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The distribution of stress generated by a turbulent flow matters for many natural
phenomena, of which rivers are a prime example. Here, we use dimensional analysis to
derive a linear, second-order ordinary differential equation for the distribution of stress
across a straight, open channel, with an arbitrary cross-sectional shape. We show that this
equation is a generic first-order correction to the shallow-water theory in a channel of large
aspect ratio. It has two adjustable parameters — the dimensionless diffusion parameter,
X, and a local-shape parameter, «. By assuming that the momentum is carried across
the stream primarily by eddies and recirculation cells with a size comparable to the flow
depth, we estimate x to be of the order of the inverse square root of the friction coefficient,

X~ Cf_ Y 2, and predict that o vanishes when the flow is highly turbulent. We examine the

properties of this equation in detail and confirm its applicability by comparing it with
flume experiments and field measurements from the literature. This theory can be a basis
for finding the equilibrium shape of turbulent rivers that carry sediment.
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1. Introduction

Channels whose shape and evolution are determined by the interaction with the flow are
common in nature — examples include alluvial rivers (Glover & Florey 1951; Parker 1978a),
ice streams (Echelmeyer et al. 1994) or blood vessels (Rodbard 1975). In alluvial rivers,
for example, the sediment is transported by the slight deviations from the threshold stress
needed to dislodge a grain from the bed (Parker 1978b). The fact that these deviations are
small makes the river’s shape sensitive to the detailed distribution of the stress across the
stream. The problem of estimating stress across a channel is therefore, both important, due
to its implications for landscape evolution (Métivier & Barrier 2012), and difficult, since
the estimate needs to be accurate (Popovic et al. 2021).
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When the flow in the channel is steady, the friction on the bottom consumes all of the
momentum injected by gravity into the overlying fluid. In the idealised case of a flow
over a flat, inclined plane with a slope S, this basic balance requires that the stress, 7, on
the channel’s bottom be proportional to the flow depth, D. Even when the channel is not
completely flat in the cross-stream direction, this proportionality still approximately holds
at each point, y, across the stream, provided that the depth, D(y), varies slowly enough
with y, i.e.

T(y) ~ pgSD(y), (1.I)

where p is the fluid density and g is the acceleration due to gravity. This is a simple form
of the ‘shallow-water’ approximation.

The shallow-water theory of (1.1) ignores any transfer of momentum between adjacent
fluid columns. Despite its simplicity, it was successfully used to describe the shape of
straight, laboratory rivers with a laminar flow that carry no sediment (Seizilles et al.
2013). Building on this work, Abramian, Devauchelle & Lajeunesse (2020) performed
similar experiments with laminar rivers that carried sediment, while Popovi¢ et al. (2021)
developed a theory to describe the shape of such rivers. The theory of Popovic et al. (2021)
made clear that the shallow-water approximation was not sufficient to describe rivers that
carry sediment — the properties of such rivers were critically affected by the transfer of
momentum across the stream.

Here, we are mainly motivated by extending the above theory from laminar rivers to
natural ones. As a first step towards that end, we investigate the simplest case relevant to
this problem — a turbulent flow driven by gravity in a straight, open channel with a fixed
cross-section. We aim to find an approximation for the stress, t(y), across the bed of such
a channel that goes beyond the shallow-water theory, and captures the first-order effects of
turbulent momentum transfer. In such a flow, approximations based only on first principles
are not available — the flow is unsteady and complicated, as turbulent eddies mix the fluid,
and secondary flows organise into recirculation cells (Tominaga et al. 1989; Blanckaert,
Duarte & Schleiss 2010; Chauvet 2014).

Many models that deal with the turbulent transfer of momentum were developed in
the context of flood management (Bousmar & Zech 1999; Martin-Vide & Moreta 2008;
Proust et al. 2009; Kaddi et al. 2022). These models typically split the channel into several
regions (such as the deep main channel and the shallow floodplain) and parameterise the
interaction between them. However, this splitting does not yield a continuous distribution
of the stress, T(y), across the channel. Possibly the simplest model that does this was
presented in Wark, Samuels & Ervine (1990), and developed earlier in Samuels (1985)
starting from the Navier—Stokes equations. There, the shallow-water approximation of
(1.1) was supplemented with an empirical term for the turbulent diffusion of momentum,
allowing one to calculate the profiles of stress and velocity across the stream, t(y) and
U(y), by solving an ordinary differential equation (ODE). Similar models, such as that
of Shiono & Knight (1991), were developed along the same lines to include additional
effects, such as those due to secondary flows.

In this paper we develop a model along similar lines as Wark et al. (1990). Our
goal is to examine this model in detail, and show that it can be used within a broader
theory of river self-organisation. To make clear the assumptions that go into the model,
we start from a depth-integrated momentum balance (§ 2), and derive the model from
dimensional analysis and symmetry arguments under several broad assumptions about the
nature of the turbulent flow, without invoking the Navier—Stokes equations (§ 3). This
model corrects the shallow-water theory to first order in a channel with slowly varying
bed topography. The distribution of the stress across the stream, t(y), in this model is
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(b)

Figure 1. (a) Turbulent flow in a straight, open channel. The depth profile, D(y), is constant along the
downstream direction, x, and varies along the cross-stream direction, y. At each point across the profile, the
normal to the bed makes an angle ¢ with the z axis. The channel makes a constant downstream slope, S, with
the horizontal. The upper surface is flat and open. (b)) Momentum balance in a portion of the channel between
coordinates y; and y,. The length of the channel section along the bed is £. Momentum is injected into the
section by gravity, and is lost to friction at the bottom. It is transferred across the boundaries at y; and y, by
the flow.

a solution to a second-order linear ODE with two dimensionless parameters (§ 4) — the
diffusion parameter for the stress, y, which controls the magnitude of the cross-stream
flux of momentum and the local-shape parameter, o, which controls the effect of the local
variations of the channel’s shape on the flux. By assuming that the momentum is carried
across the stream by the largest eddies and recirculation cells, whose size is comparable
to the flow depth and that move at about the frictional velocity, we estimate the orders
of magnitude of x and «. This model predicts a smooth stress distribution across the
stream on scales comparable to the flow depth — when there are strong recirculation cells
in the flow, the model predicts a reasonable average stress over several such cells, while
significant deviations can remain on the scale of an individual cell.

We then proceed to explore this model in the full range of its parameters. Interestingly,
we find that fixing the parameters at x = 1/3 and o = 1 approximately describes the
stress in a laminar flow, a result that connects natural rivers with small-scale laboratory
experiments (§4.1). When the flow is turbulent, these parameters can, in principle, take
any value, so we investigate how they affect the stress distribution in channels of various
shapes, and demonstrate the qualitative effects of the cross-stream transfer of momentum,
some of which may have important implications for river formation (§5). Finally, we
suggest values of the parameters y and « for practical use. We show that our model with
these parameters provides a reasonable agreement with experiments and field data (§ 6).
For this reason, and because it is simple and interpretable, it can serve as a basis for a
minimal model of self-formed alluvial rivers.

2. Momentum balance

We consider the following problem: a turbulent fluid is driven by gravity down a straight,
open channel with a fixed depth profile, D(y), and a downstream slope, S (figure 1a). Here,
y is the cross-stream coordinate, x is the downstream coordinate and z is the coordinate
normal to the free surface of the fluid, which we assume to be flat. The slope, S, is defined
as the sine of the angle the channel makes with the horizontal, and is typically small in
rivers (107> to 1072, Métivier et al. 2016). We assume that all properties of the flow are
uniform on average in the x direction so that we only need to consider the flow in the
(y, z) plane. We attempt to find the time-averaged stress, (), the fluid exerts at each
point across the channel bottom, as well as the lateral profile of the vertically averaged
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Symbol Name Units Equation
X, ¥, 2 Downstream, cross-stream, and vertical coordinate m

D Flow depth m

T Stress on the channel bottom kgm~!s!

X, ¥, Zs 5, T Dimensionless coordinates, depth, and stress None (4.5a—c)
(T) Average stress across the entire channel kgm~!s!

(thw Average stress on the vertical side walls kg m!s! (5.1)
F Cross-stream flux of momentum kg g1 (3.7) and (4.3)
Ry Hydraulic radius m

0 Water discharge m3 57!

S Downstream slope None

U Vertically averaged velocity ms~!

u(z) Vertical profile of downstream velocity ms~!

U* Frictional velocity ms~!

D, Eddy diffusivity m?s~!

v Molecular diffusivity m?s~!

A Diffusion parameter for momentum None 3.3)
X Diffusion parameter for the stress None 4.3)
o Local-shape parameter None 3.5
0 Boundary condition on a vertical wall None 5.2)
A Diffusion length scale m 5.4)
Oy Fraction of momentum transferred to side walls None (5.9
Cr Friction coefficient None 4.1)
Re Reynolds number None

Table 1. Symbols used throughout the paper.

downstream velocity, U(y). For convenience, we summarise a list of symbols we use
throughout the paper in table 1.

We begin by examining the balance of streamwise momentum within a portion of the
channel between two vertical slices at locations y; and y; (figure 1b). Gravity injects
momentum into this portion at a rate fyyl % pgSD dy, where p is the fluid density and g is the
acceleration due to gravity. The turbulent flow moves momentum in and out of the portion
through its vertical sides. In steady state, all the momentum that enters the section is lost to
friction along the bed, which occurs at a rate fe 7 d¢, where the integral is performed over
the arc, £, of the bed between y; and y,. Altogether, the balance of streamwise momentum
for this section of the fluid reads

2
/ pgSDdy + F(y1) — F(y2) = / T de, @.1)
y l

where F 1s the flux of momentum across the stream, i.e. the net momentum that crosses
a vertical slice of the channel per unit time and length in the streamwise direction (the
units of F are kg s~2). Bringing y; and y, infinitesimally close to each other, we find the
differential form of this balance:
dr de
pgSD — — =1 —. (2.2)
dy  dy
The term d¢/dy is a geometric factor related to the angle, ¢, between the bed’s normal
vector and the z axis (d€¢/dy = 1/ cos ¢). Since the tangent of ¢ equals the local slope of
the channel cross-section, tan ¢ = dD/dy, this term can also be expressed in terms of the
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depth as d¢/dy = (1 + (dD/dy)?)'/?. With this, we find the momentum balance equation

as
peSD —F —z(1+D?)'? =0, 2.3)

where the primes stand for derivatives with respect to y. This equation did not require any

assumption about the flow — it is equally valid for laminar and turbulent flows.

The specifics of the flow determine how the momentum flux, F, is related to other
properties, such as the velocity or the shape of the channel. Ignoring the momentum flux
(F = 0), and assuming that the bed is nearly flat (D" ~ 0), we recover the shallow-water
approximation of (1.1):

Tow(y) = pgSD(y), 2.4

where we used the subscript ‘sw’ to specifically denote the stress in this approximation.
Our goal here is to go beyond this approximation, and estimate F to the lowest non-trivial
order, on a variable bed. We do this in the following section.

3. Flux of momentum in a turbulent flow

Due to the complicated nature of turbulent flows, it is challenging to connect the
macroscopic properties of the flow, such as the flux of momentum, F, to the Navier—Stokes
equations that describe the basic laws of fluid motion (Pope 2011). For this reason, here
we develop a simple model for the flux, F, without explicit reference to the Navier—Stokes
equations, and confirm it later in § 6 by comparison with measurements. We start by giving
examples of physical mechanisms that can give rise to different fluxes (§ 3.1). Afterwards,
we use dimensional analysis to mathematically derive a first-order model for the flux on a
slowly varying bed under some generic assumptions about the flow (§ 3.2).

