Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-06T01:40:18.430Z Has data issue: false hasContentIssue false

Taste preferences, cardiometabolic diseases and mild cognitive impairment: a prospective cohort analysis of older Chinese adults

Published online by Cambridge University Press:  08 November 2023

Dianqi Yuan
Affiliation:
Institute of Population Research, Peking University, Beijing, 100871, People’s Republic of China
Huameng Tang
Affiliation:
Institute of Population Research, Peking University, Beijing, 100871, People’s Republic of China
Peisen Yang
Affiliation:
Institute of Population Research, Peking University, Beijing, 100871, People’s Republic of China
Chao Guo*
Affiliation:
Institute of Population Research, Peking University, Beijing, 100871, People’s Republic of China
*
*Corresponding author: Dr C. Guo, email chaoguo@pku.edu.cn

Abstract

Taste preference is a pivotal predictor of nutrient intake, yet its impact on mild cognitive impairment (MCI) remains poorly understood. We aimed to investigate the association between taste preferences and MCI and the role of cardiometabolic diseases (CMD) in this association. The study included older adults, aged 65–90 years, with normal cognitive function at baseline who were enrolled in the Chinese Longitudinal Healthy Longevity Survey (CLHLS) from 2008 to 2018. MCI was measured by the Mini-Mental State Examination, and multivariable Cox regression models were applied. Among 6423 participants, 2534 (39·45 %) developed MCI with an incidence rate of 63·12 - per 1000 person-years. Compared with individuals with insipid taste, those preferring sweetness or spiciness had a higher MCI risk, while saltiness was associated with a lower risk. This association was independent of objective dietary patterns and was more pronounced among urban residents preferring sweetness and illiterate participants preferring spiciness. Notably, among sweet-liking individuals, those with one CMD experienced a significant detrimental effect, and those with co-occurring CMD had a higher incidence rate of MCI. Additionally, regional variations were observed: sweetness played a significant role in regions known for sweet cuisine, while the significance of spiciness as a risk factor diminishes in regions where it is commonly preferred. Our findings emphasize the role of subjective taste preferences in protecting cognitive function and highlight regional variations. Target strategies should focus on assisting individuals with CMD to reduce excessive sweetness intake and simultaneously receiving treatment for CMD to safeguard cognitive function.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bai, W, Chen, P, Cai, H, et al. (2022) Worldwide prevalence of mild cognitive impairment among community dwellers aged 50 years and older: a meta-analysis and systematic review of epidemiology studies. Age Ageing 51, afac173.Google Scholar
Gauthier, S, Rosa-Neto, P, Morais, JA, et al. (2021) World Alzheimer Report 2021: Journey Through the Diagnosis of Dementia. London: Alzheimer’s Disease International.Google Scholar
Petersen, RC (2011) Clinical practice. Mild cognitive impairment. N Engl J Med 364, 22272234.CrossRefGoogle ScholarPubMed
Afshin, A, Sur, PJ, Fay, KA, et al. (2019) Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet 393, 19581972.CrossRefGoogle Scholar
Zhu, A, Chen, H, Shen, J, et al. (2022) Interaction between plant-based dietary pattern and air pollution on cognitive function: a prospective cohort analysis of Chinese older adults. Lancet Reg Health West Pac 20, 100372.CrossRefGoogle ScholarPubMed
Lourida, I, Soni, M, Thompson-Coon, J, et al. (2013) Mediterranean diet, cognitive function, and dementia: a systematic review. Epidemiology 24, 479489.CrossRefGoogle ScholarPubMed
Psaltopoulou, T, Sergentanis, TN, Panagiotakos, DB, et al. (2013) Mediterranean diet, stroke, cognitive impairment, and depression: a meta-analysis. Ann Neurol 74, 580591.CrossRefGoogle ScholarPubMed
Boumenna, T, Scott, TM, Lee, JS, et al. (2022) MIND diet and cognitive function in Puerto rican older adults. J Gerontol A Biol Sci Med Sci 77, 605613.CrossRefGoogle ScholarPubMed
Morris, M, Tangney, C, Wang, Y, et al. (2015) MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimer’s Dement 11, 1007–114.CrossRefGoogle ScholarPubMed
