictured for distance xB), then the force will change sign when the boundary slits get
aligned with the streamlines, x = xB. In a different scenario where the circle is pushed at
constant velocity, the necessary external force to maintain the velocity reverses sign at xB.

4. The steady force

Here we analyse the effect of energy non-monotonicity, as described in § 2.2, on the
steady fluid force. We consider a source flow with streamline-approximating boundaries,
as illustrated in figure 3. In the simply connected problem (figure 3a), attractive Bernoulli
suction is achieved when the source is directly above the plate, giving a model of a
Bernoulli suction gripper (Davis et al. 2008; Giesen et al. 2013). However, we show that
the sign of the vertical force is reversed near the point where boundaries lie directly on
streamlines. It is worth noting that in this two-dimensional model, the geometry is not
the typical Bernoulli gripper with axial symmetry as seen in Ralph W Earl Company Inc.
(2014); however, the governing principle is the same. Both of the geometries of figure 3 are
solved exactly; the simply connected problem is solved using conformal maps while the
doubly connected problem is solved using the theoretical framework of Crowdy (2020).
We begin by demonstrating that the analysis of § 2, particularly corollary 2.2 and the
non-monotonic energy discussion in § 2.2, is still applicable in the presence of a point
source.

4.1. On the validity of Kelvin’s theorem with source singularities
In two dimensions the kinetic energy of a source singularity, in an otherwise unbounded
fluid, diverges logarithmically. A source at the origin has velocity ‖v‖ ∝ 1/r, so that the
absolute kinetic energy scales as

∫ 2π

0

∫ L
ε

‖v‖2r dr dθ ∝ log (L/ε). The integral is divergent
both at the source location, as ε → 0, and at infinity, as L → ∞. Therefore, the absolute
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Boundary effects on ideal fluid forces

kinetic energy of a source is not a meaningful quantity. However, forces and physical
observables are related to differences, and in particular gradients, of energy. Therefore, the
energy may be redefined with respect to any reference system, without altering physical
predictions. In what follows, we will demonstrate a manner in which a finite energy can be
defined even in the presence of sources. It is with respect to this definition of energy that
the arguments of § 2 will hold.

We note that a similar issue of energy divergence arises in the theory of electrostatics.
The electromagnetic field energy of a point charge is non-integrable at the location of
a charge in three dimensions. The divergence at the location of the source is eliminated
(regularized) by choosing to measure the energy with respect to that of an isolated point
source. Similarly, by choosing to measure the fluid kinetic energy with respect to that
of an isolated source singularity, the divergence at the location of a fluid source can be
regularized. What is left is to deal with the issue of the integral’s convergence at infinity.
The divergence at infinity is related to the fact that we are working in two dimensions.
Sources of the Laplace equation are integrable at infinity in dimensions n ≥ 3.

The divergence at infinity may be resolved by two different approaches. The first
approach involves treating the two-dimensional problem as the limit of a three-dimensional
problem. The two-dimensional flow due to a point source at x = y = 0 is equivalent to
the flow produced by a uniform continuum (line) of three-dimensional sources along the
entire z axis. If one considers a line of sources with density m, in three dimensions,
extending from z = −L to z = L, the radial velocity profile in the z = 0 plane is given
by vr(r) = m/(2πr

√
1 + (r/L)2); the integrated kinetic energy in the z = 0 plane of such

a source is then convergent at infinity for any finite L. In the presence of sources, the
energy can be made finite at infinity by regulating each source according to the prescription
m/(2πr) → m/(2πr

√
1 + (r/L)2) for some finite regularizing parameter, L.

A second approach, which does not require invoking three dimensions, is described
by Saffman (1993, p. 125). In this approach, a small circle of radius ε > 0 around each
singularity is excluded from the domain when computing the energy. The boundary at
infinity is also replaced by a circle of large radius R. In the limit of ε → 0 and R → ∞, the
energy can be expressed as the sum of a finite part and a divergent constant C ∝ log (R/ε).
Since constant shifts in energy are not observable, only the finite part of the energy needs to
be retained. This procedure is reminiscent of the procedure of dimensional regularization
used in quantum field theory, a connection nicely illustrated by Olness & Scalise (2011).

