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Abstract

This paper is the first of a two part series devoted to describing relations between congruence and
crystallographic braid groups. We recall and introduce some elements belonging to congruence braid
groups and we establish some (iso)-morphisms between crystallographic braid groups and corresponding
quotients of congruence braid groups.
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1. Introduction

This paper delves into the relationship between two families of groups, subgroups
and quotients of classical braid groups: congruence subgroups of braid groups and
crystallographic braid groups, respectively introduced by Arnol’d [Arn68] and Tits
[Tit66].

While both families are instances of more general groups with rich theoretical
backgrounds, they have also garnered significant attention in recent (and less recent)
literature on braid groups and relatives; see for instance [BM18, Nak21, Sty18] and also
[ABGH20, BPS22, KM22] for congruence subgroups of braid groups and [A’C79,
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BM20, GGO17] as well as [GGOP21, BGM22, CdSJ023] for crystallographic braid
groups. Let us provide an overview of the two general families to which these groups
belong.

In the context of groups of matrices, a congruence subgroup of a matrix group
with integer entries is a subgroup defined as the kernel of the mod m reduction of a
linear group. The notion of congruence subgroups can be generalised for arithmetic
subgroups of certain algebraic groups for which we can define appropriate reduction
maps. A classical question about congruence subgroups is the congruence subgroup
problem, first formulated in [BMS67]: in this seminal paper, Bass, Milnor and Serre
prove that for n ≥ 3, the group SLn(Z) has the congruence subgroup property, meaning
that every finite-index subgroup of SLn(Z) contains a principal congruence subgroup.
The literature devoted to this problem in several settings is vast (we refer to [Rag04] for
a survey), linking the theory of arithmetic groups and geometric properties of related
spaces.

In this spirit, we can define congruence subgroups of any group via a choice of rep-
resentation into GL(n,Z). Let the braid group Bn be the mapping class group Mod(Dn)
of the disc with n marked points Dn. We can define a symplectic representation and
use it to define congruence subgroups of braid groups Bn[m]. We recall the details in
Section 2, but let us give here an idea of the definitions of these groups. We start with
the integral Burau representation of Bn, which is the representation ρ : Bn → GLn(Z)
obtained by evaluating the (unreduced) Burau representation Bn → GLn(Z[t, t−1]) at
t = −1. Describing the representation from a topological point of view, one can
see that the integral Burau representation is symplectic, and can be regarded as a
representation:

ρ : Bn →
⎧⎪⎪⎨⎪⎪⎩

Spn−1(Z) for n odd,
(Spn(Z))u for n even,

where (Spn(Z))u is the subgroup of Spn(Z) fixing a specific vector u ∈ Zn; see [GG16,
Proposition 2.1] for a homological description of (Spn(Z))u in this context.

The level m congruence subgroup, Bn[m], is the kernel of the mod m reduction of
the integral Burau representation

ρm : Bn →
⎧⎪⎪⎨⎪⎪⎩

Spn−1(Z/mZ) for n odd,
(Spn(Z/mZ))u for n even,

(1-1)

for m > 1.
The second family of groups that we consider are crystallographic groups, appear-

ing in the study of isometries of Euclidean spaces; see Section 3 for precise definitions
and useful characterisations. In [GGO17], Gonçalves, Guaschi and Ocampo prove that
certain quotients of the braid groups Bn are crystallographic, and use this result to
study their torsion and other algebraic properties. The authors use this characterisation
to prove that the group Bn�[Pn, Pn] is crystallographic, where Pn denotes the pure braid
group on n strands and [Pn, Pn] its commutator subgroup. This quotient, that we refer
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to as the crystallographic braid group, was introduced by Tits in [Tit66] as groupe de
Coxeter étendu; see [BGM22] for a short survey.

Congruence subgroups and crystallographic structures share a point of contact. It
follows from Arnol’d’s work [Arn68] that the pure braid group Pn can be characterised
as the congruence subgroup Bn[2]. With this equivalence and the results of [GGO17]
in mind, it is natural to ask: how are congruence subgroups of braid groups and
crystallographic groups related? This question was also recently raised in [KNS24]
for small Coxeter groups. In this paper, we propose to explore the interplay between
congruence subgroups of braid groups and crystallographic groups, opening several
questions that we will develop in a further work [BDOS24].

The paper is organised as follows. In Section 2, we provide some basic definitions
and properties that are useful in this paper, such as the Burau representation,
symplectic structures, the definition of congruence subgroups and the actions of
half-twists on symplectic groups. Section 3 contains the main body of this work. In
Section 3.1, we prove the following general result about crystallographic groups.

THEOREM 3.4. Consider the short exact sequence 1 −→ K −→ G
p
−→ Q −→ 1 where

K is a free abelian group of finite rank and Q is a finite group such that the
representation ϕ : Q→ Aut(K), induced from the action by conjugacy, is not injective.
Suppose that the group p−1(Ker(ϕ)) is torsion free. Then G is a crystallographic group
with holonomy group Q�Ker(ϕ).