3.1. Physical picture

Much of the phenomenology of turbulent flows can be derived from the conceptual
framework of ‘turbulent eddies’ that transfer energy from large to small scales through
Kolmogorov’s energy cascade (Richardson 1920; Prandtl 1925; Taylor 1935). More
recently, this physical picture was used to relate the turbulent energy spectrum to
macroscopic properties of the flow, such as the vertical velocity profile and the friction
coefficient (Gioia & Bombardelli 2001; Gioia & Chakraborty 2006; Gioia et al. 2010).
If the motion of the eddies is random, they will induce a diffusion of momentum across
the stream with a diffusivity, D,, proportional to their velocity, V, and length scale, L
(D, < VL). These eddies mix the fluid from different parts of the flow so that they can
generate a flux of momentum, F, across the stream if the downstream velocity, u(y, z),
varies throughout the flow, as in figures 2 and 3. In figure 2 the bed is flat (D’ = 0),
the flow is uniform in the vertical (du/dz = 0), while the depth-averaged velocity, U(y),
varies across the stream; in figure 3 the bed has a slope (D" # 0), the velocity, u(z), varies
along the vertical, while its depth average is uniform across the stream (U’ = 0). We now
consider the flux, F, in these two configurations, assuming that the variations of D(y) and
U(y) across the stream are slow.

Let us first consider the example of figure 2. In this case, eddies of size L and velocity
V carry the downstream momentum across a vertical slice of the channel located at y,
mixing the fluid from y + L/2 with the fluid from y — L/2. The parcels of fluid from
v+ L/2, therefore, carry about pU(y + L/2) of momentum and cross the vertical slice in
the negative y direction, while those from y — L/2 carry about pU(y — L/2) of momentum
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Figure 2. Momentum transfer by large eddies in a flow with a horizontal velocity gradient, U’, but a constant
vertical velocity profile. This figure shows eddies rotating in the vertical, y—z, plane, but the same analysis
applies to those rotating in the horizontal, x—y, plane. Lighter shades of blue indicate faster flow. The largest
eddy has a horizontal scale, L, comparable to the depth, D, and a velocity V comparable to the frictional
velocity, U* = C}/ 2 U. The downstream flow velocity, U, varies slowly in the transverse direction from U(y —
L/2) to U(y + L/2) across the scale of the eddy. The eddy mixes the fluid of momentum pU(y — L/2) with
the fluid of momentum pU(y + L/2) across a vertical slice (vertical dashed line). The flux of momentum
integrated along this section is proportional to F ~ pDV(U(y — L/2) — U(y + L/2)) (3.1).

(a) ()
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1 1
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Figure 3. Momentum transfer in a flow with a vertical velocity profile, u(z), and a topography gradient,
D’ < 0, but no horizontal gradient of the depth-averaged velocity, U’ = 0. (a) Vertical profiles of velocity
at two locations across the stream, y; and y,. The profiles are arbitrarily assumed to be quadratic, u(y, z) =
%U [1 — z2/D(y)?]. A horizontal velocity gradient develops from the deeper to the shallower part of the flow,
inducing a corresponding flux of momentum across the stream, F. (b) Part of the channel corresponding to
panel (a). Lighter shades of blue indicate faster flow.

and cross the section in the positive y direction. The flux, F, from these eddies represents
the net total amount of momentum that crosses the vertical slice of height D per unit time,
so it is about

F ~ pDV[U(y — LJ2) — U(y + L/2)]. (3.1)

If the downstream flow velocity, U, varies slowly across the channel, we can approximate
the difference in (3.1) as U(y — L/2) — U(y + L/2) =~ —LU’, so that the flux generated
by these eddies is approximately

F ~ pDVLU'. (3.2)
981 A24-6
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Empirically, in wide channels with a rough bottom, eddies reach a size, L, comparable
to the flow depth, D, since eddies much larger than this are suppressed by friction at the
bottom (Bouchez ef al. 2010) — it matters little whether these eddies rotate in the vertical,
y-z, plane (as in figure 2) or in the horizontal, x—y, plane. According to Kolmogorov’s
theory, the largest eddies in the flow also move the fastest, so that their diffusivity,
D, o« LV, is the greatest. We can, therefore, expect that these eddies are responsible for
carrying most of the momentum across the stream, and for setting the mixing length
(Prandtl 1925). The flux of momentum induced by turbulence scales with the square of
the velocity fluctuations (Batchelor 1967), so that the stress, which balances the flux of
momentum into the channel’s bottom, should scale with the square of the eddy velocity,
T ~ pV?. Therefore, the velocity of the largest eddies should be of the order of the
frictional velocity U* = \/t/p. On the other hand, the stress is related to the mean
downstream velocity, U, through the empirical friction coefficient, Cy, as T = pCfU2.
Thus, the velocity, V, of the largest eddies, although much smaller, is proportional to the
downstream velocity, V ~ Cfl/2 U. Using the scalings L ~ D and V ~ C;/ZU in (3.2), we
can write the flux, F, as

F~—ApC*D* (U7, (3.3)

where A is a positive, dimensionless number of order one, and the minus sign ensures that
the momentum is transferred from fast- to slow-flowing regions. The parameter A controls
the magnitude of the flux and we call it the dimensionless diffusion parameter.

We now consider the example of figure 3. In this case, a flux of momentum develops
across the stream even though the depth-averaged velocity is uniform (U(y) = const.),
due to a combination of a sloping bed (D’ # 0) and a variable vertical velocity profile
(du/9z #0). A non-constant vertical profile of velocity means that some eddies will
generate a flux of momentum, while the bed slope, D" # 0, breaks the left-right symmetry
and induces a horizontal velocity gradient, du/dy (figure 3a). If mixing is isotropic, the
momentum flux across a vertical slice is proportional to this horizontal gradient, and the

total flux, F, scales as F' ~ pV fBD[au/ dy]dz, where V is the velocity of the dominant
eddies. Since the horizontal velocity gradient is, in this case, generated by the sloping bed,
to first order it scales as du/dy ~ UD’, and the flux, F, is therefore

F ~ pVUDD'. (3.4)

Using V ~ Cfl-/ ‘U , we find an approximate expression for the flux in this configuration:

~ —aApC U (D). (3.5)
Here « is another dimensionless number of order one, and we keep A for later convenience.
This flux is proportional to the depth gradient, D', so that it appears to be induced by the
bed topography. For this reason, we call « the ‘local-shape parameter.” The minus sign in
(3.5) means that when « is positive, the flux is generated from the deeper to the shallower
parts of the flow. If the vertical profile of velocity, u(z), is top heavy, meaning that the flow
is faster near the free surface than at the bottom, a horizontal velocity gradient will indeed
develop from deeper to shallower parts of the flow (figure 3). Therefore, positive values of
« indicate a top-heavy velocity profile, while « vanishes in the ‘plug flow’ limit, i.e. when
the velocity is constant along the vertical, u(z) = const.

Equations (3.3) and (3.5) for the flux, F, have a similar form, only differing in the
position of the cross-stream derivative — in both cases, the flux is proportional to D?
and to U2. The term D? can be interpreted as a product of the depth, D, of the vertical
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slice through which the transfer of momentum occurs and the length scale, L, of the

dominant eddies, while the term U? can be interpreted as a product of the eddy velocity,
V, and the downstream velocity that carries the momentum, U. In agreement with the
discussion above, previous experimental studies suggest that the diffusion parameter A is
of order one. For example, Okoye (1970) showed experimentally that the dimensionless
eddy diffusivity, D,/ (ZC}/ 2 UD), analogous to our A, is of order one, varying between
about 0.03 and 1.0. Although we also expect the local-shape parameter, «, to be of order
one, it likely vanishes as the flow becomes more and more turbulent, and its velocity profile
starts to resemble a vertically uniform ‘plug’ flow. In Appendix A we estimate the values
of A and « in a standard model of turbulent diffusion, assuming a logarithmic vertical
profile of velocity. There, we find A ~ 0.03, and « vanishing logarithmically with the
Reynolds number.

In addition to unsteady eddies, turbulent flows often develop long-lived, coherent
secondary currents (Znaien et al. 2009; Shih, Hsieh & Goldenfeld 2016). In channel flows
with large aspect ratios, these secondary currents form an array of counter-rotating cells
that have length scales comparable to the depth, and a transverse velocity of the order
of the frictional velocity (Tominaga et al. 1989; Blanckaert et al. 2010; Chauvet 2014).
Therefore, the scalings we introduced previously should still hold for momentum transfer
across these cells, even though the momentum transfer on the scale of an individual cell is
not diffusive. Thus, if D(y) and U(y) vary slowly over the scale of a single cell, we expect
(3.3) and (3.5) to approximately capture the average transfer of momentum smoothed over
several cells, although they cannot be accurate at the scale of a single cell.

3.2. Dimensional analysis

In the previous section we estimated the flux of momentum, F, in two specific
configurations of the flow based on physical reasoning. We now derive a generic,
first-order expression for the flux, F, using dimensional analysis. To that end, we make
the following broad assumptions about the turbulent flow.

(1) Inertial turbulent regime: Gravity, g, molecular viscosity, v, and the bed roughness,
ks, do not explicitly change the flux, F. This is certainly not exactly correct —
molecular viscosity, v, and the relative roughness of the bed, k;/D, both affect
the friction coefficient, which can affect the momentum transfer. Nevertheless, we
assume that this dependence is weak enough to remove g, v and k; from the list of
parameters that can affect the flux. We will later relax this assumption by allowing
the model parameters to weakly depend on g, v and k;.

(ii) Single layer: The depth-averaged downstream velocity, U, is sufficient to
characterise the vertical velocity profile of the flow. In other words, we assume that
the vertical velocity profile does not change its shape across the stream, so that we
do not need to keep track of higher-order moments of the velocity.

(iii) Locality: The flux, F, is locally related to the flow speed and depth. In other words,
the flux F(y) is a function of the local depth-averaged velocity, U(y), depth, D(y),
and their derivatives up to some finite order, U’, D', U”, D", etc. However, we assume
that it does not depend on the far-away parts of the flow (such as a distant wall), nor
on the integrated properties of the flow, such as the total flow discharge.

(iv) Slow variation: Finally, we assume that the changes in D and U occur over large
scales, so that their higher-order derivatives are much smaller than the lower-order
ones, and the flux can be written as an expansion in terms of these derivatives.
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This is likely true in a channel with a large aspect ratio. Therefore, we neglect
second- and higher-order derivatives when writing a model for F. In this sense, our
model is a first-order correction to the shallow-water theory.

Based on the above, our cross-stream flux of momentum, F, can only depend on the
fluid density, p, the local velocity, U(y), and depth, D(y), as well as their derivatives up
to some finite order, U’, D', U”, D", etc. The most general way to construct a quantity with
the units of flux (kg s~2) from the quantities above is

F = pU’D®(D',DU' /U, ...), (3.6)

’

where @ is an arbitrary dimensionless function of dimensionless parameters and - - -
stands for higher-order derivatives written in dimensionless form. This equation states that
the dimensionless flux, F/pU?D, can only depend on dimensionless variables, such as D’
and DU’/U (Barenblatt 1996). Since we are looking for the lowest-order model for F, we
can expand the function @ as @ ~ co + ¢ D' + DU’ /U + - - -, for some constants co,
c1 and c2. However, since the flux is a directed quantity, it should also change sign if we
mathematically flip the orientation of the y axis, F — —F as y — —Yy. The constant term,
co, does not obey this symmetry, and, therefore, must vanish. To lowest order, therefore,

F~ —pC,/2 A[D*(U?) + aU*(D?)], (3.7)

where A and o are dimensionless numbers. We included the term Cfl/ % in the definition of
A, asin § 3.1, for convenience. Even though we assumed that the flux, F, does not depend
on molecular viscosity, bed roughness or the integrated properties of the flow in order to
reduce the number of parameters in the dimensional analysis, we can somewhat relax this
assumption and allow the constants Cr, A and « to weakly depend on these properties, as
they likely do.