The key takeaways from this section are as follows. The absolute kinetic energy of a
source flow is not finite in two dimensions, relative to a static configuration, since the
kinetic energy integral diverges both at the source location and at infinity. Measuring
the energy relative to that of an isolated source eliminates the divergence at the source
location. The divergence at infinity can be regulated in two ways, and a finite regularized
energy can be defined. In terms of the regularized energy, all of the discussions of § 2
apply, along with the interesting force behaviours predicted when boundaries approximate
streamlines, even when there exists a source singularity in the flow. In what follows, we
analyse the source flows of figure 3, and examine the force behaviour when boundaries
approximate the source streamlines.

4.2. Single slit and source
Consider an ellipse (which may degenerate to a slit) centred at the origin in the complex
plane, with some orientation α, as shown in figure 3(a). When x = 0, the source is located
directly above the plate and Bernoulli suction attracts the ellipse to the source, as shown in
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Figure 4. (a) Plot of the vertical steady force on the slit in the geometry shown in figure 3(a) when x = 0,
s = 1, for various α. The force is positive for y > 0, indicating attraction as in the standard Bernoulli gripper.
(b) Same plot when α = π/4, x = 2, for various slenderness parameters s. The slit approximates a streamline
when y/D = 1, leading to an energy minima and local sign reversal of the force only for slender ellipses (s ≈ 1).

figure 4(a). However, when x /= 0 is fixed, there is a value of y = x tan α where the ellipse
falls on a natural source streamline. For a perfect slit, y = x tan α corresponds to an energy
minima as a function y, as follows from the discussion of § 2.2. We thus expect the vertical
steady force to flip sign near this point for sufficiently slender ellipses.

We employ a conformal mapping approach. The simpler problem of a source exterior to
a unit disk is solved and mapped to the problem of interest (figure 3a) by a conformal map.
We denote the physical domain coordinates by z and the pre-image coordinates by ζ .
The complex potential for a source of strength m = 2π at location ζs, where |ζs| > 1,
is log (ζ − ζs). The complex potential exterior to a stationary unit disc is then given by the
Milne–Thomson theorem (Milne-Thomson 1962, § 6.21),

W = log (ζ − ζs) + log
(
(1 − ζsζ )/ζ

)
. (4.1)

The unit disk exterior maps to the tilted ellipse exterior by a Joukowsky-type map,

z(ζ ) =
(

ζ + s
ζ

)
eiα, (4.2)

where s ∈ [0, 1] for univalency (Llewellyn Smith, Michelin & Crowdy 2008); s defines
a homotopy between the circle (s = 0) and the slit of length D = 2 (s = 1). Intermediate
shapes are ellipses. To achieve the configuration in figure 3(a), α in (4.2) corresponds
directly to α in the figure. However, the source pre-image, ζs, must be chosen to ensure
that z(ζs) ≡ zs = x + iy. After some algebra, one finds the pre-image location, ζs(zs) =
(zse−iα +

√
(zse−iα)2 − 4s)/2.

In what follows, we analyse the vertical component of force as y is varied for a given x.
The force is computed in the ζ plane since the complex potential is known there according
to (4.1). The steady force is given by the expression of Tchieu et al. (2010, equation (18)),

F = i
2

∮
|ζ |=1

(
dW
dζ

)2 ( dz
dζ

)−1

dζ , (4.3)
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Boundary effects on ideal fluid forces

after setting the fluid density to be equal to 1. The vertical component is Fs ≡ Im{F}.
Using (4.1) and (4.2), the residue theorem yields the vertical force on the ellipse,

Fs = Im

{
− 2πζ 2

s (ζs − sζs)

(ζ 2
s − s)2(|ζs|2 − 1)

e−iα

}
, (4.4)

which is plotted in figure 4(a) for the case of x = 0 and s = 1. The usual Bernoulli suction
effect is captured there; a low pressure on the top of the plate leads to a net vertical
(attractive) force. The suction persists regardless of the angle α < π/2 when x = 0. Note
that taking s < 1 does not qualitatively affect the shape of the curve.