This theorem plays an important role in this work, since the techniques used in
[GGO17] do not apply directly in this paper. This is because the representation

Θm : ρm(Bn)→ Aut
(
Bn[m]�[Bn[m], Bn[m]]

)
,

induced from the action by conjugacy of Bn on Bn[m], is injective if and only if
m = 2 (see Proposition 3.5), where ρm is the homomorphism defined in (1-1). We
apply Theorem 3.4 to get the following result, which is proved in Section 3.2, relating
congruence subgroups and crystallographic groups.

THEOREM 3.6. Let n ≥ 3 be an odd integer and let m ≥ 3 be a prime number. If the
abelian group Bn[m]�[Bn[m], Bn[m]] is torsion free, then the group Bn�[Bn[m], Bn[m]] is

crystallographic with dimension equal to rank
(
Bn[m]�[Bn[m], Bn[m]]

)
and holonomy

group ρm(Bn)�Z(ρm(Bn)).

In Section 3.3, we show that there is an isomorphism between the crystallographic
braid group Bn�[Pn, Pn] and a quotient of congruence subgroups as described in the
next result.

THEOREM 3.12. Let m be a positive integer and let n ≥ 3. Consider the map

ξ : Bn�[Pn, Pn]→ Bn[m]�[Pn, Pn] ∩ Bn[m]
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defined by ξ(σi) = σm
i for all 1 ≤ i ≤ n − 1. If m is odd, then ξ is an isomorphism. As a

consequence, for n ≥ 3 and m odd, Bn[m]�[Pn, Pn] ∩ Bn[m] is a crystallographic group
of dimension n(n − 1)/2 and holonomy group Sn.

2. Congruence subgroups

Let S be a connected, orientable surface, possibly with marked points and boundary
components. The mapping class group Mod(S) of S is the group of homotopy classes
of homeomorphisms of S that preserve the orientation, fix the set of marked points
setwise and fix the boundary pointwise.

2.1. Braid groups and examples. Let S be a surface as above. We introduce a
particular element of Mod(S) that is used throughout the paper. Let A be an annulus.
The homeomorphism depicted in Figure 1 is called a twist map.

Now, let c ⊂ S be a simple closed curve. The regular neighbourhood N(c) of c is
homeomorphic to an annulus A. Consider the homeomorphism fc that acts as a twist
map on N(c) and as the identity on S \ N(c). The homotopy class of fc is called a
Dehn twist about c, denoted by Tc [FM12, Section 3.1].

Braid groups can be defined in several equivalent ways, long known to be
equivalent; see for instance [BB05, KT08]. In this work, it is convenient to define
them in terms of mapping class groups. Let Dn be a disc with n ∈ N marked points
in its interior. The braid group Bn is Mod(Dn). For a geometric insight into twists in
the context of braid groups, let Dn lie on the xy-plane with its centre on the x-axis.
Denote the punctures from left to right by p1, p2, . . . , pn: the arc connecting pi and
pi+1 is denoted by ai (see Figure 4). Consider ai to be the diameter of a circle c such
that the points pi and pi+1 lie on c. Interchanging the points pi and pi+1 by rotating
them half way along c in the clockwise direction gives a homeomorphism of Dn,
and its homotopy class in Mod(Dn) is called a half-twist, denoted by σi. Note that
all conjugates of σi are called half-twists. In terms of presented groups, half-twists
correspond to the Artin generators from Artin’s presentation for Bn [Art25]:

〈
σ1, . . . ,σn−1

∣∣∣∣∣ σiσj = σjσi for |i − j| > 1
σiσjσi = σjσiσj for |i − j| = 1

〉
.

Let c ∈ Dn be a curve surrounding the points pi, pi+1. This curve is homotopic to the
circle described above. We note that if σi is a half-twist, then σ2

i is a Dehn twist about
the curve c. This Dehn twist is generalised, for 1 ≤ i < j ≤ n, as

Ai,j = (σj−1σj−2 . . . σi+1)σ2
i (σj−1σj−2 . . . σi+1)−1.

We recall that a generating set of Pn is given by {Ai,j}1≤i<j≤n. Geometrically, the
element Ai,j can be represented as a Dehn twist about a curve surrounding punctures
pi and pj. For instance, in Figure 2, we describe A2,5 as the Dehn twist about the curve
that surrounds punctures p2 and p5.
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FIGURE 1. Twist map acts on an annulus.

FIGURE 2. Dehn twist along the curve that surrounds the punctures p2, p5 is A2,5.

We are interested in the action by conjugation of Bn on Pn. Recall from [MK99,
Proposition 3.7, Ch. 3] that for all 1 ≤ k ≤ n − 1 and for all 1 ≤ i < j ≤ n,

σkAi,jσ
−1
k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ai,j if k � i − 1, i, j − 1, j,
Ai,j+1 if j = k,
A−1

i,j Ai,j−1Ai,j if j = k + 1 and i < k,
Ai,j if j = k + 1 and i = k,
Ai+1,j if i = k < j − 1,
A−1

i,j Ai−1,jAi,j if i = k + 1.

