REMARKS ON STABILITY CONDITIONS
FOR THE DIFFERENTIAL EQUATION x"+a(¢)f(x) =0 1
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Consider the following second order nonlinear differential equation:
(1) 2" +a(t)f(x) =0, t e [0, ),

where a(t) € C3[0, o0) and f(z) is a continuous function of z. We are here
concerned with establishing sufficient conditions such that all solutions of
(1) satisfy
(2) lim z(¢) = 0.

t— 00
Since a(¢) is differentiable and f(x) is continuous, it is easy to see that all

solutions of (1) are continuable throughout the entire non-negative real
axis. It will be assumed throughout that the following conditions hold:

(Ay) lim a(t) = oo,

(A) zf(x) > 0, z # 0,

(As) 1:|i_r.noo f: f(u)du| = oo,

(A) o) 22 | fwan, >0,

Our main results are the following two theorems:

THEOREM 1. Let 0 < o << 1. If a(t) satisfies

Ta (¢
(3) im [© =9 4 < oo,
Toood iy aa(t)

where a(t) > 0, t = ¢, and a_ () = max (—a’(¢), 0), and
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T
@ [y —o@=@), @)
then every solution of (1) satisfies (2).

THEOREM 2. If a(t) satisfies

where a(t) > 0 for t = ¢t,, and
T
) [ @)1z =0 toga(my), (@ o0),

then every solution of (1) satisfies (2).
Define for each solution z(¢) of (1) the following energy function:

7) V(%) = 6% SINCS

which is clearly non-negative, on account of (4,). Under assumptions
(A,), (Ay), (A;) and (5), we can prove the following two propositions
concerning solutions of (1).

LeMMa 1. lim,,  V (¢, x) exists and is finite.

Proor. A simple differentiation shows that

w z2 < a () x'? < a(t) Vi, x)

) VeD == an™ =an T =

from which it follows that

Vit ) < V(t,, ) exp (J.t ‘;L(S) ds) =M < oo,

where the bound M depends upon z, = z(f,). Integrating the equality in
(8), one finds

0Vt 2) = Vi x)+jf,—(‘—)) (@ (5)—d', (5)) ds,
and hence
t 2'2(s) a), (s) tal (s)
() f,,, o s SV m) M ft,, s < o

From (9), we may conclude that
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limft x"%(s) @ (s) is
), a6 e

- rtas)
Hm V{¢, ) = V{t,, x0)+llm

to 00 ts 00 ( )

exists. Thus,
(@} (s)—a’(s)) ds
exists, and is finite.

Lemma 2. Every solution x(t) of (1) s oscillatory, i.e. there exists a
sequence {t,} such that x(t,) =0, k=0,1,2,83,--- and t, - © as & - .

Proor. Let z(¢) be a non-oscillatory solution of (1). On account of
(A;), we may assume without loss of generality that z(f) > 0 for ¢ = ¢,.
From (1), it follows that #’(¢) is non-increasing, and hence has a limit.
If the limit is negative or — oo, then z(f) must eventually be negative
which has been ruled out at the beginning. Thus we may assume that
x’(t) is eventually non-negative and so z(f) is non-decreasing and has a
limit ¢. If ¢ is finite, then we may choose T = ¢, such that ¢/2 < z(f) < ¢
for ¢t = T. Denote

k= inf f(z), 0< k< 0.

¢/2=x<¢c

Integrating (1), we have

—[—f a(s)f(z(s))ds = «'(T),
from which the desired contradiction follows. On the other hand, if c = 4 oo,
we multiply (1) through by «’(¢) and integrate to obtain:

&(T)
0.

(10) s +f ) (2(s)) ' (s)ds <

We may assume that T is so chosen such that a(f) = 1 for ¢ = 7. Thus,

(10) becomes
r2(¢ 2 () 2T

(11) 7O 4 M e <00,

=(T) 2

Letting £ tend to infinity in (11), one easily obtains a contradiction to (4,).

Proor oF THEOREM 1. Let z(¢) be any non-trivial solution of (1) and
V(t, x) be defined by (7). Clearly (3) implies (5), so by Lemma 1,
lim, . V(¢ ) = L exists. If L = 0, then (2) clearly follows on account of
(A;). Now assume that L > 0 for some solution z(¢) of (1). By Lemma 2,
there exists an increasing sequence {t,} such that #, — oo as & — o0 and
z'(t)=0,k=0,1,2,3,--- Let £ > 0, we choose {, = 0 such that
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(12) at) >0and (1—¢)L < V(¢ z) < (1+¢)L,
for t = t,. Write V(!) = V (¢, ) for short and denote ¢ = a=*. A simple
computation using (1) yields the following identity:

d 144 ’ '4
(13) % {paV+1¢" 22 —¢ 22}

= }¢" 2?2+ 2(1—a)a—*a’ F (x) —aa—a’zf (z),
where

Flz) = f * Hu)du
0
Integrating (13) from ¢, to ¢,, we obtain
tx
BV ) = =9 )0+ [ vl

to
+20-x) [ e Plait— j " aea'zf ()it
to

)