We now examine the case where the slit may fall on a streamline of the source, x /= 0.
Figure 4(b) plots the case of x = 2 and α = π/4 for various slenderness parameters, s.
When s = 1, the slit coincides with a natural (radial) streamline of the source at y/D = 1.
As per the discussion of § 2.2, this value of y corresponds to a local energy minimum
as a function of y, and the vertical force should thus change sign when y/D = 1. The
plot in figure 4(b) shows the force changes sign at precisely this point for a perfect slit,
s = 1. There is a local region of repulsion for y/D > 1. For large y/D, the force becomes
attractive again. Meanwhile, the onset of sign reversal of the force is shifted for an ellipse of
finite slenderness (s < 1) until the effect vanishes for s = 0.79 where there is no repulsive
region. For large y/D, all force plots are positive, indicating attraction.

4.3. Two slits and source
The vertical steady force is computed by a similar procedure in the two-body geometry
shown in figure 3(b). The canonical domain for the doubly connected problem is the
annulus, where the problem can be solved simply and then mapped to the physical domain
by a conformal map. The conformal map from the annulus, |ζ | ∈ [ρ, 1], to the two-slit
geometry shown in figure 3(b) is

z(ζ ) = −iAe3iα ω(ζ,
√

ρe2iα)ω(ζ,
√

ρ−1e2iα)

ω(ζ,
√

ρ)ω(ζ,
√

ρ−1)
, (4.5)

where ω is the Schottky–Klein prime function defined by Crowdy (2020, pp. 64,75); a
similar map was used by Crowdy (2009) to analyse the Weis-Fogh mechanism. Note that
we consider figure 3(b) with zero-thickness slits. To accommodate a source, a sink of
equal strength is included in the annulus for mass conservation, with the sink located at
the pre-image of infinity, ζ∞ = √

ρ. The complex potential in the ζ plane is (Crowdy
2013)

W(ζ ) = m
2π

log

(
ω(ζ, ζs)ω(ζ, ζs

−1
)

ω(ζ, ζ∞)ω(ζ, ζ∞
−1

)

)
, (4.6)

up to a constant that does not enter our calculation. The source location in the annulus,
ζs, must be chosen such that its image lies on the imaginary axis as in figure 3(b).
Conveniently, we notice the circle |ζ | = √

ρ maps to the imaginary axis. We proceed by
resolving the vertical component of force on the boundary. By symmetry, we can simply
double the force on one slit; thus, the total force is twice that given in (4.3). Note that the
map of (4.5) has zeros at the locations of the sharp slit edges. To avoid the corresponding
poles while evaluating (4.3), the contour may be deformed slightly into the fluid domain,
as was noted by Tchieu et al. (2010).
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1.5

Vertical force for two slits near α = π/2

1.0

0.5

0

F s
/(
ρ

m
2
/4

D
)

–0.5

–1.0

–0.6 –0.4 –0.2 0

y/D
0.2 0.4 0.6

Repulsion

α = 0.44π

α = 0.46π

α = 0.48π

α = 0.5π

F = 0

Figure 5. Vertical force on the slits shown in figure 3(b), near α = π/2 (slits on real axis). For large |y/D|,
there is attraction as in the usual Bernoulli gripper. When y = 0, slits lie on streamlines and there is local
repulsion. For tilted slits, there is only repulsion for y/D � 0 as indicated by the shaded region.

The derivatives dW/dζ and dz/dζ , and hence, the integrand of (4.3), can be written
analytically in terms of the functions K(ζ, α) = ζ∂ log ω(ζ, α)/∂ζ . The integrand may
then be explicitly evaluated using the series representations given by Crowdy (2020,
pp. 278,280), and easily integrated numerically. The result is plotted in figure 5 for the
case of two slits near parallel to the real axis.

For large positive y, the force on the plates is positive, indicating attraction between
the source and slits. For large negative y, the force on the plates is negative, indicating
attraction again. However, a small region of repulsion is encountered near the point y = 0,
when the source is aligned with the slits. At small distances above the point y = 0, when
y � 0, the source is evidently repelled by the slits as the force on the slits is negative. Just
below the point y = 0, when y � 0, the force on the slits becomes positive, indicating
attraction again since the source is still above the slits. When y becomes sufficiently
negative, so that it lies below the slits, the force on the slits again becomes negative,
indicating attraction as we already noted.