This action induces an action of Bn�[Pn, Pn] on Pn�[Pn, Pn]; see [GGO17, Proposition

12]: let α ∈ Bn�[Pn, Pn] and let π be the permutation induced by α−1, then αAi,jα
−1 =

Aπ(i),π(j) in Pn�[Pn, Pn].
Another important element of Bn that plays a crucial role in the paper is the Dehn

twist (or a full twist) along a curve surrounding all marked points of Dn. We denote this
element by Δ2

n. In fact, Δ2
n generates the centre of Bn [Cho48]; in terms of half-twists,

Δ2
n = (σ1σ2 . . . σn−1)n.

2.2. Burau representation and symplectic structures. Braid groups naturally
act on the homology of topological spaces obtained from the punctured disk. A
construction arising in such a way is the Burau representation [Bur35]. One of the most
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famous representations of the braid group, originally introduced in terms of matrices
assigned to the generators in Artin’s presentation of Bn, the Burau representation
is fundamental in low-dimensional topology. While this representation has been
extensively studied, it still retains some mystery: a long standing candidate for proving
the linearity of the braid group (later established independently in [Big01, Kra02]),
the question of its faithfulness has remained open for quite some time. The Burau
representation, faithful for n ≤ 3 [MP69], eventually proved to be unfaithful for n ≥ 5
(Moody [Moo91] proved unfaithfulness for n ≥ 9, Long and Paton [LP93] for n ≥ 6,
and Bigelow [Big99] for n = 5). However, the case n = 4 remains open, with advances
towards closing the problem being published recently [BB21, BT18, Dat22].

In this work, we are going to take the viewpoint of the Burau representation as a
homological representation. Let π = π1(Dn, q) denote the fundamental group of Dn,
where q ∈ ∂Dn. The function π→ Z � 〈t〉 defines a covering space D̃n → Dn. Let Q
be a set of all lifts of q. The action of t on D̃n induces a Z[t]-module H1(D̃n, Q;Z[t]) of
dimension n. Every mapping class in Mod(Dn) lifts to a unique mapping class in D̃n.
Hence, the (reducible) Burau representation is given by a map

Mod(Dn)→ Aut(H1(D̃n, Q;Z[t])).

This representation splits into a direct sum of an (n − 1)- and a one-dimensional
representation.

Fixing t = −1, the covering space becomes a two-fold branch cover Σ→ Dn, where
Σ is homeomorphic to a surface of genus g = (n − 1)/2 and one boundary component
if n is odd, and g = n/2 − 1 and two boundary components if n is even [PV96]. As
mentioned above, every mapping class in Mod(Dn) lifts to a unique mapping class in
Mod(Σ) leading to an injection Mod(Dn)→ Mod(Σ). Let q ∈ ∂Dn be a point and Q be
a set of all lifts of q. The reducible Burau representation at t = −1 [BM18, Section 2]
(see also [BPS22]) is

Mod(Dn)→ Mod(Σ)→ Aut(H1(Σ, Q;Z)).

For n odd, the module H1(Σ, Q;Z) splits as H1(Σ;Z) × Z and the induced action of
Mod(Dn) preserves a symplectic form on H1(Σ;Z). Hence, the image of the latter
representation is conjugate to Spn−1(Z) [GG16, Proposition 2.1]. When n is even, the
module H1(Σ, Q;Z) carries a symplectic structure. More precisely, if g is the genus of
Σ, then let Σ′ be a surface obtained by gluing a pair of pants in the boundary of Σ. Then
Σ′ is a surface genus g + 1 with one boundary component. We consider H1(Σ, Q;Z)
as a submodule of H1(Σ′;Z). In Figure 3, we give a basis for each of the latter
modules.

The representation obtained by the construction above is

ρ : Bn →
⎧⎪⎪⎨⎪⎪⎩

Spn−1(Z) for n odd,
(Spn(Z))u for n even,

(2-1)
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FIGURE 3. Generators for H1(Σ′;Z) on the left, and H1(Σ, Q;Z) on the right.

where, without loss of generality, we can choose u = y2g+1. For the detailed construc-
tion, see [BM18, Section 2.1].