Equation (3.7) consists of two terms that correspond exactly to (3.3) and (3.5). Although
the physical mechanisms we discussed in the previous section are representative of these
terms, (3.7) is a generic first-order expression that does not depend on the detailed
dynamics of the flow — only the values of the parameters Cr, A and « do. If eddies
and recirculation cells of a size comparable with the flow depth dominate the momentum
transfer, we expect A and « to be of order one, with o vanishing in the highly turbulent,
‘plug flow’ limit (§ 3.1). On the other hand, wide recirculation cells or eddies much larger
than the flow depth, cannot be included in our model since they induce a fundamentally
non-local flux, violating one of our key assumptions. In Appendix A we show that a
standard model of turbulent diffusion satisfies (3.7). In this sense, we may also call (3.7) a
diffusive approximation.

Equation (3.7) can also be written in the compact form

F= —pc}/ 2 A=) (pe g2y (3.8)

From here, we can see that the local-shape parameter « determines the part of D? inside
the derivative. In this way, it controls the quantity that diffuses due to the flux, F —if ¢ = 0,
it is the depth-averaged velocity, U, while if o« = 1, it is the depth-integrated momentum,
DU.

Wark et al. (1990) proposed a model similar to (3.7). However, they do not explicitly
include the local-shape parameter, o, but rather mention two alternative models — one
in which the velocity, U, diffuses, and another one in which it is the depth-integrated
momentum DU (‘unit flow’ in their terminology). Therefore, they consider two cases
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corresponding to « = 0 and & = 1, and state that it is unclear which one is better. Here we
show that these cases are not necessarily special, so that models with non-integer values
of o may also be appropriate within the same order of approximation. Besides Wark
et al. (1990), we are not aware of anyone else who explicitly considered this parameter.
Moreover, to our knowledge their model and its consequences have not been carefully
examined.

4. Stress on the channel bottom

In the previous section we expressed the cross-stream flux of momentum, F, in terms of
the depth, D, and velocity, U (3.7). In this section we show how we can use this result to
find the stress, 7, on the channel’s bed.

As we mentioned in the previous section, the velocity in a turbulent flow is usually
related to the bed stress through the friction coefficient Cy (Chézy 1775),

T = pCrU%. 4.1

The friction coefficient depends on the characteristics of the flow, such as the Reynolds
number and the bed roughness (Nikuradse 1933). The phenomenological equation of
Colebrook (1939) summarises this dependence in circular pipes, and is often used to
estimate the friction coefficient in other geometries for which direct measurements are
not available. According to this approximation, the friction coefficient can be found as
Cr = fp/8, where the Darcy friction factor, fp, is the solution to

1 ) ( ko, 25l ) )
— =-2lo — , .
NS 810\37R, " RevTp

where Re = UD/v is the Reynolds number, R, = A/P is the hydraulic radius of the
channel, equal to the ratio of the channel cross-sectional area, A, to its wetted perimeter, P,
and k; is the so-called ‘Nikuradse equivalent sand roughness’, a parameter that measures
the hydraulic roughness of the bed, and vanishes on a smooth bed. The typical values of
the friction coefficient, Cr, for experimental flumes and large rivers range between 103
and 1072 (Lajeunesse, Malverti & Charru 2010a).

Using (4.1) with our expression for the flux (3.7), and assuming the friction coefficient,
Ct, is constant across the channel, we find the flux expressed in terms of the stress:

F=—x[D*t +a(D¥'7]. 4.3)

Here we introduced the diffusion parameter for the stress, y = AC; 12 For the typical
values of Cy we mentioned above, we expect this parameter to be about x ~ 10.

Combining (4.3) with the momentum balance (2.3), and assuming y is constant across
the channel, we find a differential equation for the stress:

12

x(D*t' +aD? 1) —t(1+D?) " + pgSD = 0. (4.4)

For a given depth profile, D(y), and the downstream slope, S, (4.4) is a linear,
second-order, ODE for 7(y). We can further simplify it by rescaling the lengths and stress
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as
- y ~ D - T
y=—, D=—, 1= . (4.5a—c)
Ry Ry PESRy
The equation for the stress in terms of these dimensionless variables becomes
x(D*F + D7) —i(1+ D%+ D=0, (4.6)

where the primes now stand for derivatives with respect to y. This rescaling ensures that
the dimensionless stress averages to one over the entire channel ((T) = 1), a result that
readily follows from the integrated momentum balance of (2.1).

Equation (4.6) contains two dimensionless parameters — the diffusion parameter for the
stress, x, and the local-shape parameter, o. Converting from dimensionless stress, 7 (y), to
the physical one, t(y), simply requires multiplying by a factor of pgSR),. Therefore, for
a given channel geometry, the physical stress, 7, depends only on the diffusion parameter,
X, and the local-shape parameter, v, which are set by the details of the flow. Thus, the

stress does not depend on the diffusion parameter, A, and the friction coefficient, Cy,

independently, but only on their combination, x = ACf_ 172

Instead of writing (4.6) for the stress, we could have equally written an equation for
velocity by rewriting T = U?, i.e.

x (DU + (D T?) - U*(1+DHV* + D=0, 4.7)

where U = U,/ Cr/gSRy, is the dimensionless flow velocity. Wark ez al. (1990) used
precisely this model, although in dimensional form and without explicitly mentioning «.
Like the stress, the dimensionless velocity, U, is determined by two parameters, x and
. However, to retrieve the physical velocity, U, we need to multiply U by a factor of
&SRy /Cr, which depends both on the channel geometry (through S and Rj) and on the
properties of the flow (through Cy). Although Cr can be estimated using, for example, the
Colebrook equation, its value is not certain in channels with irregular geometries, or when
roughness is not known. This makes comparing our model with stress measurements more
straightforward than comparing it with velocity measurements — to compare with stress,
we need to specify two parameters determined by the details of the flow (x and «), whereas
we need to specify three (), o« and Cy) to compare with velocity. We will, therefore, mostly
use the stress equation (4.6), and only refer to the velocity equation (4.7) when needed.

The stress T that results from (4.6) depends on the entire shape of the channel. In this
sense, T is non-local, even though the flux, F, in (4.3) is locally related to 7 and D. In
Appendix B we show that when the depth and velocity vary very slowly, or when the
diffusion parameter is small, the stress approximately depends only on the local depth of
the channel and its derivatives.

4.1. Connection between turbulent and laminar flows

How much does a laminar channel flow resemble a turbulent one? Here, we show that
there exists a connection between these two cases, at least in the most basic, diffusive
approximation we discussed above.
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Figure 4. A rectangular channel with an aspect ratio of W/D = 5.

Devauchelle, Popovi¢ & Lajeunesse (2022) showed that the cross-stream flux of
momentum in a straight channel with a laminar flow, Fy,,, is approximately

Flan ~ —3(D*1)'. (4.8)

This flux has the same form as the turbulent flux in (4.3) with parameters y = 1/3 and
o = 1. Therefore, despite the fact that the laminar flux is driven by molecular diffusion
while in the turbulent flow, it is driven by diffusion by the largest eddies and recirculation
cells, the stress on the bottom of each flow is, to first order, determined by the same (4.4).
This similarity may not be all that surprising, since our approximation implicitly assumes
a turbulent flux driven simply by gradients of velocity (§ 3.1). However, the above analysis
shows that the equivalence between turbulent and laminar flows holds for stress rather than
velocity — turbulent and laminar velocities remain different, since they scale differently
with the stress.

The transition from the laminar to the turbulent stress can be described by the change
in parameters from y = 1/3 to x ~ 10 and from o = 1 to o ~ 0. This result clarifies
the extrapolation of the small-scale, laminar rivers to real, turbulent ones (Malverti,
Lajeunesse & Métivier 2008; Lajeunesse et al. 2010b).

5. Analytical solutions in idealised channels

In this section we solve (4.6) in several idealised channels to explore the role of the channel
geometry and the effect of the parameters x and o« on the resulting distribution of the
stress. This will allow us to bring to light several phenomena that do not exist in the simple
shallow-water theory of (1.1), and, therefore, result from the transfer of momentum across
the stream.

5.1. Rectangular channel

We first consider the case of a rectangular channel with a constant depth, D, and a width, W
(figure 4). In this case, the shallow-water theory (1.1) predicts a constant stress on the flat
bottom. When the cross-stream flux of momentum exists, however, some of the momentum
will be transferred to the vertical side walls, thereby reducing the stress in their vicinity.
In a rectangular channel, (4.4), which assumes that the channel topography varies
slowly, becomes ill-defined on the side walls where D" — +oc0. Therefore, we cannot hope
to find the distribution of the stress along them. However, the model is well defined away
from the walls, so that we can still use it on the flat bottom if we take care to specify a
boundary condition at the corners where the side walls meet the bottom (y = £W/2).
This boundary condition is often overlooked in the literature, where it is simply assumed
that the velocity, U, vanishes at the corner. Formally, this is true — the velocity of the
full Navier—Stokes equations must vanish at all boundaries, so that the proper boundary
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condition is always that of no slip at the side wall. However, for highly turbulent flows,
this occurs within a thin viscous boundary layer where the velocity changes very rapidly.
At the outer edge of this layer, where the flow becomes properly turbulent, the velocity
may be significant. Since we can only hope to apply our model outside of this laminar
boundary layer, it may be appropriate to consider a non-vanishing slip velocity at the side
walls. Therefore, we will not simply assume the no-slip condition at the side walls, but
will, instead, consider a range of possible boundary conditions.

Although we cannot determine the exact distribution of the stress along the side
walls, we can find its mean value, (t),,, from the momentum balance, (2.1). The flux
of momentum into the side wall, F(W/2), must be expended by the friction at the wall, so
that F(W/2) = D(t),,. We can, therefore, express the mean side wall stress as

F(W/2)

D ’
which, combined with (4.3) and the fact the bottom is flat (D' = 0), yields (z),, =
—xDt'(W/2). We use this average stress on the side walls to define the boundary

condition at the corner. In particular, we assume that the bottom stress at the corner is
some fraction, 0, of the mean side wall stress,

T(EW/2) = 0(1),. (5.2)

(5.1)

(Tw:

This, therefore, defines a mixed boundary condition, wherein the stress at the corner
is related to its first derivative, T(W/2) = —0xDt'(W/2). We treat 6 as an unknown,
adjustable parameter of the model.

The parameter «, which controls the importance of topography-induced flux of
momentum, becomes irrelevant in a rectangular channel since D = 0 everywhere on the
bottom. Therefore, in a rectangular channel the stress is determined by parameters y and
6 rather than y and «.

The solution of (4.6) in a rectangular channel with the boundary condition (5.2) is

cosh(y/A)
cosh(W/2) (1 + 6./ tanh(W/22)) )’

7(y) = pgSD (1 - (5.3)

where the diffusion length scale, 4, is given by
A=DX. (5.4)

In figure 5 we show how the boundary condition, 6, and the diffusion parameter, yx, affect
the stress distribution.

The values 6 = 0 (figure S5a) and 6 = 1 (figure 5b) have a physical interpretation. When
6 = 0, the stress at the corner vanishes, t(£W/2) = 0, implying that the depth-averaged
velocity in our model also vanishes there, U(£W/2) = 0 (4.1). This is consistent with a
no-slip condition at the side wall (u(z) = 0 along the entire side wall). On the other hand,
6 = 1 means that the stress at the corner equals the mean stress on the side wall. This has
a simple physical interpretation in the limit of large diffusion of momentum, y — oo —
in this limit, & = 1 means that the stress is distributed uniformly throughout the channel,
including on the side walls. For all other values, 8 # 1, the side walls are not treated
equally to the flat bottom when diffusion is high. The fact that the values 9 = 0and 6 = 1
are physically significant is the reason we defined the boundary condition through (5.2).

