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Perfectly packing a cube by cubes of nearly
harmonic sidelength
Rory McClenagan

Abstract. Let d be an integer greater than 1, and let t be fixed such that 1
d < t < 1

d−1 . We prove that for
any n0 chosen sufficiently large depending on t, the d-dimensional cubes of sidelength n−t for n ≥ n0
can perfectly pack a cube of volume∑∞n=n0

1
nd t . Our work improves upon a previously known result

in the three-dimensional case for when 1
3 < t ≤ 4

11 and n0 = 1 and builds upon recent work of Terence
Tao in the two-dimensional case.

1 Introduction

Let d be an integer greater than 1. We define a brick to be a closed d-dimensional
hyperrectangle and use the term cube to refer to a brick with equal sidelengths.
We define a packing of a finite or infinite collection of bricks B to be a particular
configuration of the bricks in R

d such that the interiors of the bricks are disjoint and
the facets of the bricks are parallel to the coordinate hyperplanes. A packing of B in
a solid Ω ⊂ Rd is a packing of B such that every brick is contained in Ω. The packing
is perfect if the measure m(Ω ∖B) is 0. In this case, the sum of the volumes of the
bricks must be equal to m(Ω).

A famous question posed by Meir and Moser [8] asks whether rectangles of
dimensions 1

n ×
1

n+1 for n ≥ 1 can perfectly pack a square of area 1. They also ask
whether squares of dimensions 1

n ×
1
n for n ≥ 2 can perfectly pack a square of area

π2

6 − 1. While both of these problems remain open, there are two directions in which
partial results have been obtained.

First, one can instead try to pack the same squares into a slightly larger square.
For instance, Paulhus [9] showed that the squares of sidelength 1

n for n ≥ 2 could be
packed into a square of area π2

6 − 1 + 1
1,244,918,662 . However, it was pointed out in [4]

that the proof contained some errors; these errors were corrected in [1].
Second, one can instead consider the problem of trying to perfectly pack the

squares of sidelength 1
n t for n ≥ 1 and some fixed t > 1

2 into a square of area∑∞n=1
1

n2t .
This becomes harder as t → 1−, and is obviously equivalent to the original problem
when t = 1. Januszewski and Zielonka [3] verified this for 1

2 < t ≤ 2
3 . At the expense of
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1062 R. McClenagan

dropping the first few squares, Tao [10] has recently proved that one could perfectly
pack the collection of squares of sidelength 1

n t for n ≥ n0 (where n0 depends on t) into
a square of area∑∞n=n0

1
n2t in the entire range 1

2 < t < 1.
The analogous problem for cubes in R

3 has also been studied. For instance,
building on the methods presented in [5], Januszewski and Zielonka [3] have shown
that cubes of sidelength 1

n t for n ≥ 1 can be packed perfectly into a cube of volume
∑∞n=1

1
n3t provided that 1

3 < t ≤ 4
11 . In the general d-dimensional case, Joós showed in

[6] that d-cubes of sidelength n−t for n ≥ 1 can be packed into a cube of volume ζ(dt)
as long as t is in the interval [d0 , 2d−1/(d2d−1 − 1)], where d0 depends only on d. The
lower bound, d0, which Joós implicitly defined, was later improved by Januszewski
and Zielonka in [2] to 1

d .
In this paper, we extend Tao’s work [10] in the two-dimensional case to the

d-dimensional case of cubes and prove the following result.

Theorem 1.1 If 1
d < t < 1

d−1 , and n0 is sufficiently large depending on t, then the cubes
of sidelength n−t for n ≥ n0 can perfectly pack a cube of volume∑∞n=n0

1
nd t .

To prove Theorem 1.1, we apply an inductive-type argument similar to that used by
Tao in [10]. Initially, we suppose that we can pack a finite set of cubes C of sidelength
n−t for n0 ≤ n < n′0 into our single cube S. As long as S ∖ C can be partitioned into
bricks B with small enough total surface area, then we can find a brick B ∈ B which
is wide enough to pack the next cube of sidelength (n′0)−t . We pack B by cubes C′ of
sidelength n−t for n′0 ≤ n < n′′0 in some efficient manner. By efficient, we mean that
the remaining space B ∖ C′ can be partitioned into bricks B′ with small enough total
surface area. In the next iteration, we choose a wide brick fromB ∖ {B} ∪B′ and pack
it efficiently. We proceed recursively until we have packed an arbitrarily large finite
number of cubes into S. Theorem 1.1 would then follow from a compactness argument.