An analogue of the principal congruence subgroups for the braid groups Bn can be
defined starting from the integral Burau representation. The level m congruence sub-
group Bn[m] is the kernel of the mod m reduction of the integral Burau representation

ρm : Bn →
⎧⎪⎪⎨⎪⎪⎩

Spn−1(Z/mZ) for n odd,
(Spn(Z/mZ))u for n even,

for m > 1.
In [Arn68], Arnol’d proved that the pure braid group Pn is isomorphic to the level

2 congruence subgroup Bn[2] of the braid group Bn; see also [BM18, Section 2] for a
sketch of the original argument. In [BM18], Brendle and Margalit go on to prove that
Bn[4] is isomorphic to the subgroup P2

n, where P2
n is the subgroup of Pn generated by

the squares of all elements.
A well-known family of elements in Bn[m] are braid Torelli elements. Consider

the symplectic representation (2-1). The kernel of this representation is denoted by
BIn and it is called braid Torelli group. Since the representation (1-1) is a mod m
reduction of ρ, every element of BIn is actually an element of Bn[m]. In particular,
BIn is generated by squares of Dehn twists about curves surrounding an odd number
of marked points in Dn [BMP15]. In terms of half-twists, these elements are of the
form

(σ1 · · ·σk)2k+2,

where k < n is even. This family of elements can be extended. If, for example, we
denote by c a curve surrounding an odd number of marked points, then T2

c ∈ BIn.
Other families of elements in Bn[m], such as mod p involutions and centre maps, are
described in [Sty18, Section 4].

2.3. Actions of half-twists on symplectic groups. Recall that Bn � Mod(Dn)
and Σ→ Dn is a two-fold branched cover. The image of the monomorphism
Mod(Dn)→ Mod(Σ) is called the hyperelliptic mapping class group denoted by
SMod(Σ). Below, we explain how to lift elements of Mod(Dn) into SMod(Σ). Then we
use these lifts to explain their action on H1(Σ, Q;Z).

Let Σ be a genus g surface as in Figure 4. The surface Σ is the 2-fold cover of the disc
Dn. Each simple closed curve ci is a lift of the arc ai. Recall that σi is a half-twist along
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FIGURE 4. An example of a 2-fold cover of a marked disc. The simple closed curve ci in the genus 3
surface becomes the arc ai in the disc.

ai. Then σi lifts to the Dehn twist Tci . This association describes the homomorphism
Bn → SMod(Σ) by σi �→ Tci .

Suppose that Σ is a genus g ≥ 1 surface with one boundary component (similarly
for two boundary components). Let Tc be a Dehn twist about a simple closed curve c
and let [c] be its homology class in H1(Σ;Z). Denote by t[c] a transvection induced
by Tc. The action of the transvection t[c] on a homology class u is defined by
t[c](u) = u + i(u, [c])[c], where i(, ) is a symplectic form. Therefore, the homomorphism
ρm : Bn → Spn−1(Z/mZ) is defined by σi �→ t[ci] (similarly for two boundary compo-
nents). The next two lemmas describe the images of particular elements of Bn in the
symplectic group over Z/mZ.

LEMMA 2.1. For m ≥ 2, we have that ρm(σm
i ) = 1.

PROOF. Since σi is mapped to the transvection t[ci], we only need to compute the
matrix form of t[ci]. It is easy to calculate the action of t[ci] based on Figure 3. The
result is conjugate to the following matrix:(

1 1
0 1

)
⊕ I,

where I is the identity matrix of dimension n − 2. The result follows by calculating the
m th power of the latter matrix over Z/mZ. �

Lemma 2.1 leads to the question of whether Bn[m] coincides with the group
normally generated by σm

i . This is generally not the case (see [BDOS24] for further
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details): in fact, Bn[m] is of finite index in Bn, while the group normally generated by
σm

i is not (except pairs (n, m) ∈ {(3, 3), (3, 4), (3, 5), (4, 3), (5, 3)}; see [Cox59]).
Recall that Δ2

n denotes the element (σ1σ2 · · ·σn−1)n in Bn, generating the centre
of Bn.

REMARK 2.2. The full twist Δ2
n has this notation since it is the square of the Garside

element Δn, which is another crucial element in braid theory.

LEMMA 2.3. If n is odd, then ρm(Δ2
n) has order 2. If n is even, then ρm(Δ2

n) has order
m if gcd(2, m) = 1 or it has order m/2 if gcd(2, m) = 2.

PROOF. Suppose that n is odd. The lift of (σ1σ2 · · ·σn−1)n to Σ is the product of Dehn
twists (Tc1 Tc2 · · ·Tcn−1 )n. Consider the basis {xi, yi} depicted in Figure 3. Then the action
of the product (t[c1]t[c2] · · · t[cn−1])n reverses the orientation of xi, yi [Sty18]. Thus, it has
order 2.

Suppose that n is even. The lift of (σ1σ2 · · ·σn−1)n to Σ is the product
(Tc1 Tc2 · · ·Tcn−1 )n. By the chain relation, the latter product is Tq1 Tq2 , where the curves
q1, q2 are parallel to the boundary components of Σ [FM12, Proposition 4.12]. Since
[q1] = [q2] = yn−1, we have that Tq1 Tq2 is mapped into the square transvection t2

yn−1
.

The transvection tyn−1 fixes all basis elements {xi, yi} except xn−1. Hence,

t2
yn−1

(xn−1) = xn−1 + 2yn−1. �

3. Crystallographic structures and congruence subgroups of the braid groups

We recall the definition of a crystallographic group.

DEFINITION 3.1. A group G is said to be a crystallographic group if it is a discrete
and uniform subgroup of RN � O(N,R) ⊆ Aff(RN).