The length scale A determines how far away from the side walls the flow can feel
their presence. More than several A away from the side walls, the stress approaches the
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Figure 5. Solutions to (4.6) in the rectangular channel of figure 4 (aspect ratio of W/D =5). Different
coloured lines stand for different values of x (the ratio of the diffusion length to channel width, /W, for
these solutions varies between 0.11 and 0.6). The black dashed line stands for the shallow-water theory
(x = 0). (@) The stress vanishes at the corner, 7(y = £W/2) = 0 (9 = 0). The dark blue line (x = 1/3 and
6 = 0) corresponds to the laminar flow. (b) The stress at the corner equals the mean stress on the side wall,
T(y=4W/2) = (1), (@ = ).

shallow-water theory, 75, = pgSD. The stress at the centre becomes significantly different
from this value when the width is comparable to the diffusion length, W ~ A. In other
words, the effect of the side walls propagates throughout the entire channel if the aspect
ratio of the channel is comparable to the square root of the diffusion parameter for the
stress, W/D ~ ,/x. For large values of x (such that 4 >> W), the stress on the bottom
becomes uniform.

To appreciate more clearly the role of the boundary condition parameter, 6, we now show
how the stress is partitioned between the bottom and the side walls. Moreover, since this
partition is often estimated in experiments, this discussion will be useful for comparison
with measurements in § 6. In a rectangular channel, momentum is supplied by gravity at
a rate of pgSDW, and it is transferred partly to the side walls and partly to the channel
bottom. The fraction, ¢,,, of the total momentum that is transferred to the side walls is,
therefore,

2(thw

= , 55
pgSW 62

Pw

where (7),, is the mean stress on the side walls, and the factor 2 is due to the fact that there
are two side walls. Our model predicts ¢,, to be ((5.2) and (5.3))

w
tanh [ ———
2D/x 2D/x
Py = W
1 + 6,/ tanh (

(5.6)

w7)

In figure 6 we show the fraction, ¢,,, as a function of the channel aspect ratio for various
values of x and boundary conditions defined using & = 0 (figure 6a) and 6 = 1 (figure 6b).
In the shallow-water theory (x — 0), all of the force is carried by the bottom, so ¢,, — O.
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Figure 6. The fraction of the stress, ¢,,, carried by the side walls of a rectangular channel (5.6) as a function
of the channel’s aspect ratio, W/D, for the case of (@) & = 0 and (b) & = 1. Different colours stand for different
values of x. The dark blue line in panel (a) (x = 1/3 and 8 = 0) corresponds to laminar flow. The dotted lines
stand for the high-diffusion limit (x — oo, (5.7)).

On the other hand, in the high-diffusion limit (x — 00), this ratio becomes

1

(pW:—’
w

1+60—

+ 2D

X — 0. (5.7)

As we mentioned above, when 0 = 1, increasing x uniformises the stress across the entire
channel (including the vertical side walls), so that the momentum is transferred to the
bottom and to the side walls in proportion to their length, ¢,, = 2D/(2D + W). On the
other hand, a no-slip boundary condition (6 = 0) requires most of the momentum to be
transferred to the side walls, so that when 6 = 0 and x — oo, the side walls carry all of
the stress, ¢,, = 1. In this way, the departure from 6 = 1 describes the asymmetry between
the bottom and the side walls in the limit of high diffusion. Both 8§ = 0 (no slip at the side
wall) and 0 = 1 (uniform stress in the high-diffusion limit) may seem intuitive and we
show in § 6 that experimental data are not unanimous about this.

One of the most easily measured quantities is the total water discharge, Q, which we
can find in our model as Q = [ UD dy. The velocity, U, that follows from (5.3) does not
allow us to write this integral in a simple, closed form, so we have to solve it numerically.
In figure 7 we show the discharge, O, normalised by the discharge in the shallow-water
theory of (1.1), Qs = WD,/gSD/Cy, for 6 = 0 and 6 = 1 and various values of x as a
function of the channel’s aspect ratio. The effect of increasing the diffusion parameter,
X, 1s quite different for different boundary conditions, & =0 and 6 = 1. When 6 = 0,
increasing the diffusion parameter decreases the discharge so that in the limit y — oo
there is no flow (figure 7a). On the other hand, when 6 = 1, increasing x brings the

discharge closer and closer to the limit in which the velocity U = ,/gSR;,/Cy is uniform
across the entire channel. In this limit, the discharge is

[ W

Therefore, when 6 = 1, the discharge curves look alike for any diffusion parameter beyond
x ~ 1 (figure 7b). The transfer of momentum makes the discharge, Q, significantly smaller
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Figure 7. The water discharge, O, normalised by the shallow-water discharge, Q;, = WD,/gSD/Cy, in
rectangular channels as a function of the channel’s aspect ratio, W/D, in the case of (@) # = 0, and (b) 6 = 1.
Different colours stand for different values of x. The black dashed line corresponds to the shallow-water theory
(x = 0), while the black dotted line corresponds to the high-diffusion limit (x — oo, (5.8)).

than the discharge in the shallow-water theory, Qs,,, for channels with a small aspect ratio,
while, for a large aspect ratio, the shallow-water theory becomes accurate.

Since « does not play a role in a rectangular channel, our model predicts that turbulent
and laminar flows lead to the same stress distribution of (5.3) (assuming the same values
of x and 0). In a laminar flow, the velocity must vanish all along the vertical side wall,
so the appropriate condition is & = 0 (no slip), while the diffusion parameter is y = 1/3
(§4.1). The dark blue lines in figures 5(a) and 6(a) show the stress profile and the fraction
of the stress carried by the side wall in a laminar flow. Since the relationship between the
stress and the velocity is different for laminar and turbulent flows, the discharge, Q, cannot
be directly compared between these two cases.

5.2. Wavy bottom

In the rectangular channel of the previous section, the stress distribution was independent
of the local-shape parameter, @ — this parameter only becomes important in channels with
variable depth. Here we show that when « is finite, the diffusion of momentum can make
the stress higher in shallower parts of the flow. In this way, momentum diffusion can invert
one of the most basic predictions of the shallow-water theory, according to which the stress
is always greater where the fluid is deeper.

To examine the role of o, we consider an infinitely wide channel with a wavy bottom
(figure 8a):

D = Dy + §sin(ky). (5.9)

Here Dy is the mean depth, while k and § are the wavenumber and the magnitude of the
depth perturbation. To first order in small §/Dg, the solution to our model (4.4) is

— sin(ky) (5.10)

1 —20%k% §
1+ 22k2 Dy ’

T = pgSDy [1 +

where 4 = Dy, /x is the diffusion length scale that we already encountered in the case of
rectangular channels (5.4). In figure 8 we show the solutions of (5.10) fore = 0 and @ = 1
and several values of .
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Figure 8. (@) An infinitely wide channel with a wavy bottom (5.9), with §/Dy = 0.1 and Dok =1/ V2.
(b) Stress distribution of (5.10) with @ = 0. Different coloured lines stand for different values of x. The
black dashed line stands for the shallow-water theory, T(y) = pgSD(y) (x = 0), while the black dotted line
stands for the high-diffusion limit (x — 00). (¢) Stress distribution of (5.10) with « = 1. The dark blue curve
corresponds to the laminar flow (x = 1/3 and & = 1). The value x = 1 is the critical value beyond which the
stress distribution inverts.

The effect of momentum diffusion depends on the ratio of the diffusion length scale,
A, to the wavelength of the perturbation. When this ratio is small, Ak < 1, we retrieve
the shallow-water theory of (1.1). If the wavelength of the perturbation is comparable
to the diffusion length scale, the effect of momentum diffusion depends on the value of
o. When o = 0 (figure 8b), momentum diffusion simply reduces the variability of the
stress across the channel, so that in the limit of infinite diffusion, Ak — oo, the stress is
uniformly spread across the channel and equal to pgSDy. Thus, the stress for o = 0 is
greatest in the deepest parts of the flow, regardless of the strength of momentum diffusion.
Conversely, when o = 1 (figure 8c), there exists a critical bed wavelength below which
the stress distribution becomes inverted — the stress becomes highest where the fluid is
shallowest. This happens when

1
2oy
This inversion can occur for any o > 0. The limit of infinite diffusion (1k — o0) in this
case does not correspond to a uniformly distributed stress across the channel (black dotted
line in figure 8c). Instead, it becomes uniform for a finite strength of momentum diffusion,
when (5.11) is an equality.

We can understand why this inversion happens by considering the flux written in a
compact form, F = —x D> =% (£ D?*)" (4.3). The flux tends to homogenise the quantity
under the derivative, 7 D>*. In the limit of large diffusion, the quantity under the derivative
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becomes nearly uniform throughout the channel, 7D?* — const., so that the stress scales
as T o« D72* Therefore, when momentum diffusion is strong enough, the stress is
inversely proportional to depth for positive values of «. Relating the stress to velocity
according to (4.1), this means that when o > 0, the fluid may become faster in shallower
parts of the flow. Such an inversion of the flow velocity should be readily apparent in an
experiment.

The question of this stress inversion is important, since this mechanism may be
responsible for setting the instability length scale for braiding rivers (Abramian,
Devauchelle & Lajeunesse 2019). This inversion is known to happen in the laminar
flow (Devauchelle et al. 2022), but it is unclear whether it also happens in turbulent
flows. Strictly speaking, our model is only valid when the depth varies slowly, so that
its predictions become questionable when Ak ~ 1. Unfortunately, we were not able to find
appropriate experiments in the literature to test this inversion.

5.3. Triangular channel

In the previous section we showed that for positive values of «, the stress may become
inverted, increasing where the flow is shallower. Here we show that the same mechanism
can make the stress in our model diverge at the channel’s banks, where the bed intersects
the free surface. This divergence suggests that our model fails in such cases, and should
therefore be used with care.

We now solve (4.6) in a triangular channel (figure 9a). Although there exist analytical
solutions to our model in this configuration, the algebra is too cumbersome to show here.
We leave this derivation for Appendix C, and, here, we only discuss the results for « = 0
and o = 1.

The dimensionless stress profiles, 7(y), are shown in figure 9(b,c). The solutions for
o =0 and o = 1 look quite different. When « = 0, the stress is smooth and reaches a
maximum at the centre of the channel. As x increases, it simply becomes more evenly
distributed across the channel. On the other hand, when o = 1, the stress reaches a
maximum somewhere off-centre and has a kink in the centre. As x increases in this case,
the maximum of the stress moves more and more towards the corners where the flow depth
vanishes. When yx reaches a critical value, the stress reaches its maximum at the corners,
decreasing linearly towards the centre (light blue line in figure 9¢). For even greater values
of x, the stress diverges at the corners, and the theory, therefore, fails. In Appendix C we
show that this happens when

(5.12)

<Dmax>2 - 1+14+ (40[)()2

w 2(4ax)?

where Dy, is the channel depth at its centre and W is the total channel width. This
criterion is analogous to (5.11), and the divergence occurs for the same reason as the
stress inversion we discussed in §5.2 — when o > 0, a strong diffusion of momentum
will make the stress diverge with depth as t ~ D=2, Equation (5.12) shows that for any
a > 0, a steep enough bank angle will cause our theory to fail. Since this divergence does
not happen for vanishing «, setting « = 0 may be a useful practical choice for modelling

purposes.
Laminar flow offers a benchmark for our model since it can be solved without
approximation by solving the Poisson equation, VZu = —gS/v (C.1), and analogies with

this equation were sometimes used to estimate the stress in turbulent flows (figure 7.6 in
Chow 1959). The divergence of the stress at the banks we discussed does not exist in
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Figure 9. (a) A triangular channel with a bank angle of ¢ ~ 27°. (b,c) Dimensionless stress (7) profiles in
our model for different values of x (different coloured lines) and «. The black dashed line is the shallow-water
theory (x = 0). Panel (b) corresponds to o = 0, while panel (c¢) corresponds to o = 1. The dark blue line
in panel (¢) (x = 1/3 and « = 1) corresponds to the laminar flow in our model, while the red dotted line
corresponds to the unapproximated laminar flow. The largest value of x shown (x = 20/9) corresponds to the
highest value for which the stress in our model does not diverge in the corners of the above channel when o = 1
(5.12).

the Poisson equation. Still, in the triangular channel of figure 9, the solution to the Poisson
equation closely matches our model with x = 1/3 and o = 1, except near the sharp corner
at the centre (red dotted line in figure 9¢), where the symmetries of the Poisson equation
require the stress to rapidly vanish (as in all sharp corners). Although our model is not
well suited to treat the flow around such sharp corners, it nonetheless makes a sharp dip at
the centre, correctly capturing the trend of the exact solution. We can conclude that even
when the bed topography varies quickly, our model predictions should not be disregarded
altogether, although one should be careful when using them.