Sorokowska, A, Pellegrino, R, Butovskaya, M, et al. (2017) Dietary customs and food availability shape the preferences for basic tastes: a cross-cultural study among Polish, Tsimane’ and Hadza societies. Appetite 116, 291296.CrossRefGoogle ScholarPubMed
Louro, T, Simões, C, Castelo, PM, et al. (2021) How individual variations in the perception of basic tastes and astringency relate with dietary intake and preferences for fruits and vegetables. Foods 10, 1961.CrossRefGoogle ScholarPubMed
Dora, R, Lim, SY, Haron, H, et al. (2021) Salty taste threshold among children of different ethnicities. J Sens Stud 36, e12623.CrossRefGoogle Scholar
Cecchini, MP, Federico, A, Zanini, A, et al. (2019) Olfaction and taste in Parkinson’s disease: the association with mild cognitive impairment and the single cognitive domain dysfunction. J Neural Transm 126, 585595.CrossRefGoogle ScholarPubMed
Welcome, MO, Mastorakis, NE & Pereverzev, VA (2015) Sweet taste receptor signaling network: possible implication for cognitive functioning. Neurol Res Int 2015, 606479.CrossRefGoogle ScholarPubMed
Sergi, G, Bano, G, Pizzato, S, et al. (2017) Taste loss in the elderly: possible implications for dietary habits. Crit Rev Food Sci Nutr 57, 36843689.CrossRefGoogle ScholarPubMed
Yi, Z & Vaupel, J (2002) Functional capacity and self–evaluation of health and life of oldest old in China. J Soc Issues 58, 733748.CrossRefGoogle Scholar
Folstein, MF, Folstein, SE & McHugh, PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12, 189198.CrossRefGoogle ScholarPubMed
Ramlall, S, Chipps, J, Bhigjee, AI, et al. (2013) The sensitivity and specificity of subjective memory complaints and the subjective memory rating scale, deterioration cognitive observee, mini-mental state examination, six-item screener and clock drawing test in dementia screening. Dement Geriatr Cogn Disord 36, 119135.CrossRefGoogle ScholarPubMed
Mitchell, AJ (2009) A meta-analysis of the accuracy of the mini-mental state examination in the detection of dementia and mild cognitive impairment. J Psychiatr Res 43, 411431.CrossRefGoogle ScholarPubMed
Shi, Z, Zhang, Y, Yue, W, et al. (2013) Prevalence and clinical predictors of cognitive impairment in individuals aged 80 years and older in rural China. Dement Geriatr Cogn Disord 36, 171178.CrossRefGoogle ScholarPubMed
Anttila, T, Helkala, EL, Viitanen, M, et al. (2004) Alcohol drinking in middle age and subsequent risk of mild cognitive impairment and dementia in old age: a prospective population based study. BMJ 329, 539.CrossRefGoogle ScholarPubMed
Borelli, WV, Leotti, VB, Strelow, MZ, et al. (2022) Preventable risk factors of dementia: population attributable fractions in a Brazilian population-based study. Lancet Reg Health Am 11, 100256.Google Scholar
Profenno, LA, Porsteinsson, AP & Faraone, SV (2010) Meta-analysis of Alzheimer’s disease risk with obesity, diabetes, and related disorders. Biol Psychiatry 67, 505512.CrossRefGoogle ScholarPubMed
Arvanitakis, Z, Capuano, AW, Leurgans, SE, et al. (2016) Relation of cerebral vessel disease to Alzheimer’s disease dementia and cognitive function in elderly people: a cross-sectional study. Lancet Neurol 15, 934943.CrossRefGoogle ScholarPubMed
Gottesman, RF, Schneider, ALC, Zhou, Y, et al. (2017) Association between midlife vascular risk factors and estimated brain amyloid deposition. JAMA 317, 14431450.CrossRefGoogle ScholarPubMed
Petersen, RC, Roberts, RO, Knopman, DS, et al. (2010) Prevalence of mild cognitive impairment is higher in men. The Mayo clinic study of aging. Neurology 75, 889897.CrossRefGoogle ScholarPubMed
Guaita, A, Vaccaro, R, Davin, A, et al. (2015) Influence of socio-demographic features and apolipoprotein E epsilon 4 expression on the prevalence of dementia and cognitive impairment in a population of 70–74-year olds: the InveCe. Ab study. Arch Gerontol Geriatr 60, 334343.CrossRefGoogle Scholar
Nunes, B, Silva, RD, Cruz, VT, et al. (2010) Prevalence and pattern of cognitive impairment in rural and urban populations from northern Portugal. BMC Neurol 10, 42.CrossRefGoogle Scholar