In [GGO17], there is a characterisation of crystallographic groups that is convenient
in our context; see also [Dek96, Section 2.1].

LEMMA 3.2 [GGO17, Lemma 8]. A group G is crystallographic if and only if there is
an integer N and a short exact sequence

1 −−−−−→ ZN −−−−−→ G
ζ

−−−−−→ Φ −−−−−→ 1
such that

(1) Φ is finite;
(2) the integral representation Θ : Φ→ Aut(ZN), induced by conjugation on ZN and

defined by Θ(φ)(x) = πxπ−1, where x ∈ ZN, φ ∈ Θ and π ∈ G is such that ζ(π) = φ
is faithful.

3.1. A general result on crystallographic groups. In this subsection, we prove two
results that are general and that are applied to the study of crystallographic structures
on quotients of the braid group by commutator subgroups of congruence subgroups.
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10 P. Bellingeri, C. Damiani, O. Ocampo and C. Stylianakis [10]

THEOREM 3.3. Let φ : G→ F be a surjective homomorphism with F a finite group.
Let K denote the kernel of φ. Suppose that there is a nontrivial element of the centre of

G that does not belong to K. Then the representation η : F → Aut
(
K�[K, K]

)
, induced

from the action by conjugacy of G�[K, K] on K�[K, K], is not injective.

PROOF. Since [K, K] is characteristic in K and K is normal in G, then [K, K] is normal
in G. Hence, we may consider the action by conjugacy of G�[K, K] on K�[K, K]. This

induces a representation η : F → Aut
(
K�[K, K]

)
. Let z ∈ Z(G) be a nontrivial element

in the centre of G such that z � K. We note that z does not belong to K�[K, K].
Furthermore, since z ∈ Z(G),

zkz−1 = k, for every element k ∈ K�[K, K]. (3-1)

Let φ(z) = t, where φ : G�[K, K]→ F. Notice that t is a nontrivial element in F. So, we
conclude that η is not injective since η(t) is the identity homomorphism (see (3-1)). �

In the following result, we consider the case where the holonomy representation
defined in Lemma 3.2 is not injective and give conditions for the middle group to be a
crystallographic group.

THEOREM 3.4. Consider the short exact sequence 1 −→ K −→ G
p
−→ Q −→ 1 where

K is a free abelian group of finite rank and Q is a finite group such that the
representation ϕ : Q→ Aut(K), induced from the action by conjugacy, is not injective.
Suppose that the group p−1(Ker(ϕ)) is torsion free. Then G is a crystallographic group
with holonomy group Q�Ker(ϕ).

PROOF. First, we note that p−1(Ker(ϕ)) is a Bieberbach group, since it is finitely
generated, torsion free and virtually abelian; see [Dek96, Theorem 3.1.3(4)].

Now, we prove that p−1(Ker(ϕ)) is free abelian. Since p−1(Ker(ϕ)) is a Bieberbach
group, it fits in a short exact sequence 1→ A→ p−1(Ker(ϕ))→ F → 1 where F is
a finite group and A is a free abelian group containing K as a normal subgroup of
finite index. Suppose now that F is not the trivial group. Let x ∈ p−1(Ker(ϕ)) be an
element that is mapped onto a nontrivial element in F. We know that the induced map
F → Aut(A) is injective, so conjugation by x induces a nontrivial automorphism of
A. However, since K is of finite index in the free abelian group A, this implies that
conjugation by x also induces a nontrivial automorphism of K. But this is not possible
since x ∈ p−1(Ker(ϕ)).

Hence, p−1(Ker(ϕ)) is free abelian and we obtain the sequence

1 −→ p−1(Ker(ϕ)) −→ G
p
−→ Q�Ker(ϕ) −→ 1

such that the middle group is a crystallographic group. �

3.2. Crystallographic structures and congruence subgroups of braid groups.
In this subsection, we study a quotient of Bn, namely, Bn�[Bn[m], Bn[m]]. Since
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Bn�[Bn[2], Bn[2]] is crystallographic [GGO17, Proposition 1], being isomorphic

to the crystallographic braid group Bn�[Pn, Pn], it is reasonable to ask whether
Bn�[Bn[m], Bn[m]] is crystallographic for any positive integer m. Here we give
conditions for this statement to hold.

The following short exact sequence

1 −−−−−→ Bn[m] −−−−−→ Bn
ρm−−−−−→ ρm(Bn) −−−−−→ 1

induces a short exact sequence on the quotients

1 −−−−−−→ Bn[m]�[Bn[m], Bn[m]] −−−−−−→ Bn�[Bn[m], Bn[m]]
π−−−−−−→ ρm(Bn) −−−−−−→ 1.

(3-2)

The action by conjugacy of Bn�[Bn[m], Bn[m]] on Bn[m]�[Bn[m], Bn[m]] induces a
homomorphism

Θm : ρm(Bn)→ Aut
(
Bn[m]�[Bn[m], Bn[m]]

)
. (3-3)

As a consequence of Theorem 3.3, we have the following result.