All force plots vanish when y = 0, and the force switches from attractive to repulsive.
The location of this zero is precisely predicted by the discussion of § 2.2: when the natural
source streamlines align with the slits, at y = 0 as seen in figure 3(b), there exists a local
energy minima as a function of y.

When the slits are parallel to the real axis, α = π/2, the force is an odd function of
y. Interestingly, the odd symmetry is quickly disrupted for deviations from α = π/2.
For α < π/2, the repulsive region is retained, but the repulsive force magnitude is
diminished. Since decreasing α pushes the reference point y = 0 further away from the
plates (see figure 3b), it is to be expected that the magnitude of the repulsive force should
decrease since the source flow decays with distance. Despite its diminishing magnitude,
the repulsive region persists for α < π/2, as is seen in figure 5.
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Figure 6. Conformal map geometries. (a) The annulus geometry in the ζ plane. The conformal map z(ζ )

maps the outer circle to ∂B and the inner circle to ∂D. (b) Example of inverted confined geometry (b = 0).
(c) Example of a confined geometry without inversion. (d) Example of an unbounded fluid geometry (b /= 0),
the conventional two-body problem.

As was found in the single-body calculation of § 4.2, we expect the repulsion found in
the two-body problem to be valid up to some finite slit widths. However, we do not present
computations for finite slit widths in the two-body problem.

Additionally, we note that no Kutta condition was imposed in the calculation of § 4.3.
The forces in figure 5 should thus be interpreted as those on slightly inflated slits with zero
circulation and smooth corners. If the slits were truly perfect, a Kutta condition would
be necessary, which would affect the vertical force. By slightly inflating the ellipse, the
singularity in the conformal map is pushed off of the object boundary, into the exterior
of the fluid domain; hence, this interpretation is consistent with our method of calculating
(4.3) by pushing the contour slightly into the fluid domain to exclude the map singularity.

5. Conclusion

It follows from the minimum energy theorem of Kelvin (1849) that boundaries cannot
reduce the kinetic energy and, hence, the added mass of a translating body. However,
boundaries that resemble streamlines can create local energy minima as a function of the
boundary-separation distance, resulting in non-intuitive effects on fluid forces.
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By a similar analysis in the theory of electrostatics, Levin & Johnson (2011) predicted
a maximum in the electromagnetic energy when conducting boundaries approximate
potential contours, which manifested as a repulsive electrostatic force of induction. Below,
we outline the analogous effects found in an ideal fluid, due to the energy minimum
occurring when boundaries approximate streamlines.

In a system where Lamb (1975, § 137) found a repulsive unsteady force, we show
a transition to attraction when boundaries approximate streamlines. In two models of
a Bernoulli gripper, where the steady force is typically attractive, we show that the
steady force reverses sign when the boundary approximates a streamline. Effects are most
prominent with slit-type boundaries, but are shown in § 4.2 to persist for bodies with finite
thicknesses. The geometry-dependent sign reversal of the steady force in the Bernoulli
gripper might be useful in future engineering design. Furthermore, similar effects may be
relevant in electromagnetic power flows in two-dimensional near-zero-index media, which
were recently shown to be mathematically equivalent to ideal fluid flows (Liberal et al.
2020).
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Appendix A. Proof of added mass increase by conformal maps

We prove that the added mass force may not decrease in the presence of a stationary
boundary. The analysis follows that of Llewellyn Smith et al. (2008) and Tchieu et al.
(2010).

A.1. Complex variable formulation
Suppose a two-dimensional body B translates in an ideal fluid with velocity (Vx, Vy),
which we write in complex notation as V ≡ Vx + iVy. Suppose also that there is a
stationary boundary defined by ∂D, and fluid occupies the region between ∂D and
∂B (which may be finite or unbounded). The fluid flow between the boundaries is
characterized by a complex potential satisfying the Laplace equation, ∇2W(z) = 0, where
z = x + iy. The velocity field is given by U(x, y) = dW(z)/dz = u(z) + iv(z), where
the bar denotes complex conjugation. The no-flux boundary condition takes the form
Re{Ūn} = Re{V̄n} for z ∈ ∂B, and Re{Ūn} = 0 for z ∈ ∂D, where n is the complex normal
vector to the boundary.