This type of argument reduces the problem to finding a general technique for
packing cubes efficiently into some brick, in essence, forming the inductive step in
the above argument. Up until now, we have followed Tao’s argument in [10] closely.
However, while it is fairly straightforward to generalize the standard two-dimensional
packing algorithm used in [10] to the higher-dimensional case, Tao’s method of
explicitly verifying that this packing is legal and efficient becomes much more difficult
in three dimensions or more. Our innovation is to introduce the notion of “snugness”
(see Section 2); this allows us to perform this portion of the argument in an elegant
fashion which does not become too complex in the higher-dimensional setting.

In Section 2, we introduce our notation and prove some simple lemmas. In
Section 3, we reduce the proof of Theorem 1.1 to a more general result, Proposition 3.1,
which can be proved via induction. The inductive step of this argument is furnished
by Theorem 3.2, which provides a general and efficient method for packing a brick by
cubes. This result is proved in Section 4.

2 Preliminary lemmas and notation

Throughout this paper, we will use the standard asymptotic notation X = O(Y),
X ≪ Y , and Y ≫ X to refer to the relation X ≤ C∣Y ∣. The constant C will only be
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allowed to depend on the parameters t and δ, which we will introduce shortly, but will
be independent of all other parameters. If, instead, we use the notation X = OM(Y) or
X ≪M Y , then the corresponding constant C is allowed to depend on the parameter
M. We use X ≍ Y if X ≪ Y and Y ≪ X. Finally, we use the notation X = o(Y)
if X/Y → 0 with respect to some explicit or implicit limiting behavior defined in
context. We will implicitly assume that all of our constants are allowed to depend
on the dimension d.

Note that we also use some nonstandard asymptotic notation. If x = (x1 , x2 , . . . ,
xd) ∈ Rd , then we use x + O(X) to refer to a vector (x1 + O(X), . . . , xd + O(X)), and
analogously for little-o notation. Similarly, if B = [B1 , B′1] × ⋅ ⋅ ⋅ × [Bd , B′d] is a brick
positioned inR

d , then we use B + O(X) to refer to a brick [B1 + O(X), B′1 + O(X)] ×
⋅ ⋅ ⋅ × [Bd + O(X), B′d + O(X)], and analogously for little-o notation.

Let i , j ∈ {1, 2, . . . , d}. Given a brick B, we will denote its sidelengths by w i(B),
ordered so that w i(B) ≤ w j(B) for any i ≤ j. We say that the width of B is the smallest
sidelength, and denote it by w(B) ∶= w1(B). Clearly, w i(B) = w j(B) for every i and j
if and only if B is a cube. We define the volume of a single brick B to be

vol(B) ∶= w1(B)w2(B) . . . wd(B).
We define the eccentricity of a brick as

ecc(B) ∶= vol(B)
w(B)d ≥ 1.

Note that ecc(B) = 1 if and only if B is a cube.
Let B be a collection of bricks. Define the volume of B to be

vol(B) ∶= ∑
B∈B

w1(B)w2(B) . . . wd(B).

Define the unweighted surface area of B to be

surf(B) ∶= 2 ∑
B∈B

∑
1≤i1<i2<⋯<id−1≤d

w i1(B)w i2(B) . . . w id−1(B) ≍ ∑
B∈B

w2(B)w3(B) . . . wd(B).

For 0 ≤ δ < 1, define the weighted surface area of B to be

surf δ(B) ∶= ∑
B∈B

w1(B)δw2(B) . . . wd(B).