PROPOSITION 3.5. The representation Θm : ρm(Bn)→ Aut
(
Bn[m]�[Bn[m], Bn[m]]

)
,

induced from the action by conjugacy of Bn on Bn[m], is injective if and only if m = 2.

PROOF. For m = 2, the abelian group Bn[2]�[Bn[2], Bn[2]] has finite rank and is torsion
free. Furthermore, Θ2 in injective; see [GGO17, Proof of Proposition 1].

Let m ≥ 3. Recall that the element Δ2
n = (σ1σ2 · · ·σn−1)n represents the full twist

on Mod(Dn) � Bn, which generates the centre of Bn. From Lemma 2.3, for any n,
the element ρm(Δ2

n) is nontrivial and of finite order. Thus, Δ2
n � Bn[m]. Therefore,

the induced element in Bn�[Bn[m], Bn[m]] does not belong to Bn[m]�[Bn[m], Bn[m]].

From Theorem 3.3, the homomorphism Θm : ρm(Bn)→ Aut
(
Bn[m]�[Bn[m], Bn[m]]

)
is

not injective. �

Since the representation Θm is not injective for m ≥ 3, we cannot apply Lemma
3.2 in this case. However, we may give general conditions such that the group
Bn�[Bn[m], Bn[m]] is crystallographic. We have the following result about crystal-
lographic structures and quotients of braid groups by commutators of congruence
subgroups.

THEOREM 3.6. Let n ≥ 3 be an odd integer and let m ≥ 3 be a prime number. If the
abelian group Bn[m]�[Bn[m], Bn[m]] is torsion free, then the group Bn�[Bn[m], Bn[m]]

is crystallographic with dimension equal to rank
(
Bn[m]�[Bn[m], Bn[m]]

)
and holonomy

group ρm(Bn)�Z(ρm(Bn)).
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PROOF. From Theorem 3.4, if ρm
−1(Ker(Θm)) is torsion free, where ρm and Θm

are the homomorphisms defined in (3-2) and (3-3), respectively, then the group
Bn�[Bn[m], Bn[m]] is crystallographic.

We note that the Ker(Θm) is isomorphic to Z(ρm(Bn)) the centre of ρm(Bn), since
the full twist Δ2

n generates the centre of Bn and ρm(Δ2
n) belongs to the normal subgroup

Ker(Θm) of the symplectic group ρm(Bn). Recall that, under the assumptions of the
statement, Z(ρm(Bn)) is isomorphic to Z/2Z. We consider now the following short
exact sequence:

1 −−−−−−→ Bn[m]�[Bn[m], Bn[m]] −−−−−−→ ρm
−1(Ker(Θm))

ρm−−−−−−→ Z(ρm(Bn)) −−−−−−→ 1

such that the kernel is torsion free (by hypothesis), the class of the element Δ2
n ∈ Bn is

a nontrivial element of ρm
−1(Ker(Θm)) and 1 � Δ4

n ∈ Bn[m]�[Bn[m], Bn[m]].
Applying a standard method to give presentations for group extensions [Joh90, Ch.

10] and using the fact that the full twist generates the centre of Bn, we conclude that
the middle group ρm

−1(Ker(Θm)) is free abelian and its rank corresponds to the rank of
the free abelian group Bn[m]�[Bn[m], Bn[m]]. �

REMARK 3.7. As far as we know, it is still an open problem whether
Bn[m]�[Bn[m], Bn[m]] is torsion free for any n and m except for a few cases. It is

well known that the group Bn[2]�[Bn[2], Bn[2]] is free abelian of rank
(

n
2

)
. Also, the

groups B3[3]�[B3[3], B3[3]] and B3[4]�[B3[4], B3[4]] are torsion free of ranks 4 and 6,
respectively; see [BDOS24].

3.3. Symmetric quotients of congruence subgroups of braid groups. From the
definition of congruence subgroups, we get an inclusion ι : Bn[m]→ Bn that induces
a homomorphism ι : Bn[m]�[Pn, Pn] ∩ Bn[m]→ Bn�[Pn, Pn]. In general, ι is not an
isomorphism. In the following result, we study it in more detail.

THEOREM 3.8. Let m be an odd positive integer and let n ≥ 3. The homomorphism
induced from the inclusion ι : Bn[m]→ Bn,

ι : Bn[m]�[Pn, Pn] ∩ Bn[m]→ Bn�[Pn, Pn],

is injective. Furthermore, the group ι
(
Bn[m]�[Pn, Pn] ∩ Bn[m]

)
is a normal proper

subgroup of Bn�[Pn, Pn] such that the quotient is isomorphic to (Z/mZ)n(n−1)/2.

REMARK 3.9. For n = 2, the quotient groups of Theorem 3.8 are isomorphic.

Before delving into the proof, we state two technical lemmas that are needed.