(14)

tx

where ¢y = al=*(t,)v(to) + 39" ()22 (f,). By Lemma 1 and (4,), we conclude
that every solution z(¢) is bounded, say [z(f)] < B. Note that

73
7)) < o)1+ [ lo i
Denoting f = supy, gp2f(r) and using (4,) and (12) in (14), we get

e
al—a(tk)(l“‘é')L é Icll—'—Bzf I(pulldt

ty

@5) +a(t,) (1+-¢)L Max (1— 1“” , o)

—
te a’
+(2(1—a) (l—l—s)L—ocﬂ)f —dt
t @
where ¢, is some appropriate constant. Using (3) and (4), we obtain from (15)
xy
(1—e) = (14¢) Max (1— 1T 0) +o(1),
—
which produces the desired contradiction with any &£ > 0 if « = (p+1)7!
and with ¢ < pa(2(1—a)—ay) 1 if « < (14y)L.

Proor oF THEOREM 2. The general argument is similar to that of
Theorem 1. Here instead of (13), we have the following identity:

7

= xf(x {V+ 19" ?—g'wa'} = o' 2?4 - xf(x),
a
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from which we have the following inequality:

! d
¥ aj V+ = {147V +39"s*—g'wz'}
(16) '
— %(p:nxz_*_ % (xf(x)—2‘yF(x))

Integrating (16) from £, to #,, we obtain

tx
(17) y(1—e)Llog at) < leol+B2 [ o1,

to
where ¢, is some appropriate integration constant. Using (5) and (6), one
easily derives a contradiction from (17).

ReMARK 1. Theorem 1 is a nonlinear extension of some stability
conditions recently obtained for the linear equation:

(18) 2" +a(t)e = 0.

However, even in the special case of equation (18), Theorem 1 is an im-
provement over its predecessors where it is assumed that a’(f) = 0 instead
of (38), (cf. Meir, Willett and Wong [3] and an independent result for the
case 3 < o < 1 by Chang [1].) The assumption (3), or its stronger substitute
that a’(f) = 0, is essential here and in [3] as compared to the result of Lazer
[2] where no such assumption is made.

REMARK 2. Assumptions (4,) and (4,) are easily realized if f(z) is
non-decreasing in x. As typical examples, one may take f(z) = 2?*, where 1
is the quotient of two odd integers and 1 > 0, or take

z o] < 1,

fle) =

2] || > 1,

with 1 < u < 2.

REMARK 3. It is easily verified that the elementary functions
a(t) =%, ¢ > 0, ¢, and log ¢ satisfy both (4) and (6). An example is given
in [3] which satisfies (6) but not (4).

REMARK 4. Results on asymptotic properties of solutions of (1) may be
transferred to the following slightly more general equation:

(19) (p®)2)'+9@)f@) =0,  p() >0,
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by standard Louiville transformations. The transformation necessary
depends on the convergence and divergence of the integral

-
P’
In case
p)
we let
[
~J k)

and y(s) = #z(f) and transform (19) into:

d%y
ds?

+pE)q@)f(y) =0,

which is of the form of equation (1). On the other hand, if

40 '

s = (fj;(l;j)—l and y(s) = z(¢) (f:o;z:—))

and transform (19) into

we let

ay | pl)g()

ds? st

fly) =0,

which is again of the form of equation (1). To preserve asymptotic properties
under Louiville transformations, it is essential here that s tends to infinity
as ¢ does.

REMARK 5. Finally, we note that the present hypothesis does not
imply that equation (1) is globally asymptotically stable, i.e. all solutions
and their derivatives tend to zero as ¢ tends to infinity. In fact, the interest-
ing fact is that every non-trivial solution z(¢) of (1) satisfies

(20) lim sup |z’ (¢)] > 0.

{00

To see this, define an energy-like function W (¢, 2) as follows

(21) Wt z) = 2'242a(?) fx f(w)du.
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Using (1), we obtain
W'(t, z) = 2'(¢) f ® Ho)du
0

= —a (1)2 f * Huw)du

a’_(t)
> — 0 W, =),
from which it follows that
(22) Wt %) = W(t,, %) exp (_ f ‘;—(g) dr) .

Since for every non-trivial solution we must have W(f, ,) > 0, (22)
yields W(t, ) = {2 > 0 for all ¢. Let {,} be the sequence of zeros of z(¢)
such that £, — co. We have from (21) that [¢’(%,)| = ¢ > 0 for all %, and
in particular (20) holds.
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