5.4. Variable roughness

So far, we assumed that the friction coefficient, Cr, is constant. However, when the
roughness of the bed varies across the stream, the diffusion of momentum induces a
phenomenon that does not exist in the shallow-water theory — the stress concentrates on
the rough parts of the channel (figure 10a).

In the shallow-water theory (1.1), the stress at each point simply balances the input
of momentum by gravity in the overlying fluid column, so that variations of the channel
roughness do not affect the stress. On the other hand, the roughness affects the velocity
through the friction coefficient, Cy, so that the flow is slower over the rough parts of the
channel (4.1). Therefore, a gradient of velocity develops from the smooth to the rough
parts, even in the shallow-water theory. A flux of momentum, F, will thus develop from
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Figure 10. Solutions to (5.13) on a flat bed with variable roughness — the left half (y < 0) is smooth, while
the right half (y > 0) is rough (brown line in panel a). We are assuming that Cy adjusts instantaneously to bed
roughness, so that it is constant in two halves of the channel, with Ct ;ougn/Ct,smoomn = 5. We are assuming a
constant diffusion parameter, A. Different blue lines correspond to different values of A (the diffusion length
scale on the rough side varies between 4/D ~ 0.25 for the dark blue curve and 4/D ~ 2.5 for the light blue
curve). The black dashed line corresponds to the shallow-water theory. (@) Dimensionless stress, t/0gSD.
(b) Dimensionless velocity, U/+/gSD.

the smooth to the rough parts of the channel, increasing the stress over the rough and
decreasing it over the smooth parts.

Although the friction coefficient, Cy, is in reality determined by the details of the flow,
for simplicity, here we assume that it is simply a function of the local bed roughness.
Accordingly, when the roughness changes discontinuously, the stress on the bottom
can also become discontinuous. However, the velocity, U, will remain continuous. To
emphasise the fact that we are looking for a continuous velocity when the roughness varies
across the stream, we solve our model in terms of U,

1/2
(ac/
where we keep the diffusion parameter, A (3.7), inside the derivative, since it may also
vary. We note that, when the friction coefficient, Cy, varies across the stream, it is not
possible to collect A and Cy into a single parameter, x, by rewriting the momentum
balance in terms of the stress, v (even if A is constant).

In figure 10 we show a solution to (5.13) on a flat bed on which the roughness
suddenly changes (assuming a constant diffusion parameter, A). The stress develops a
discontinuity at the point where the smooth and the rough parts meet (figure 10a). Over
the rough part, there is an excess of stress compared with the shallow-water theory,
while over the smooth part there is a deficit of stress. In both regions, away from the
discontinuity, the stress relaxes exponentially to the shallow-water theory, t,, = pgSD,

(D*(U* +aU*(DY)) - C;UP(1 + D)2 + gSD =0, (5.13)

over the diffusion length scale A = D,/ ACf_ 172 (the same one as in (5.4)). The magnitude
of the discontinuity does not depend on the value of the diffusion parameter, A — around
the junction, any amount of momentum diffusion will uniformise the velocity, thereby
creating a jump in the stress on the rough part and a dip in the smooth part. The ratio
of the stresses on two sides of the junction equals the ratio of the friction coefficients,
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X A o 0 (Seine) 0 (experiments)
Laminar flow 1/3 None 1 0 0
Turbulent flow Youls 0.3 0 0 0.8
(1.3,23.4) (0.07, 1.05) (-=0.1,0.1) 0,0.1) 0.6, 1)

Table 2. Default model parameters. The values for the laminar flow correspond to the approximation of
Devauchelle et al. (2022) (§ 4.1), while we suggest a default value (top number) and the uncertainty (brackets)
for each turbulent flow parameter based on comparison with the data in § 6. The uncertainty range for A roughly
corresponds to range of best-fit values to all the experiments of § 6. The default A is about the geometric mean
of the minimum and the maximum best-fit value. For the laminar flow, A is not defined since yx is not related
to the friction coefficient, Cy, as in the turbulent case. The value for « is based on comparisons with the
floodplain experiments of Shiono & Knight (1991) (§ 6.3). Since the data are inconclusive, we give two values
for the boundary condition, 6, for the rectangular channel flow — one based on the comparison with the Seine
river (§ 6.1) and another based on the comparison with the flume experiments (§ 6.2). For the laminar flow,
6 = 0 always.

Trough/ Tsmooth = Cf,rough/ Cf,smooth- The excess of stress in the rough region creates an
excess of force, AF = fooo (t — Tow) dy = A7, where AT = Typyen — Ty 1S the deviation
from the shallow-water theory at the junction point. This excess of force is proportional
to the diffusion length scale, A. Strong cross-stream diffusion of momentum, therefore,
makes the flow pull significantly more on the rough parts of the channel, an effect that the
shallow-water theory cannot account for.

The velocity, U, continuously decreases from the smooth to the rough region over the
same length scale, A (figure 10b). The gradient in velocity, therefore, creates a flux of
momentum from the smooth region to the rough one. In the shallow-water theory, this
decrease in U is discontinuous.

6. Comparison with experiments

We now test the predictions of the previous sections by comparing our model, (4.6), against
various measurements of stress and velocity in straight channels with a turbulent flow. In
table 2 we summarise the values of our model parameters (x, A, « and ) that best fit these
data. In the figures below, we show our model solutions using the default parameters from
table 2 — x = AC; /2, A=03, @ =0 and 6 = 0 (for the Seine river) or 6 = 0.8 (for
the rectangular channel experiments). We chose these default parameters from the range
of best-fit values to conveniently represent all of the experiments — our model with the
default parameters of table 2 reproduces all of the measurements to within about 30 %.

We start by discussing the Seine river measurements of Chauvet et al. (2014) and the
rectangular channel experiments reported in Knight, Demetriou & Hamed (1984). Then,
we consider the more complicated ‘floodplain’ geometry of Shiono & Knight (1991).
Finally, we discuss the experiments of Blanckaert et al. (2010) with variable roughness.
We give additional experimental details in Appendix D.

6.1. The Seine river

We begin by comparing (5.3) with velocity measurements of Chauvet et al. (2014) in the
Seine river in Paris, France (figure 11a). In order to make the river navigable throughout
the year, the banks of the Seine were paved into vertical walls where it crosses Paris.
The river flows over bedrock, which is virtually flat. Therefore, the channel of the Seine
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Figure 11. Comparison with measurements in rectangular channels. The red dots represent measurements. The
blue lines represent our model with the default values of model parameters from table 2 (x = AC ~1/2 with
A = 0.3; since the bottom is flat, the value of the local-shape parameter, «, is irrelevant). The blue shaded area
corresponds to the uncertainty in A and 6 from table 2. The black dashed lines represent the shallow-water
theory. (a) Measurements of the depth-averaged downstream velocity, U, in the Seine river by Chauvet et al.
(2014). We show our solution with Cr = 4 x 103 and the default & = 0 (table 2). (b) Measurements by Knight

et al. (1984) of the stress, 7, in a rectangular flume with an aspect ratio of 7.73. We estimate Cr ~ 2.8 x 1073
from measurements of channel-averaged velocity and stress, and use the default & = 0.8 (table 2).

is nearly rectangular with an aspect ratio of about 23.9. We give the details about the
geometry of the Seine at the time and the location of the measurements in Appendix D.1.

In order to find the velocity, U, in our model we need to specify three parameters —
the friction coefficient, Cy, the diffusion parameter for the stress, x, and the boundary
condition, 6. Allowing all these parameters to adjust, we find the best fit for Cr ~ 4.0 &
0.2x 1073, x =6.6+2.5 (A =0.42+0.15) and 6 ~ —0.03 & 0.03 (we estimate the
uncertainty by bootstrapping). Our model with these best-fit parameters matches closely
the measurements — the largest error is about 3 % of the mean velocity. In figure 11(a) we

show that our model with the default parameters of table 2 (x = ACf_ 1/ 2, Cr~4x 1073,

A = 0.3 and 6 = 0) also reproduces the data well — maximum error is about 11 % of the
mean velocity.

Consistent with our discussion above, the measurements on the Seine suggest a A of
order one. The best-fit value of Cy is also reasonable — Chézy (1775) estimated it to
be about Cr ~ 5 x 1073, while the Colebrook equation (4.2) yields our best-fit value
assuming an equivalent sand roughness, kg, of the order of several centimetres, a sensible
value for the Seine. The measurements above suggest a no-slip condition at the side walls,
which, in our model, translates to a vanishing stress at the corners (6 = 0).

6.2. Rectangular flumes

Next, we turn our attention to the experiments of Knight er al. (1984) who measured the
distribution of the stress across smooth rectangular channels with varying aspect ratios and
Reynolds numbers. We provide more details about their experiments in Appendix D.2.

In figure 11(b) we show an example of their measurements of the stress, 7, in a
single channel, and compare them to our model. Since the stress rather than velocity is
measured, we do not need to specify the friction coefficient, Cy (§4) — our model for
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Figure 12. (a) The fraction of momentum transferred to channel side walls, ¢,, (5.6), and (b) the normalised
water discharge, Q/Qy,, as a function of the aspect ratio. We assume the friction coefficient Cy = 2.8 x 1073,
as in figure 11(b). The blue lines correspond to our model with default parameters of table 2 (A = 0.3 and
6 = 0.8), while the blue shaded area corresponds to the uncertainty in these parameters. The red dots in panel
(a) represent a collection of 60 experiments by various authors reported in Knight e al. (1984), while the red
dots in panel (b) represent 25 experiments performed by Knight er al. (1984) themselves. The black dotted lines
correspond to a uniform stress across the entire channel (x — oo and 6 = 1, (5.7) and (5.8)). The horizontal
black dashed line in panel (b) corresponds to the shallow-water prediction, Q = Q.

T in a rectangular channel is fully determined by specifying x and 6. Nevertheless, in
order to use our scaling, x = ACf_ 1/ 2, we estimate Cy using the reported measurements

of the channel-averaged velocity, (U), and the mean stress, (), as Cr = (t)/ ,o(U)z.
For the experiment in figure 11(b), this yields Cr ~ 2.8 x 1073, a value consistent with
an estimate based on the Colebrook equation (4.2) assuming a smooth channel with a
Reynolds number Re = (U)D/v. Allowing A and 6 to adjust, we find the best fit with
A =0.2240.05 and € = 0.73 £ 0.1 (for other experiments reported in Knight et al.
(1984), the best-fit A ranges from 0.07 £ 0.01 to 0.22 £ 0.05, and the best-fit 6 from
0.7 £ 0.08 to 0.85 £ 0.15). These best-fit solutions reproduce the measurements very well
— the error is at most 9 % of the average stress (for other experiments, it is between 5 %
and 9 %). In figure 11(b) we show that our default solution (A = 0.3 and 6 = 0.8) also
captures the data well (maximum error is about 16 % of the mean stress).