LEMMA 3.10. Let N, H, G groups be such that H ≤ G and N is a normal subgroup of
G. Then the inclusion homomorphism ι : H ↪→ G induces an injective homomorphism

κ : H�N ∩ H → G�N.
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LEMMA 3.11. Consider the following commutative diagrams of (vertical and horizon-
tal) short exact sequences of groups in which every square is commutative:

1

��

1

��
1 �� U

β1 ��

α1

��

V
π1 ��

α2

��

W ��

ζ

��

1

1 �� X
β2 ��

μ1

��

Y
π2 ��

μ2

��

Z �� 1

R
μ ��

��

S

��
1 1

1

��

1

��
1 �� A

ι1 ��

η

��

B
ρ1 ��

ψ1

��

C ��

ψ2

��

1

1 �� D
ι2 �� E

ρ2 ��

φ1

��

F ��

φ2

��

1

G
φ ��

��

H

��
1 1

(1) (a) If βi is an inclusion, for i = 1, 2, and ζ is an isomorphism, then μ is an
isomorphism.

(b) If αi is an inclusion, for i = 1, 2, and μ is an isomorphism, then ζ is an
isomorphism.

(2) Suppose that, for i = 1, 2, the homomorphisms ιi and ψi are inclusions. Then η is
an isomorphism if and only if φ is.

Lemma 3.10 is a simple consequence of the standard isomorphism theorem between
H/N ∩ H and the subgroup NH/N of G/N, while Lemma~3.11 can be easily proven
using diagram chasing.

PROOF OF THEOREM 3.8. From [ABGH20, Theorem 3.1 and its proof], we have the
following commutative diagram:

1 �� Bn[2m] ��

ψ

��

Bn[m]
τm ��

ι

��

Sn �� 1

1 �� Pn �� Bn
τ �� Sn �� 1

where τ is the natural surjective homomorphism that sends each braid generator σi

to the transposition (i, i + 1), τm is the restriction of τ to the subgroup Bn[m], ι is the
natural inclusion from the definition of congruence subgroups and ψ is the restriction
of ι to the subgroup Bn[2m].

Now, we consider the following diagram induced from the commutative square on
the left, where the vertical arrows on this square are inclusion homomorphisms and ψ|
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is the restriction of ψ:

1 �� [Pn, Pn] ∩ Bn[2m] ��

ψ|

��

Bn[2m] ��

ψ

��

Bn[2m]�[Pn, Pn] ∩ Bn[2m]
��

ψ

��

1

1 �� [Pn, Pn] �� Pn �� Pn�[Pn, Pn]
�� 1

From Lemma 3.10, the third arrow ψ on the right is also injective. Since Pn�[Pn, Pn] is a

free abelian group of rank n(n − 1)/2, then Bn[2m]�[Pn, Pn] ∩ Bn[2m] is a free abelian
group of finite rank, at most n(n − 1)/2. From [ABGH20, Corollary 2.4], the element
Am

i,j belongs to Bn[2m] for all 1 ≤ i < j ≤ n, where {Ai,j | 1 ≤ i < j ≤ n} is the set of Artin

generators of Pn. Since Pn�[Pn, Pn] is generated by the set of cosets {Ai,j | 1 ≤ i < j ≤ n},
it follows that {Am

i,j | 1 ≤ i < j ≤ n} is a basis of Bn[2m]�[Pn, Pn] ∩ Bn[2m], so it has rank
n(n − 1)/2. Furthermore, from the above,

Pn�[Pn, Pn]

ψ
(
Bn[2m]�[Pn, Pn] ∩ Bn[2m]

) � (Z/mZ)n(n−1)/2. (3-4)

Considering [BPS22, Proposition 3.1], Arnol’d’s result Bn[2] = Pn and with some
set theoretical equivalences, we can see that

[Pn, Pn] ∩ Bn[m] = ([Pn, Pn] ∩ Pn) ∩ Bn[m]

= [Pn, Pn] ∩ (Pn ∩ Bn[m])

= [Pn, Pn] ∩ Bn[2m].

The following diagram is induced from the commutative square on the left, where
the vertical arrows on this square are inclusion homomorphisms:

1 �� [Pn, Pn] ∩ Bn[m] ��

��

Bn[m] ��

ι

��

Bn[m]�[Pn, Pn] ∩ Bn[m]
��

ι

��

1

1 �� [Pn, Pn] �� Bn �� Bn�[Pn, Pn]
�� 1
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From Lemma 3.10, the third arrow ι on the right is also injective. With this information
and (3-4), we construct the following commutative diagram:

1

��

1

��
1 �� Bn[2m]�[Pn, Pn] ∩ Bn[m]

� � ��

ψ

��

Bn[m]�[Pn, Pn] ∩ Bn[m]
��

ι

��

Sn �� 1

1 �� Pn�[Pn, Pn]
� � ��

��

Bn�[Pn, Pn]
��

��

Sn �� 1

(Z/mZ)n(n−1)/2 μ ��

��

S

��
1 1

From Lemma 3.11 item (1), the homomorphism μ is an isomorphism and we get the
result. �

Let n ≥ 3. Recall from [ABGH20, Lemma 2.3] that the element σm
i belongs to

Bn[m] for all 1 ≤ i ≤ n − 1, where {σi | 1 ≤ i ≤ n − 1} is the set of Artin generators of
Bn. Although the set map ξ : Bn → Bn[m] defined by ξ(σi) = σm

i , for all 1 ≤ i ≤ n − 1,
is not a homomorphism, when m is odd, it induces an isomorphism on the quotient
groups ξ : Bn�[Pn, Pn]→ Bn[m]�[Pn, Pn] ∩ Bn[m], as we show in the next result.