Clearly, surf 0(B) ≍ surf(B). Weighted surface area is, roughly speaking, a version of
unweighted surface area which weights high eccentricity bricks a little less than low
eccentricity bricks. We can use the inequality w(B) ≤ (w2(B)w3(B) . . . wd(B))

1
d−1 for

any brick B, to derive the crude bound

surf δ(B) ≪ (surf(B))1+ δ
d−1 ,(2.1)

for a finite collection of bricks B.
A solid S ⊂ Rd is called simple if it is connected and can be formed as a union of a

finite collection of bricks. A packing of a finite collection of bricks B in a simple solid
S is called ε-snug for some ε > 0 if, for every brick B ∈ B, the portion of ∂B which
does not intersect the boundary of another brick or the boundary of S has surface
area≪ (wε)d−1 and the portion of ∂S which does not intersect the boundary of any
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brick in B also has surface area≪ (wε)d−1. Here, w is the width of the widest brick
in B. The size discrepancy of a finite collection of bricks B is

sd(B) = maxB∈B w(B)
minB∈B w(B) − 1.

The following lemma gives a criterion for the existence of a brick of a certain
minimum width in terms of an elegant relationship between volume and weighted
surface area.

Lemma 2.1 Let 0 ≤ δ < 1. For any finite collection of bricks B, there exists a brick with
width at least ( vol(B)

surf δ(B)
)

1
1−δ .

Proof By definition,

vol(B) = ∑
B∈B

w1(B)w2(B) . . . wd(B) ≤ ( sup
B∈B

w(B)1−δ)surf δ(B).

This implies that (supB∈Bw(B))1−δ ≥ vol(B)
surf δ(B)

, giving the desired result. ∎

This illustrates the principal behind using weighted surface area. If we were to
use unweighted surface area, namely setting δ = 0, then to guarantee the existence
of a brick of width w, we would need an upper bound on the surface area of the
form w−1vol(B). However, if δ > 0, then we only need a weaker bound of the form
w−(1−δ)vol(B).

The following result follows from a compactness argument (see, for example, [7]).

Lemma 2.2 Let B be an, at most, countable collection of bricks, and let Ω ⊂ Rd

be compact. Suppose that an arbitrarily large, but finite, number of bricks from B

can be packed into Ω. Then B in its entirety can be packed into Ω. Furthermore, if
vol(B) =m(Ω), then this packing is perfect.

The following lemma states that if a packing of bricks is sufficiently snug, then the
region between the bricks has negligible surface area.

Lemma 2.3 Suppose that a finite collection of bricks B, where the widest brick has
width w, has a ε-snug packing in a brick B, for some ε > 0. Then B ∖B can be partitioned
into bricks with weighted surface area ≪ C∣B∣νwd−1+δ , where C∣B∣ is a constant that
depends on ∣B∣ and ν → 0 as ε → 0.

Proof Partition B ∖B into a finite number of bricks B′. The maximum number
of bricks in B′ can be bounded by a constant dependent on ∣B∣. By the definition
of snugness, we know that the true surface area, A (in the sense of the (d − 1)-
dimensional Lebesgue measure), of the solid ∪B′ could not exceed (εw)d−1(∣B∣ + 1).
The result follows from the crude bound surf(B′) ≪ A∣B′∣ and (2.1). ∎
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3 Initial reductions

In this section, we prove the higher-dimensional analog of Proposition 2.1 in [10],
which will allow us to deduce Theorem 1.1.

Proposition 3.1 Fix 1
d < t < 1

d−1 and δ depending on t, such that 0 < δ < 1 and
(d − 1)t + δt < 1. Choose a scale M sufficiently large, and choose N0 sufficiently large
depending on M. Let nmax ≥ n0 ≥ N0, and suppose that B is a family of bricks with
volume

vol(B) =
∞

∑
n=n0

1
nd t ,(3.1)

weighted surface area bound

surf δ(B) ≪
1

M1−δ/2

n0−1
∑
n=1

1
n(d−1)t+δt ,(3.2)

and height bound

sup
B∈B

wd(B) ≪ 1.(3.3)

Then one can pack ⋃B∈B B by cubes of sidelength n−t for n0 ≤ n < nmax.

First, we see how we can derive our main result from Proposition 3.1.