Knight ef al. (1984) reported the fraction of momentum transferred to the side walls,
¢, for each of their 25 experiments and compared it with 35 other experiments performed
in smooth rectangular flumes in studies by Cruff (1965), Ghosh & Roy (1970), Kartha
& Leutheusser (1970), Knight & Macdonald (1979), Myers (1978) and Noutsopoulos &
Hadjipanos (1982). The fraction ¢,, for all of these studies approximately falls onto a single
curve as a function of the channel’s aspect ratio (figure 12a). Allowing A and 6 to vary,
we find the best fit with A ~ 0.14 4+ 0.07 and 6 ~ 0.88 = 0.1, which reproduces the data
well (the mean error is about 2 %). The blue line in figure 12(a) shows that our model with
default parameters (A = 0.3 and 6 = 0.8) also falls close to the measurements (the mean
error is about 4 %). Moreover, the limit of uniform stress across the channel (y — oo and
0 =1, (5.7)) also explains the data well (black dotted line in figure 12a). In fact, the data
for ¢,, are consistent with our model for any & ~ 1, and x greater than about y ~ 1.

Although we find good agreement between predicted and measured stress in all of
the experiments, measuring stress directly is difficult. For this reason, we also test our
model against the measurements of water discharge, a quantity that is easy to measure.
In figure 12(b) we show that normalising the water discharge, Q, by its value in the
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shallow-water theory, Qy,, = Us,,DW, where Uy, = ,/gSD/C¢, collapses all of the data
points of Knight et al. (1984) onto a single curve as a function of the channel aspect ratio.
Here, we assumed that Cr = 2.8 x 1073, the same as in the experiment of figure 11(b).
Allowing A and 6 to vary, we find the best fit with A = 0.06 & 0.03 and 8 = 0.8 £0.1
that reproduces the data with at most 7 % error. Figure 12(b) shows that our default model
(A =0.3 and 6 = 0.8) also reproduces the data well (maximum error is 11 %). Again,
the data are consistent with the limit of uniform stress (x — oo and 8 = 1, (5.8)), so that
our model with any 6 ~ 1 and x 2 1 is compatible with the measurements. Unlike ¢,,,,
which is a statement about the stress, the water discharge is a statement about velocities.
Figure 12(b), therefore, suggests that the velocity is close to uniform across the channel.

Although A in these experiments is smaller than in the Seine (the best fits range from
0.07 to 0.22), it is still of order one, and our default value (A = 0.3) still explains the
data well. However, all of the experiments above strongly suggest a boundary condition
specified through 6 of order one, in stark contrast with the no-slip condition we found for
the Seine (§ 6.1). At this point, it is unclear why this difference exists.

6.3. Floodplain

The experiments presented above did not allow us to constrain the local-shape parameter,
«. To do this, we now consider the flow in a channel with variable depth across the
stream. We are unaware of any experiments in the literature that were performed in
channels with slowly varying bottom topography and no sharp corners, which would
conform with our model’s assumptions, and would, therefore, be ideal for this study.
However, many previous studies considered the flow in the so-called floodplain geometry
(figure 13a). Such a configuration was designed to mimic the flow in rivers during
flooding, and consists of a deep and relatively narrow main channel joined with a wide
and shallow ‘floodplain’. Although many models were developed that accurately estimate
the stage-discharge relations in this geometry, i.e. how the water level varies with total
water discharge (Bousmar & Zech 1999; Martin-Vide & Moreta 2008; Proust et al. 2009;
Kaddi er al. 2022), they typically paid little attention to the detailed distribution of the
stress across the banks between the main channel and the floodplain. Yet, in this geometry,
our parameter « only plays a direct role on these banks, so, unlike most previous studies,
we pay special attention to this transitional region between the main channel and the
floodplain.

Here we consider the experiments of Shiono & Knight (1991) in a symmetric floodplain
channel (figure 13a). The water level changed from one experiment to the next, so that the
flow depth in the main channel, Dy, and in the floodplain, Dy, varied. The main channel
and the floodplain were connected by banks of unit slope (D' = %1), and the floodplain
was connected to the water surface by banks of the same slope. In this channel, Shiono &
Knight (1991) measured both the stress, 7 (y) (figure 13b), and the depth-averaged velocity,
U(y) (figure 13¢), using independent methods (Appendix D.3). We note that bank slopes
of D' = +1 are not really small so that we consider these experiments only because we
lack a more appropriate alternative.

We start by considering the friction coefficient, Cy. Since the Reynolds number is larger
in the deep main channel than in the shallow floodplain, Cy is lower in the main channel
than in the floodplain. We can estimate the friction coefficient at each point across the
stream directly from the measurements of the stress and velocity as Cr(y) = t(y)/pU 2(y)
(figure 13d). We find that Cr ~ 2 x 103 in the main channel for all experiments, while
it varies in the floodplain from one experiment to the other. This variability of Cy across
the stream is well captured by the Colebrook equation (4.2) assuming a smooth channel
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Figure 13. (a) Cross-section of one half of the symmetric ‘floodplain’ channel used by Shiono & Knight (1991)
with the depths of the main channel and the floodplain D, ~ 19.8 cm and Dy, ~ 4.8 cm. (b) Measurements
(red circles) of the stress, t, in the channel above. The solid blue line is the solution to (5.13) assuming « = 0,
A =0.3 and Cy estimated from the Colebrook equation using an approximated Reynolds number Re(y) =
Usw(y)D(y)/v, where U, (y) = /gSD(y)/Ctaef and Cy ger =2 x 1073, The blue shading corresponds to
uncertainty in A from table 2. The blue dotted line corresponds to o = 0.3 and A = 0.3. The black dashed
line is the shallow-water prediction. (c) The depth-averaged velocity, U, with the same notation as in panel
(b). (d) Estimates of the friction coefficient, Cy. The red circles are estimates using the stress and velocity
measurements, Cr(y) = t(y)/p U%( y). The black dotted line is the estimate based on the Colebrook equation
(4.2) assuming a smooth channel and a local Reynolds number, Re(y) = U(y)D(y)/v. This equation predicts
a higher friction coefficient in the floodplain, where the Reynolds number is lower, and a divergence near the
right corner of the channel where the Reynolds number vanishes.

(ks/D = 0), and a local Reynolds number, Re(y) = U(y)D(y)/v (black dotted line in
figure 134d).

To compute the stress, t, and the velocity, U, from our model when the friction
coefficient varies across the stream, we need to solve (5.13). We supply our model with the
friction coefficient Cr(y) estimated using the Colebrook equation with a local Reynolds

number Re(y) = Uy, (y)D(y)/v, where Uy, (y) = /8SD(y)/Ct der is the shallow-water
981 A24-25


https://doi.org/10.1017/jfm.2023.1098

https://doi.org/10.1017/jfm.2023.1098 Published online by Cambridge University Press

P. Popovic, O. Devauchelle and E. Lajeunesse

velocity and C ger = 2 x 1073 is a default friction coefficient that we take to be that of
the main channel. This rough estimate of the Reynolds number is sufficient, since Cy in
the Colebrook equation depends only weakly on the Reynolds number — using twice the
value of Cy 4., the Colebrook equation yields only about 9 % higher Cy in the floodplain,
which corresponds to a floodplain velocity only about 4 % smaller (and similarly in the
main channel). Finally, we assume that the parameters A and « are constant. Therefore,
besides the depth profile, D(y), our model in this case requires three parameters — Cr 4ef,
A and o.

The solutions to our model here are not as accurate as in the rectangular channels of
the previous two sections. For this reason, it is not clear how to define the best fit to the
data — we may accurately reproduce the data in the main channel, in the floodplain or
in the transition region, but not all three at the same time (focusing only on the main
channel yields the best-fit A from A & 0.48 to A ~ 1.05 depending on the experiment,
regardless of ). Therefore, we do not attempt to show the best-fit solutions, and, instead,
we simply compare our model with the default diffusion parameter (A = 0.3) and two
different values of o: @ = 0 and o = 0.3 (figure 13b,c).

In the main channel and the floodplain, the solutions with « = 0 and o = 0.3 behave
very similarly and reproduce the data equally well. The two solutions differ significantly
only in the transition region. They both show a peak in the stress that is not observed in the
data, but this peak is more pronounced for « = 0.3. When « = 0, this peak is caused by the
rapidly changing friction coefficient in the transition region, while for o > 0, it is caused
by the bed topography itself, and would remain even for a constant friction coefficient.
Using a negative o could remove this peak of the stress, but would, at the same time, make
the stress change more abruptly from the main channel to the floodplain, unlike what we
see in the data. The solution with & = 0 shows no peak in the velocity, consistent with
the measurements, while o« = 0.3 still shows a small peak. For these reasons, our model
conforms with the data only for small (positive or negative) values of «, so, for simplicity,
we set @ = 0 as our default parameter.

In the floodplain, our solution quickly converges to the shallow-water prediction, while
the measured stress and velocity remain about 20 % above it — a modest difference that our
model cannot account for. This discrepancy can either be the result of a slight bias in the
measurements, or, as suggested by Shiono & Knight (1991), caused by a real feature of the
flow such as a wide recirculation cell that spans the floodplain or large eddies that exist
in the horizontal x—z plane. These features, which are normally suppressed by the bottom
friction in rivers, may play a significant role in smooth channels such as this one.

6.4. Variable roughness

Finally, we test the predictions of § 5.4 for a bed with variable roughness by comparing
our model with the experiments of Blanckaert ez al. (2010). They performed high-precision
measurements of velocity in half-trapezoidal channels (figure 14a) in which the bottom of
the channel had a fixed roughness while the right, sloping bank was either smoother, as
rough, or rougher than the bottom. They report Cr ~ 5.3 x 10~3 for the bottom based on
direct measurements of stress and velocity, and we use the Colebrook equation to estimate
Cr~24x 103 for the deepest part of the smooth bank and Cr~19x 1072 for the
deepest part of the rough bank (on the sloping bank, Cy increases as the bank becomes
shallower). We give the details of these experiments in Appendix D.4.

We show the estimates of Blanckaert ef al. (2010) for the stress in figure 14(b,c). As
predicted in § 5.4, the stress develops a discontinuity at the junction between the bed and
the banks. If the bank is smoother than the flat bottom, the stress on the bank suddenly
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Figure 14. (a) A channel of Blanckaert et al. (2010) with a bank angle of 30°. Banks were coated with different
material so that the bank roughness was less than, equal to or greater than the roughness of the flat bottom in
different experiments. The friction coefficient is Cr ~ 5.3 x 1073 on the bottom, while it varies on the banks.
(b) Measurements (red circles) of the stress, 7, in the channel above with smooth banks. The blue line is the
solution to (5.13) assuming default parameters A = 0.3, @ = 0 and & = 0.8 on the left vertical side wall, and Cy
estimated using the Colebrook equation. The blue shading corresponds to the uncertainty in A and 6 (table 2).
The black dashed line corresponds to the shallow-water prediction. The downstream slope is § & 5.5 x 1074,
(b) A rough bank experiment. The notation is the same as above. The downstream slope is S & 7.6 x 1074,

decreases, while a rough bank makes the stress exceptionally high on the bank, but, also,
exceptionally low on the bottom near the junction point. We solve (5.13) using the default
parameters (A = 0.3, « =0 and 6 = 0.8 on the left vertical side wall), and using the
Colebrook equation (4.2) to estimate Cr(y) as a function of the local Reynolds number

approximated as Re(y) = Uy, D(y)/v (where Uy, = /gSD(y)/Ct def and Cy gof = 5.3 X
1073), and the relative roughness, ks(y)/Rp, where kg(y) assumes different values on the
bottom and the banks. This solution reproduces the measurements qualitatively well — it
captures both the drop in the stress in the case of the smooth bank and its jump in the case
of the rough bank. The value of A does not affect the magnitude of the jump in the stress
— it only affects the shape of the stress curves. We find the best fit with A ~ 0.18 for the
smooth bank experiment and A & 0.31 for the rough bank experiment, close to our default
value.
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Even though our model reproduces the measurements qualitatively well, there are still
significant deviations. The measurements show strong variability around our solutions
on scales comparable to the channel depth. This variability is of the same order as the
deviation of our theory from the shallow-water prediction, and is, therefore, not negligible.
It is likely that this is due to strong recirculation cells. This is an effect that we cannot hope
to capture with our model on the scale of individual cells — our model can only give the
stress smoothed out over several such cells.