This problem is conveniently phrased using a conformal map. By the doubly connected
version of the Riemann mapping theorem (Goluzin 1969, p. 208), there exists a conformal
map between the annulus and a generic two-body geometry. Thus, the Laplace equation
may be solved in the annulus, subject to appropriate boundary conditions, and taken to the
physical plane using a conformal map (Tchieu et al. 2010). We take the annulus defined by
|ζ | ∈ [ρ, 1] without loss of generality. We also specify that the conformal map z(ζ ) takes
|ζ | = 1 to ∂B and |ζ | = ρ to ∂D. The Neumann boundary conditions become

Im{W(ζ )} = Im{V̄z(ζ )}, (A1)
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Boundary effects on ideal fluid forces

on each boundary; note that the second boundary is stationary so V = 0 there. We can
also take the velocity of B to be purely imaginary, V = Ui with U ∈ R. The conformal
map may be written as a general Laurent series plus a simple pole in the fluid domain,
(A2),

z(ζ ) =
∑
k∈Z

akζ
k + b

ζ − c
, (A2)

where c is located in the fluid domain, |c| ∈ (ρ, 1). For the confined problem, there is no
fluid at infinity and, thus, no singularity, i.e. b = 0 (see figure 6). The area enclosed by ∂B,
A1, may be computed by Green’s theorem though it never enters direct calculations.

A.2. Force calculation and added mass increase
The unsteady force on B is given by the Blasius formula in the ζ plane,

FUS = i
d
dt

(∮
|ζ |=1

z(ζ )
dW(ζ )

dζ
dζ

)
+ A1z̈, (A3)

where the fluid density has been set to 1 (Tchieu et al. 2010). The second term contributes
negatively to the added mass, while the first has been seen in examples (Tchieu et al.
2010) to contribute positively so the added mass is overall a positive quantity. Herein,
we analyse (A3) and show that the boundary never decreases the added mass relative to
the boundaryless problem. The transient problem with U = 0 and U̇ = 1 defines the added
mass coefficient; equivalently, we solve for the force (A3) by setting U = 1 and eliminating
the time derivative. The added mass coefficient opposing the acceleration is then defined
(noting that acceleration is along the imaginary axis) by the relation,

Ca(ρ) = −Im
{

FUS

A1

}
= −2π

A1
Im
{

Res|ζ |<1

(
z(ζ )

dW(ζ )

dζ

)}
− 1, (A4)

by the residue theorem. The residue term in (A4) may be expressed in terms of the
coefficients of the mapping after imposing the boundary conditions. The boundary data
are only non-zero on the unit circle |ζ | = 1, and is expanded there in a Laurent series as

Im{V̄z(ζ )} = −1
2

(∑
n∈Z

(an + ā−n) ζ n + b
ζ − c

+ b̄ζ

1 − c̄ζ

)
=
∑
k∈Z

bkζ
k, (A5)

where we have set V = i as noted earlier. The residue theorem gives the data coefficients,

bn =
{−1

2

(
an + ā−n + b̄ c̄n−1) , n > 0,

−1
2

(
an + ā−n + bc−n−1) , n ≤ 0,

(A6)

noting that |c| < 1. The complex potential is obtained by matching the data of (A6) onto
W(ζ ) at the boundaries. We expand in a Laurent series, W(ζ ) = ∑

k∈Z
wkζ

k. As noted by
Tchieu et al. (2010), the imaginary part of W(ζ ) can be written as an analytic function
using the Schwartz conjugate on each boundary giving two equations,

Im{W(ζ )} = 1
2i

(
W(ζ ) − W̄(ρ2

i ζ−1)
)

= 1
2i

∑
k∈Z

(
wk − w−kρ

−2k
i

)
ζ k, (A7)

where ρi ∈ {ρ, 1}. The null boundary data on |ζ | = ρ relates the coefficients by ρ2kwk =
w̄−j. Meanwhile, matching the ρi = 1 equation of (A7) onto the data in (A6) yields wk =
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2ibk/(1 − ρ2k), which is explicitly

wn =
{−i

(
an + ā−n + b̄ c̄ n−1) /(1 − ρ2n), n > 0,

−i
(
an + ā−n + bc−n−1) /(1 − ρ2n), n ≤ 0.