THEOREM 3.12. Let m be a positive integer and let n ≥ 3. Consider the map

ξ : Bn�[Pn, Pn]→ Bn[m]�[Pn, Pn] ∩ Bn[m]

defined by ξ(σi) = σm
i for all 1 ≤ i ≤ n − 1. If m is odd, then ξ is an isomorphism. As a

consequence, for n ≥ 3 and m odd, Bn[m]�[Pn, Pn] ∩ Bn[m] is a crystallographic group
of dimension n(n − 1)/2 and holonomy group Sn.

PROOF. Suppose that n ≥ 3 and m is an odd positive integer and consider the map

ξ : Bn�[Pn, Pn]→ Bn[m]�[Pn, Pn] ∩ Bn[m]

defined by ξ(σi) = σm
i for all 1 ≤ i ≤ n − 1. To show that ξ is a homomorphism, it is

enough to verify that Artin’s relations are preserved by ξ.
Let 1 ≤ i, j ≤ n such that |i − j| ≥ 2. From Artin’s relation σiσj = σjσi, we obtain

σm
i σ

m
j = σ

m
j σ

m
i in Bn[m], which is then preserved by ξ.

Let 1 ≤ i ≤ n − 2. The equality σm
i σ

m
i+1σ

m
i σ
−m
i+1σ

−m
i σ−m

i+1 = 1 is valid in
Bn[m]�[Pn, Pn] ∩ Bn[m]. In fact, suppose that m = 2k + 1, then from the action of
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conjugation in Bn�[Pn, Pn] described in Section 2.1,

σm
i σ

m
i+1σ

m
i σ
−m
i+1σ

−m
i σ−m

i+1 = Ak
i,i+1σiAk

i+1,i+2σi+1Ak
i,i+1σiσ

−1
i+1A−k

i+1,i+2σ
−1
i A−k

i,i+1σ
−1
i+1A−k

i+1,i+2

= Ak
i,i+1Ak

i,i+2Ak
i+1,i+2A−k

i,i+1A−k
i,i+2A−k

i+1,i+2

= 1 ∈ Bn�[Pn, Pn].

From Theorem 3.8, the homomorphism

ι : Bn[m]�[Pn, Pn] ∩ Bn[m]→ Bn�[Pn, Pn]

is injective, and then σm
i σ

m
i+1σ

m
i σ
−m
i+1σ

−m
i σ−m

i+1 = 1 in Bn[m]�[Pn, Pn] ∩ Bn[m].
Now, consider the following commutative diagram of short exact sequences:

1 �� Pn�[Pn, Pn]
��

ξ|
��

Bn�[Pn, Pn]
��

ξ

��

Sn �� 1

1 �� Bn[2m]�[Pn, Pn] ∩ Bn[m]
�� Bn[m]�[Pn, Pn] ∩ Bn[m]

�� Sn �� 1

As seen in the proof of Theorem 3.8, the free abelian groups Bn[2m]�[Pn, Pn] ∩ Bn[2m]
and Pn�[Pn, Pn] of rank n(n−1)/2 have bases {Am

i,j | 1≤ i< j≤ n} and {Ai,j | 1≤ i< j≤ n},
respectively. Since

ξ| : Pn�[Pn, Pn]→ Bn[2m]�[Pn, Pn] ∩ Bn[2m]

is a homomorphism such that ξ|(Ai,j) = Am
i,j, for all 1 ≤ i < j ≤ n, it is an isomorphism.

Therefore, from the five lemma, ξ is an isomorphism.
The last part follows from the corresponding result on the crystallographic braid

group Bn�[Pn, Pn]; see [GGO17, Proposition 1]. �

A group G is called co-Hopfian if it is not isomorphic to any of its proper subgroups,
or equivalently, if every injective homomorphism φ : G→ G is surjective. It is known
that the braid group Bn is not co-Hopfian. However, for n ≥ 4, the quotient by its centre
is co-Hopfian; see [BM06].

COROLLARY 3.13. Let n ≥ 3. The crystallographic braid group Bn�[Pn, Pn] is not
co-Hopfian.

PROOF. It follows from Theorems 3.8 and 3.12. �

REMARK 3.14. We note that in this paper, we do not use Lemma 3.11 item (2).
However, it will be useful in [BDOS24].
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