6.5. Summary of model parameters

In summary, we find that our model reproduces most of the observations. The friction
coefficient, Cr, is well captured by the Colebrook equation (4.2). The best-fit A varied
from one experiment to another but was always of order one. The lowest best-fit
value we found was A = 0.07 for the rectangular flume of Knight et al. (1984) with
the smallest aspect ratio (W/D = 2), while the largest was A ~ 1.05 in the main
channel of the floodplain experiment of Shiono & Knight (1991) with the smallest flow
depth (D, & 17 cm). We chose our default value (A = 0.3) to be between these two
extremes. Together with our estimates of Cy, this yields the diffusion parameter for
the stress, x = ACf_l/Z, between y ~ 1.3 and y ~ 23.4. The values of A we found
here are compatible with previous estimates — Okoye (1970) tracked tracer dispersion in
various experiments and field studies, and estimated the effective eddy diffusivity, D,,
to be between D, ~ 0.07U*D and D, ~ 2.0U*D. These measurements imply that our
parameter A = D,/2U*D lies in the range between [0.03, 1.0], consistent with our present
estimates.

Experimental evidence suggests that o is small — significant positive values of « lead
to peaks in the stress that are not observed in the floodplain experiments of Shiono &
Knight (1991), while significant negative values lead to an abrupt transition of the stress
from the main channel to the floodplain which is, again, inconsistent with measurements.
Theoretical arguments also suggest a small « for highly turbulent flows — the model
of turbulent diffusion of Appendix A suggests that o decays logarithmically with the
Reynolds number, as the velocity profile starts to resemble a vertically uniform ‘plug’
flow. For these reasons, we suggest the default value « = 0 with a tentative uncertainty
range around zero, o € (—0.1,0.1). Nevertheless, we note that care should be taken
when dealing with flows at lower Reynolds numbers that do not resemble a ‘plug’ flow
— approaching the laminar regime, the values of « should approach o = 1.

In rectangular channels, it is necessary to prescribe a boundary condition, 6, at the
vertical side wall. Measurements on the Seine suggest a no-slip boundary condition
(6 =~ 0) and do not support 0 greater than 6 ~ 0.1. On the other hand, rectangular flume
experiments suggest 6 of order one. Depending on the experiment, the best-fit values range
from 6 ~ 0.6 to 6 ~ 1, and we take the mid-value (6 = 0.8) to be our default. We currently
do not understand what causes this significant difference between the natural channel of
the Seine and the experimental flumes.

Using Re = 10° and Cr= 1073 in the model of turbulent diffusion of Appendix A,
we find A ~ 0.03 and o ~ 0.17 (Alla,b). The value of A in this model is lower than
our observed values, while the value of « is too large to be supported by the data. This
suggests that, although the model of turbulent diffusion captures many qualitative features
of turbulent momentum transfer, it is not quantitatively accurate. We note that A =~ 0.03
corresponds to the lowest value measured by Okoye (1970), who hypothesised that this is
the theoretical lower bound.
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6.6. Validity of model assumptions in the experiments

We derived our model under four assumptions: (i) the transfer of momentum across the
stream does not depend on the gravity, g, viscosity, v, and the bed roughness, kg; (ii)
the vertical profile of velocity does not change shape across the stream; (iii) the flux of
momentum, F, is locally related to the flow depth and velocity; and (iv) the depth and
velocity vary slowly across the stream. None of these assumptions were exactly satisfied
in the experiments we considered.

The flux in our model depends on the Reynolds number and the bed roughness through
the friction coefficient, although it does so only weakly. This violates the first assumption
of our model, and we partly took it into account by allowing Cy to vary according to the
Colebrook equation.

Chauvet (2014) measured the vertical profiles of velocity at different locations in the
Seine. Based on their measurements, we estimate that the contribution to the flux, ', due to
the changing shape of the vertical velocity profile is likely more than an order of magnitude
smaller than the contribution due to the velocity gradient, UG[,/U’ ~ 0.04, where 6y =
oy /U is the dimensionless standard deviation of the velocity profile that characterises its
shape. This is consistent with our second assumption above, but we note that variations of
the profile’s shape likely become significant near the corners where the bed intersects the
free surface, especially when o > 0 and our model diverges (§ 5.3).

The non-local contributions to the flux generated two notable features in the data that we
could not reproduce: (i) the large fluctuations of the stress in the experiments of Blanckaert
et al. (2010) on the scale of the flow depth, probably related to recirculation cells; and
(i1) the slight but consistent underestimate of the stress in the floodplain region in the
experiments of Shiono & Knight (1991), possibly caused by large, horizontal eddies or
recirculation cells. These features contributed to about 20 % error in our model, but they
may become weaker in natural, irregular channels with a rough bed (Blanckaert et al.
2010).

Finally, none of the experiments we considered really had a slowly varying topography
throughout the channel — they all contained sharp corners or steep banks. The fact that
the experiments of Shiono & Knight (1991) had banks with D’ = 1, means that the
higher-order terms in the flux (for example, those proportional to D'?) are of a similar
order of magnitude to the one we considered. This could explain why our model produced
a small peak of the stress between the main channel and the floodplain, which was not
observed by Shiono & Knight (1991).

Despite these inconsistencies, most of the data fell within the uncertainty bounds of our
model, while our default parameters (table 2) reproduced the data to within about 30 %.
Our model always provided a significant improvement to the shallow-water approximation.
The data we considered cover about three orders of magnitude in Reynolds number
(from about 10* for some rectangular flumes to about 7 x 10° for the Seine), and include
channels of varying shape with a smooth or rough bed, as well as those with variable
roughness. These reasons suggest that the model we presented here is reasonable.

7. Conclusions

In this paper we explored in detail a model for the steady-state distribution of the stress
generated by a turbulent flow in a straight channel with an arbitrary, albeit slowly varying,
bottom topography. This model is a simple linear, ODE for the stress that assumes that
eddies and recirculation cells of a size comparable to the channel depth carry most of
the momentum across the stream. It assumes that the flow depth and velocity vary slowly

981 A24-29


https://doi.org/10.1017/jfm.2023.1098

https://doi.org/10.1017/jfm.2023.1098 Published online by Cambridge University Press

P. Popovic, O. Devauchelle and E. Lajeunesse

relative to the size of the dominant eddies or recirculation cells — in this case, momentum
transfer across the stream becomes diffusive, driven by simple gradients of time-averaged
velocity.

Our model contains two dimensionless parameters — the diffusion parameter for the
stress, x, equal to about the ratio of the dominant eddy velocity to the downstream velocity,
and the local-shape parameter, «, which arises due to horizontal velocity gradients induced
by the variation of the flow depth. Assuming that dominant eddies move at roughly

the frictional velocity, we estimated that the diffusion parameter is of the order of the

inverse square root of the friction coefficient, x = ACf_ 12 On the other hand, assuming

a homogeneous turbulence, we suggested the local-shape parameter, «, vanishes as the
flow becomes more and more turbulent and the vertical profile of velocity becomes close
to uniform. When comparing our model to various experimental and natural flows, we
found that A = 0.3 and o = 0 reproduced all of these diverse measurements to within
about 30 %.

This model follows from dimensional analysis under generic assumptions about the flow,
such as the locality of the cross-stream flux of momentum and the fixed shape of the
vertical velocity profile. As a first-order, diffusive approximation, it is equally valid for
turbulent and laminar flows (which is obtained by setting the parameters to « = 1 and
x = 1/3). This suggests that it may be possible to describe other types of flows, such as
the non-Newtonian flow of ice, by simply adjusting these parameters.

We developed this model with natural rivers in mind. As was proposed by Parker
(1978b), and demonstrated experimentally by Popovi¢ et al. (2021) in the case of laminar
laboratory rivers, the transfer of momentum across the stream is crucial to the stability
of an alluvial river that transports sediment. The present model suggests that it may
be possible to understand equilibrium shape of alluvial, turbulent rivers as simply as in
laminar ones, at least to first order.
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Appendix A. Turbulent diffusion

In this section we show how (3.7) arises explicitly in a specific model of turbulent
diffusion. We use this to demonstrate how our heuristic arguments work in practice, and
calculate the parameters A and «.

In the model of turbulent diffusion, like in a laminar flow, the momentum diffuses at
a rate proportional to the local velocity gradient, pD,Vu. Unlike the molecular viscosity,
however, the turbulent diffusivity, D,, varies throughout the flow because the properties
of the eddies that carry the momentum differ near a channel’s bottom and far away from
it — D, is generally highest near the centre of the flow, where the turbulent eddies are the
largest and move at the greatest velocities. Over a flat surface, the turbulent diffusivity, D,,
usually develops a parabolic vertical profile that vanishes at the bottom and at the surface
(Nezu & Nakagawa 1993):

D, = —Do% (1 + g) . (A1)
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Here Dy is the turbulent diffusivity scale, and the minus sign ensures that the diffusivity is
positive (z < 0). Empirical studies show that the turbulent diffusivity scale is about (Nezu
& Nakagawa 1993)

Do ~ kK U*D, (A2)

where k & 0.4 is the von Kdrman constant and U* is the frictional velocity. Equation (A2)
reflects our remark in § 3.1 that turbulent diffusivity is proportional to the size (of the order
of D) and to the velocity (of the order of U*) of the largest eddies. For highly turbulent
flows, the parabolic diffusivity profile (A1) corresponds to a logarithmic velocity profile
(Schlichting & Gersten 2000)

1
ut =—Inz" +Ct, (A3)
K

where ut =u(z)/U* is the dimensionless velocity, zT = (D +z)U*/v is the
dimensionless vertical coordinate and C* is a constant equal to CT ~ 5 in channels
with smooth walls. The flow is fully turbulent when zt > 70, while for z* < 5, it is
laminar. Typically, there also exists an ‘outer-layer wake’ near the free surface where the
velocity deviates from the logarithmic law of (A3). Here, we neglect the part of the flow
below the turbulent layer (for z+ < 70) as well as the outer-layer wake. We consider that
the dimensionless depth is much greater than one, D* = DU*/v > 1, but we will not
immediately ignore the terms proportional to its logarithm, In D

We can find the turbulent diffusive flux of momentum, F, in this approximation by
integrating pD, Vu over a vertical slice:

0
0
F=—p / Dea—” dz. (A4)
—D+zv/U* y

Here z('; ~ 70 is the value of z* at the lower end of the turbulent layer. Using the diffusivity

and velocity profiles of (A1) and (A3), neglecting terms of order 1/D™ but retaining those
proportional to In D, and after a considerable amount of straightforward algebra, we find
the flux in (A4):

F = —pDy [U'DL + UD'Ly]. (A5)

Here, in the limit we are considering (D™ >> 1 and In(D™) ~ 10), the prefactors Z; and
T, are

1 5
Iy =—- — o\—», A6
"7 6 36(nD+ +«CH) * <D+) (A)
T = ! + 5 +0< ! ) (A7)
273 (InD*t +kCt) 36 (InD* + KC+)2 D+ )’

The terms U’ and D’ both arise from taking the cross-stream derivative of the velocity,

du/dy. Expressing the frictional velocity as U* = }/ ‘U , we find the diffusivity scale
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Do = KC}/ UD. Using this and reorganising the terms in (AS5), we get

172

F = —pC/"A[(U*)'D* + aU*(D?)], (A8)

where the diffusion parameter, A, and the local-shape parameter, «, are

K 5 1
A=—[1= +o(—), A9
12( 6(1nD+—I—KC+)> <D+> "
2 InDt +xC*t —5/12 1
o= nootx / of—). (A10)
InDt +«xCtInDT + kC+ — 10/12 D+

We thus find the expression 3.7 for the flux, F, in this model of turbulent diffusion. For
highly turbulent fluids, the logarithms In D" also become large, so, to leading order in
large In Dt we find that

NE’ 05’\/—1/2,
ln(ReCf )

(Alla,b)

where we used U* = Cfl-/ *Uto express DT = ReC;/ 2, Therefore, A is a constant of order
one (A = 0.03), while « vanishes logarithmically with the Reynolds number.