(A8)

The derivative of the potential is then obtained by term-by-term differentiation, dW/dζ =∑
k∈Z

kwkζ
k−1. Now Ca(ρ) can be computed explicitly using the residue theorem, in

terms of the coefficients of the map of (A2); the explicit expression for Ca is suppressed
for brevity. We now show that the effect of a boundary is never to decrease the
added mass (A4), for a given shape B, relative to the boundaryless problem. Note that
ρ → 0 corresponds to the boundaryless problem (Crowdy 2020). The problem can be
phrased as: can one choose coefficients {ai, b} in (A2) such that Ca(ρ)/Ca(0) < 1 for
some ρ ∈ (0, 1)? We begin by assuming Ca(ρ)/Ca(0) < 1 holds and proceed toward a
contradiction.

After letting B ≡ bck−1, some algebra reveals that Ca(ρ)/Ca(0) < 1 is equivalent to

Re

{∑
k>0

kρ2k

1 − ρ2k

(
BB̄ + 2B̄(āk + a−k) + (ak + ā−k)(a−k + āk)

)}
< 0. (A9)

The left-hand side may be bounded below by applying the Cauchy–Schwarz inequality. It
follows that (A9) implies the weakened inequality

∑
k>0

kρ2k

1 − ρ2k

(
|B|2 − 2|B||āk + a−k| + |ak + ā−k|2

)
< 0, (A10)

which is impossible since the left-hand side is positive semi-definite. Therefore, it is true
that Ca(ρ) ≥ Ca(0).

Appendix B. Kelvin’s theorem with circulation

The main assumption in the proof of Theorem 2.1 was that the velocity potential φ was
single valued. This assumption implies that the corresponding irrotational flow v = ∇φ

has zero circulation around any closed loop. Here, we will demonstrate how Kelvin’s
energy theorem, as presented in Theorem 2.1, may be generalized in the presence of
non-zero circulation. Note that a statement resembling the theorem to be proved here was
given in words by Lamb (1975, § 56), but not proved there.

We consider a flow in domain D as described in Theorem 2.1, and we define the
boundary domain B ≡ R

2\D. Suppose that B is comprised of N disconnected parts
labelled Bi, each containing some circulation so that we can write the complex potential
function as

WΓ (z) = W̃(z) + i
N∑

k=1

Γk

2π
log (z − zk), (B1)

where zk ∈ Bk and W̃(z) is a single-valued function over D. Here Γk gives the circulation
around the body Bk. The multivaluedness of φ = Re{W} comes from the branch cuts of
the logarithm terms. We now state and subsequently prove a generalization of Theorem
2.1, applicable to a general potential of the form given in (B1).

THEOREM B.1. Consider an ideal fluid domain D ⊆ R
2, with velocity field v(x) = ∇φ(x)

satisfying ∇2φ = 0 with no-flux boundary conditions on ∂D. Further assume the boundary
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B ≡ R
2\D may be subdivided into N disjoint regions B1, B2, . . . , BN. Also assume φ =

Re{W} to be single valued up to some amount of circulation around each boundary such
that the complex potential is written as

W(z) = W̃(z) + i
N∑

k=1

Γk log (z − zk) (B2)

for some circulations Γk ∈ R and where zk ∈ Bk. If the fluid domain D extends to infinity,
it should be further assumed that

∑N
k=1 Γk = 0, so that the energy intergal converges

at infinity. Further assume that the volume of each boundary does not change in time and
the velocity vanishes at infinity. Then any other incompressible flow q(x), satisfying the
boundary conditions on ∂D, possesses a kinetic energy greater than or equal to that of v,

1
2ρ

∫
D

‖v‖2 dV ≤ 1
2ρ

∫
D

‖q‖2 dV, (B3)

provided that
N−1∑
k=1

⎛
⎝ k∑

j=1

Γj

⎞
⎠∫

Lk

(q − v) · n dA ≥ 0, (B4)

where Lk is a line connecting zk to zk+1; Lk are chosen not to intersect one another. As in
Theorem 2.1, we assume the bulk flow ‖v‖2 contains no non-integrable singularities.