Proof of Theorem 1.1 Fix δ = 1
d−1 − t, and note that it easily satisfies the necessary

conditions. TakeB = {C}where C is the cube of volume∑∞n=n0
1

nd t , having sidelength
≪ n1/d−t

0 (since t > 1/d). Observe that (3.2) is satisfied, since

surf δ(B) ≪ n(1/d−t)(d−1+δ)
0 ≪ n1−d t

0 ≪
1

M1−δ/2 n1−(d−1)t−δt
0 ≪

1
M1−δ/2

n0−1
∑
n=1

1
n(d−1)t+δt ,

recalling that (d − 1)t + δt < 1 and 0 < δ < 1. We also have used the fact that n t−δt
0

M1−δ/2 ≫
1 since n0 ≥ N0, which is sufficiently large depending on M. Since (3.1) and (3.3)
are trivially satisfied, we can then apply Proposition 3.1 to conclude that C can be
packed by cubes of sidelength n−t for n0 ≤ n < nmax, and the result follows from
Lemma 2.2. ∎

The inductive step in the proof of Proposition 3.1 requires us to pack a brick by a
collection of cubes. We isolate this result as a corollary to the following more general
theorem.

Theorem 3.2 Fix 0 ≤ δ < 1. Let M = M1 ≤ M2 ≤ ⋅ ⋅ ⋅ ≤ Md be natural numbers, and
let C be a family of M∗ = M1 M2 . . . Md cubes with maximum width w and with
size discrepancy ε, for some ε > 0. Let S be a brick with dimensions S1 × S2 × ⋅ ⋅ ⋅ × Sd
satisfying M iw ≤ S i ≤ M iw + O(w) for i ∈ {1, 2, . . . , d}. Then there exists a packing of
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C in S such that S ∖ C can be partitioned into bricks B satisfying

surf δ(B) ≪
M∗
M

wd−1+δ + CM νwd−1+δ ,

where CM is some constant dependent on M and ν → 0 as ε → 0.

We will prove this theorem in Section 4. For now, we use it to derive the corollary
we need in the proof of Proposition 3.1.

Corollary 3.3 Fix 1
d < t < 1

d−1 and δ depending on t, such that 0 < δ < 1 and
(d − 1)t + δt < 1. Choose a scale M sufficiently large, and choose N0 sufficiently
large depending on M. Suppose that S is a brick satisfying the width bound Mn−t

0 ≤
w(S) ≤ Mn−t

0 + O(n−t
0 ) for some n0 ≥ N0 and satisfying the eccentricity bound

ecc(S) = o(n0). Then we can find n′0 ≥ n0 with n′0 − n0 ≍ ecc(S)Md , such that S
can be perfectly packed by cubes of sidelength n−t for n0 ≤ n < n′0 and a collection of
bricks B satisfying the weighted surface area bound

surf δ(B) ≪
1

M

n′0−1

∑
n=n0

1
n(d−1)t+δt .

Proof Let the parameters be chosen as in the corollary, and use the notation
S = S1 × S2 × ⋅ ⋅ ⋅ × Sd such that S1 ≤ S2 ≤ ⋅ ⋅ ⋅ ≤ Sd . Thus, Mn−t

0 ≤ S1 ≤ Mn−t
0 + O(n−t

0 ).
Define M i = ⌊S i/n−t

0 ⌋ for i ∈ {1, 2, . . . , d}, so that M1 ≍ M. Choose n′0 = n0 +M∗.
Note that

M∗ ≍ ecc(S)Md ,(3.4)

as required. Let C be the collection of cubes of sidelength n−t for n0 ≤ n < n′0. The
size discrepancy is n′t0

n t
0
− 1. This can be made arbitrarily small as long as N0 is chosen

to be sufficiently large compared with M. This makes the second term in the bound
of Theorem 3.2 negligible with respect to the first. Thus, we can apply Theorem 3.2 to
get a packing of C in S such that S ∖ C can be partitioned into bricks B satisfying

surf δ(B) ≪
M∗
M
(n−t

0 )d−1+δ ≪ M∗
M
(1 + sd(C))d−1+δ

(n′0)(d−1)t+δt ≪ 1
M

n′0−1

∑
n=n0

1
n(d−1)t+δt ,

since sd(C) → 0. This completes the proof. ∎

Observe that the power of M in the weighted surface area bound of the corollary is
independent of δ. This fact allows us to loosen our weighted surface area bound (3.2)
by a factor of Mδ/2, which is enough to let us complete the inductive step of the proof
of Proposition 3.1, illustrating the advantage of working with weighted surface area
(see also the discussion after Lemma 2.1).