Kesse-Guyot, E, Julia, C, Andreeva, V, et al. (2015) Evidence of a cumulative effect of cardiometabolic disorders at midlife and subsequent cognitive function. Age Ageing 44, 648654.CrossRefGoogle ScholarPubMed
Baharuddin, AR & Sharifudin, MS (2015) The impact of geographical location on taste sensitivity and preference. Int Food Res J 22, 731738.Google Scholar
Song, C (2021) The 5 Key Flavors of Chinese Food. https://www.chinahighlights.com/travelguide/chinese-food/food-flavors.htm (accessed August 2021).Google Scholar
Petersen, RC, Lopez, O, Armstrong, MJ, et al. (2018) Practice guideline update summary: mild cognitive impairment: report of the guideline development, dissemination, and implementation subcommittee of the American Academy of Neurology. Neurology 90, 126135.CrossRefGoogle Scholar
Allison, PD (2010) Survival Analysis Using SAS: A Practical Guide, 2nd ed. Cary, NC: SAS Institute Inc.Google Scholar
Jin, Y, Liang, J, Hong, C, et al. (2023) Cardiometabolic multimorbidity, lifestyle behaviours, and cognitive function: a multicohort study. Lancet Healthy Longev 4, E265E273.CrossRefGoogle ScholarPubMed
SAS Institute Inc. (2022) SAS 9.4. Cary, NC: SAS Institute Inc.Google Scholar
Imamura, F, O’Connor, L, Ye, Z, et al. (2015) Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. BMJ 351, h3576.CrossRefGoogle ScholarPubMed
Malik, VS, Li, Y, Pan, A et al. (2019) Long-term consumption of sugar-sweetened and artificially sweetened beverages and risk of mortality in US Adults. Circulation 139, 21132125.CrossRefGoogle ScholarPubMed
Hamelin, H, Poizat, G, Florian, C, et al. (2022) Prolonged consumption of sweetened beverages lastingly deteriorates cognitive functions and reward processing in mice. Cereb Cortex 32, 13651378.CrossRefGoogle ScholarPubMed
Tian, D-Y, Wang, J, Sun, B-L, et al. (2020) Spicy food consumption is associated with cognition and cerebrospinal fluid biomarkers of Alzheimer disease. Chin Med J 134, 173177.CrossRefGoogle ScholarPubMed
Shi, Z, El-Obeid, T, Riley, M, et al. (2019) High chili intake and cognitive function among 4582 adults: an open cohort study over 15 years. Nutrients 11, 1183.CrossRefGoogle ScholarPubMed
Faraco, G, Hochrainer, K, Segarra, SG, et al. (2019) Dietary salt promotes cognitive impairment through tau phosphorylation. Nature 574, 686690.CrossRefGoogle ScholarPubMed
Mohan, D, Yap, KH, Reidpath, D, et al. (2020) Link between dietary sodium intake, cognitive function, and dementia risk in middle-aged and older adults: a systematic review. J Alzheimer’s Dis 76, 13471373.CrossRefGoogle ScholarPubMed
Nowak, KL, Fried, L, Jovanovich, A, et al. (2018) Dietary sodium/potassium intake does not affect cognitive function or brain imaging indices. Am J Nephrol 47, 5765.CrossRefGoogle ScholarPubMed
Rush, TM, Kritz-Silverstein, D, Laughlin, GA, et al. (2017) Association between dietary sodium intake and cognitive function in older adults. J Nutr Health Aging 21, 276283.CrossRefGoogle ScholarPubMed
Nabhan, GP (2004) Why Some Like It Hot: Food, Genes, and Cultural Diversity. Washington, DC: Island Press.Google Scholar
Lampuré, A, Adriouch, S, Castetbon, K, et al. (2020) Relationship between sensory liking for fat, sweet or salt and cardiometabolic diseases: mediating effects of diet and weight status. Eur J Nutr 59, 249261.CrossRefGoogle ScholarPubMed
Trachootham, D, Satoh-Kuriwada, S, Lam-Ubol, A, et al. (2017) Differences in taste perception and spicy preference: a Thai-Japanese cross-cultural study. Chem Senses 43, 6574.CrossRefGoogle ScholarPubMed
Nilius, B & Appendino, G (2013) Spices: the savory and beneficial science of pungency. Rev Physiol Biochem Pharmacol 164, 176.CrossRefGoogle ScholarPubMed
World Health Organization (2019) Risk Reduction of Cognitive Decline and Dementia: WHO Guidelines. Geneva: World Health Organization.Google Scholar
Wion, RK, Hill, NL, Bell, TR, et al. (2022) The role of cognitive self-report measure type in predicting cognitive decline among older adults: a systematic review. J Geriatr Psychiatry Neurol 35, 487511.CrossRefGoogle ScholarPubMed
Drewnowski, A (1997) Taste preferences and food intake. Annu Rev Nutr 17, 237253.CrossRefGoogle ScholarPubMed
Supplementary material: File

Yuan et al. supplementary material

Yuan et al. supplementary material
Download Yuan et al. supplementary material(File)
File 5.7 MB