It is clear that in the case that Γi = 0 for all i, Theorem 2.1 is reproduced. An alternative
condition for the applicability of (B3) is that the flux through each line Li is equal for the
flows being compared, q and v. In that case the integrals in (B4) all vanish. This condition
is reminiscent of that proposed by Saad & Majdalani (2017), who generalized Kelvin’s
minimum theorem to simply connected domains with porous boundaries, while assuming
a single-valued potential. We now prove Theorem B.1.

Proof . The flow is decomposed according to q = v + w, where w is finite in D. We then
find that (‖q‖2 − ‖v‖2) = 2∇φ · w + ‖w‖2. The integrand is integrable and the product
rule and divergence theorem apply, yielding

1
2ρ

∫
D

(
‖q‖2 − ‖v‖2

)
dV = ρ

(∫
C

φw · n dA −
∫

D
φ∇ · w dV

)
+ 1

2ρ

∫
D

‖w‖2 dV.

(B5)

The second term on the right-hand side vanishes by the incompressibility condition on q
and the last term is non-negative. It is left to show that the first term on the right-hand
side is greater or equal to zero. The contour C, over which that integral is taken, is simply
the boundary ∂D if φ is a single-valued function. Otherwise, it must be chosen carefully
so as to not cross branch cuts in order for the divergence theorem to be applicable (see
figure 7b). If the net sum of circulations vanishes, as we assumed, we can always choose
the branch points to connect to one another in the following manner so that there are N − 1
distinct branch cuts for N disconnected boundaries.

First, label each disconnected part of the boundary, B1, B2, . . . , BN . Beginning with B1,
choose its branch cut, which begins at z1, to pass through the branch point inside B2; label
this line L1. The discontinuity across L1 is Γ1. Next, take both the branch cuts associated
with B1 and B2 to extend to z3 ∈ B3. We choose the branches of B1 and B2 to coincide on
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Im

B1 B1

B3

B3

C

i∞

B2 B2

z1

(a) (b)

z1

z3
z3

z2 z2

Γ1
Γ2

Γ3

Re

Im

L1,Γ1

L2,(Γ1+Γ2)

Re

Figure 7. Branch cut choices in the case N = 3. In panel (a), we show a possible choice of branch cuts when
each body Bi possesses a circulation Γi. Branch cuts are drawn as zigzag lines, and labelled with its associated
discontinuity. Each colour represents a single branch cut with a particular discontinuity. In panel (b), we take
the branch cuts to overlap so that there are 2 distinct branches. The branch connecting to complex infinity is
cancelled since Γ1 + Γ2 + Γ3 = 0. The integration contour C around the branch cuts is drawn.

a line labelled L2, which then has a discontinuity Γ1 + Γ2. Repeating this procedure, we
arrive at the line LN−1 connecting BN−1 to BN , whose discontinuity is given by

∑N−1
j=1 Γj.

Taking now all the branches to extend to complex infinity along the same line LN , the
associated discontinuity is

∑N
j=1 Γj = 0, and the branch cut cancels. This procedure for

choosing branch cuts is illustrated for N = 3 in figure 7. The integral around C in (B5)
vanishes by the no-flux condition, except along the lines L1, L2, . . . , LN−1.

The contributions of those integrals come from the fact that the logarithm is 2π
discontinuous across each branch cut. On the L1 segment, the contribution to the
integral is ρΓ1

∫
L1

w · n dA. Physically, this is the flux of w = q − v through L1 times the
discontinuity across the branch cut. Similarly, the contribution from segment Lk is given
by the integral ρ(

∑k−1
j=1 Γj)

∫
Lk

w · n dA; physically, this represents the flux w through Lk

times the discontinuity across Lk. Summing over all segments, we find that

ρ

∫
C

φw · n dA = ρ

N−1∑
i=1

⎛
⎝ i−1∑

j=1

Γj

⎞
⎠∫

Li

w · n dA. (B6)

We require the right-hand side to be greater or equal to zero for (B3) to hold. �
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