Equation (A8) holds in the model of turbulent diffusion for any shape of vertical profiles
of velocity and diffusivity so long as the diffusivity scales as D, o« UD - logarithmic
velocity and parabolic diffusivity are not necessary. Different profiles of velocity and
diffusivity only change the values of A and «. The value of @ only depends on the shapes of
these profiles, while the value of A also depends on the scale of the diffusivity, Do /(U*D).
A vertically uniform velocity leads to « = 0 regardless of the diffusivity, while @ < 0 can
occur only if the flow near the bottom is faster than the flow near the surface.

Appendix B. Local model

Even though we assumed that the flux, F, is locally related to the depth and the velocity,
the stress, 7, resulting from (4.6) is non-local — at each point, it depends on the entire
shape of the channel. In this appendix, we derive a ‘local” approximation for the stress, T,
in which it is related directly to the local depth and its derivatives. In this approximation,
there is no need to solve the full (4.6), but the approximation is only meaningful for small
enough values of the diffusion parameter, x.

In this approximation we assume that the variations in the depth are slow compared

with the depth itself so that D' ~ ¢ & D, where € is a small parameter of the order of the
inverse of the aspect ratio, € ~ Dy,q,/W. Then, we assume that T can be expanded in a
series as

i) =t +tVE + -, (B1)

where the nth-order term is of the order €”. The zeroth order in this expansion assumes
that there are no variations in the depth, D’ = 0, so that it corresponds to the shallow-water
stress, 70 = D. We then insert this zeroth-order stress into the expression for the flux,
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F = —x(D*%' 4+ aT(D?)), to get the flux to the first non-trivial order:

F o XD (2“3+ Dy (B2)

The superscipt (1) in the flux signifies that the first non-vanishing order of the flux is of
the order of € (i.e. proportional to D). The flux at the zeroth order corresponds to the
shallow-water approximation, and, therefore, vanishes. If we use (B2) for the flux in the
momentum balance (2.3), we can find the stress corrected to the next order in the expansion

xS <D + w (DS)//> cos ¢, (B3)

where cos¢ = (1 + D 2)=1/2 This is the stress corrected up to the order €2, It is the first
order that contains a non-trivial contribution from the cross-stream transfer of momentum.
Inserting this expression for the stress back into the flux, we can also get higher-order
corrections for F , which, through (2.3), yield higher-order corrections for 7.

In (B3) the stress at a point y is only related to the local depth, ﬁ( y), and its first two
derivatives at that point. In this way, we do not need to know the entire shape of the channel
in order to find the stress at a particular point. Although we can follow the procedure above
to find the stress to an arbitrarily high order, all of these corrections remain local — for
example, we will never be able to capture the effects of vertical side walls in a rectangular
channel in this way, no matter the order to which we approximate the stress.

In some applications, this local approximation may suffice. Notably, Popovié et al.
(2021) showed that a similar approximation was sufficient to explain the shape of laminar
laboratory rivers that carry sediment. This may not always be the case if the variations in
the depth are too great or if the diffusion parameter for the stress, yx, is too large — the
expansion in terms of small € (B1) may not exist. In Appendix C we demonstrate a
transition from a local stress to a non-local one near a corner for high enough values
of x (C5). In fact, (C5) likely also serves as a rule of thumb for when we can use the
local approximation (B3). If the gradient of the topography is too large or the momentum
diffusion is too strong, we need to solve the full (4.6) in order to get a meaningful
approximation of the stress.

Appendix C. Corner flow

In this appendix we derive the equation for the flow along a corner, which can be used
to construct the solutions to our model in a triangular channel (§ 5.3). In doing this, we
show two features of our model: (i) the transition from a local to a non-local flow for high
values of the diffusion parameter, x; and (ii) the breakdown of our model for high enough
values of x when « is positive. This section also demonstrates how convenient it is that
our model, (4.6), is linear in T.

We consider a bed that slopes downwards at an angle ¢ with the horizontal, starting
from a corner at y = 0. The depth, therefore, increases as

D = jtané. (C1)

This depth profile lacks a boundary condition on the open end of the corner, so we cannot
fully solve (4.6) for the stress. Nevertheless, we can find 7 up to an integration constant.

981 A24-33


https://doi.org/10.1017/jfm.2023.1098

https://doi.org/10.1017/jfm.2023.1098 Published online by Cambridge University Press

P. Popovic, O. Devauchelle and E. Lajeunesse

Since (4.6) is linear in T, we can write its solution as a sum of a particular and a
homogeneous solution, T = 7, + 7;,. The particular solution is proportional to the depth,

~ D
= (C2)

Tp .
JU+ (ang)? — 2020 + Dy (tang)?

On the other hand, we can find the homogeneous solution in the form of a power law:

T, = AD". (C3)

Here A is an integration constant that depends on the entire shape of the channel, and the

exponent, a, is
2
20041 1 —2a0)2 41+ (tang)
= - + ( ) + . (4

2 + X (tan ¢)?

The particular solution is proportional to the depth and is independent of the shape
of the bed beyond the corner. In this sense, it is local — the stress depends only on the
local depth. On the other hand, the homogeneous solution is non-local — it depends on the
entire channel beyond the corner through the constant A. Which one of these two solutions
dominates near the corner depends on whether the exponent, a, is less than or greater than
one. When a« is less than one, the homogeneous solution takes over near the corner, and
the flow feels the entire shape of the channel. This happens when the momentum transfer

is strong enough:
y/ 1+ (tan d))2 s
> .
X 2Qa + 1) (tan ¢)? ©)

Thus, (CS) defines a threshold diffusion parameter, y, or a threshold channel slope, ¢,
beyond which the flow near the corner transitions from local to non-local.
If we keep increasing the intensity of the momentum transfer, the exponent of the

homogeneous solution, a, can become negative:
V1 + (tan ¢)? o
—_— (Co6)
2a (tan ¢)>

a<l <—

a<0 = x>

When this happens, the homogeneous solution diverges near the corner, leading to an
unphysical situation. Therefore, we may say that a < O represents the point at which our
theory breaks down. By noting that tan ¢ = 2D,,,,./W, and solving for tan ¢ in (C6), we
retrieve (5.12) of §5.3.

If we specify the full shape of the channel, we can find the integration constant, A. In a
triangular channel of figure 9(a), the depth profile is given by

ytan ¢ ify <
D =

’

(C7)

| = oo =

(W—5)tang ify>

In both halves of the channel the solution is given by the same sum of the particular and
homogeneous solution we just discussed, so we simply need to determine the constant, A.
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To find it, we assume that the stress, 7, and the flux, F, are continuous at the junction
between the two halves (in fact, due to symmetry, the flux at this point vanishes). This
yields
Dl—a
A — max . (CS)
2o + a)(2x (tan§)* — /1 + (tan ¢)*/ (2 + 1))

These solutions are shown in figure 9(b,c).

C.1. Poisson equation

To find the unapproximated laminar stress in the triangular channel of figure 9 (red dotted
line in figure 9), we solve the Poisson equation for the velocity,

’a + i =—1 (€9)
852 8z2
with a no-slip boundary condition at the bed, ii(z = —D) = 0. Since this equation is linear,

the resulting velocity is the sum of the particular and the homogeneous solution, & =
up + uy. For the corner of (C1), the particular solution is

T

= . C10
T o0 —an2g) (C10)

A homogeneous solution is (Polubarinova-Kochina 1962)
iy = CyRe (02D /2)) (C11)

for any integer n > 0. Here, w =y + iz is a complex combination of the coordinates,
Re(- - ) stands for the real part and C, is a constant. Therefore, the full solution, i, is

_ . (Gtng)? -7 o Qn+1)(n/2¢)

16,9 = S ey ;CnRe(a) ), (C12)
where C, are constants to be determined from the boundary condition at the centre of
the triangular channel. Due to the symmetry of the channel, the velocity gradient must
vanish at the centre, di/9y| 5=/ = 0. By considering this condition at N distinct heights,
Z1,...,2n, we can find the constants C, to arbitrary order N (the solution in figure 9
assumes N = 50). After determining the constants C,, we find the components of the
stress as T; = 0it/0Z|;__j, and Ty = 9i/dy|-__p, and the total stress as T = (fz2 + f}?)l/z.

Appendix D. Details about the experiments

In this appendix we give the details of the experiments we compared our model with. All
of these details can be found in the cited references, but we give them here for the reader’s
convenience.
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D.1. Chauvet et al. (2014)

In the Paris region, the Seine river flows down a gentle slope of about S ~ 10~#, with a
Reynolds number of about Re ~ 7 x 10°. At the time and the location at which Chauvet
et al. (2014) took their measurements, it was about 148 m wide and about 6.2 m deep. Their
measurements were based on readings from an acoustic doppler current profiler fixed to a
raft that was tethered to a footbridge, and shifted across the flow.

D.2. Knight et al. (1984)

Knight et al. (1984) performed a series of experiments in smooth rectangular channels
whose width varied between W = 7 cm and W = 61 cm. The slope in all experiments was
fixedat S = 9.66 x 10~*, while the flow depth was varied by adjusting the water discharge.
The resulting aspect ratio varied between 0.31 and 19.12, with a Reynolds number varying
between about 10* and 7 x 10*. They measured the stress with a Preston tube method
(Preston 1954).

D.3. Shiono & Knight (1991)

Shiono & Knight (1991) investigated the flow and the stress distribution in idealised
experiments that resemble a river with a floodplain (figure 13). Their channels consisted
of a deep main channel of width W, = 1.5 m, surrounded by two shallow parts (the
‘floodplain’), each Wy, = 2.25 m wide. The water level changed from one experiment
to the next, so that the depth of the main channel varied between D, = 15 cm and
Dy = 30 cm, and that of the floodplain between Dy, = 0 and Dy, = 15 cm. The difference
between the two depths was fixed by experimental design at D,,c — D, = 15 cm. The
downstream slope of the channel was fixed at S = 1.027 x 1073. Shiono & Knight (1991)
measured the velocity using a two-channel laser doppler anemometer across one half of the
channel. They measured the stress across the channel using Preston tubes (Preston 1954).
The velocities were about 1 m s~!, which yields a Reynolds number of about 3 x 107,
similar to the largest experiments considered by Knight er al. (1984), and about an order
of magnitude lower than in the Seine.

D.4. Blanckaert et al. (2010)

The experiments of Blanckaert et al. (2010) were performed in half-trapezoidal channels,
such as the one shown in figure 14. The left bank was a vertical wall, whereas the right
bank had a slope of either 30° or 45°, depending on the experiment. The width of the flat
bottom was about Wy, = 1.2 m, the flow depth about Dy,,; = 16 cm, the flow speed about
U ~ 0.4 m s~ and the Reynolds number about Re ~ 7 x 10*. The bottom of the channel
was roughened by gluing beads of size ks o, = 2 mm. They considered three cases for
the banks: smooth banks (kg panx = 0), banks that were as rough as the bottom (kg pank =
2 mm) and rough banks (ks panx = 30 mm). Unlike Shiono & Knight (1991), Blanckaert
et al. (2010) did not measure the stress directly, but estimated it from the vertical velocity
profiles.
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