We now use this corollary to prove Proposition 3.1. Our proof closely mirrors the
proof of Proposition 2.1 in [10] except for higher dimensions. However, for the reader’s
convenience, we include it here.
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Proof of Proposition 3.1 We prove this via downward induction on n0. Fix
nmax ≥ N0. Clearly, the result holds if n0 = nmax. Fix some n0 ≤ nmax, and assume
that the result holds with n0 replaced by any strictly larger integer up to nmax. We
show that the result will then hold for n0.

Since t > 1
d , (3.1) implies that vol(B) ≍ n1−d t

0 . Furthermore, since (d − 1)t + δt < 1,
we have surf δ(B) ≪ M−(1−δ/2)n1−(d−1)t−δt

0 . Thus, Lemma 2.1 implies the existence of
a brick B′ ∈ B satisfying

w(B′) ≫ ( n1−d t
0

M−(1−δ/2)n1−(d−1)t−δt
0

)
1

1−δ

= M
1−δ/2

1−δ n−t
0 .

Since 1−δ/2
1−δ > 1, for 0 < δ < 1, then as long as we take M sufficiently large, we can

drop the implied constant and conclude that w(B′) ≥ Mn−t
0 . Partition B′ into two

bricks B and B′ ∖ B, so that Mn−t
0 ≤ w(B) ≤ Mn−t

0 + O(n−t
0 ). By the height bound,

(3.3), ecc(B) ≪ M−(d−1)n(d−1)t
0 = o(n0), which means that we can apply Corollary

3.3 to pack B by cubes of sidelengths n−t for n0 ≤ n < n′0 with n′0 − n0 ≫ Md and a
collection of bricks B0 satisfying

surf δ(B0) ≪
1

M

n′0−1

∑
n=n0

1
n(d−1)t+δt .(3.5)

Now, if n′0 ≥ nmax, then we are done, as we have packed every cube of sidelengths n−t

for n0 ≤ n < nmax. Otherwise, suppose that n′0 < nmax. Since n′0 is strictly larger than
n0, it makes sense to now apply our inductive hypothesis, replacing n0 by n′0 (which
is strictly larger than n0), and replacing B by B′ = (B ∖ {B′}) ∪ {B′ ∖ B} ∪B0. First,
however, we have to check to assure that the conditions of the proposition are met.
Observe that

vol(B′) =
∞

∑
n=n0

1
nd t −

n′0−1

∑
n=n0

1
nd t =

∞

∑
n=n′0

1
nd t ,

and so B′ has the required total volume (3.1). Clearly, B′ satisfies the height bound
(3.3). Finally, by (3.2), (3.5), and the fact that surf δ{B′ ∖ B} ≤ surf δ{B′}, we have

surf δ(B′) ≤ surf δ(B ∪B0) ≪
1

M1−δ/2

n0−1
∑
n=1

1
n(d−1)t+δt +

1
M

n′0−1

∑
n=n0

1
n(d−1)t+δt

≪ 1
M1−δ/2

n′0−1

∑
n=1

1
n(d−1)t+δt ,

and thus B′ satisfies the weighted surface bound (3.2). Thus, we can apply the
inductive hypothesis for n′0 and pack ⋃B∈B′ B by the remaining cubes of sidelength
n−t for n′0 ≤ n < nmax, which in turn implies that we can pack ⋃B∈B B by cubes of
sidelength n−t for n0 ≤ n < nmax. ∎

All that remains is proving Theorem 3.2, which provides a general and efficient
brick-packing algorithm.
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4 Efficient brick-packing algorithm

Proof of Theorem 3.2 Note that, without loss of generality, we can assume that
S i = M iw for i ∈ {1, 2, . . . , d}. To see this, suppose that S′ is a cube that contains S and
instead satisfies M iw ≤ S′i ≤ M iw + O(w). Then S′ ∖ S can be partitioned into O(1)
bricks, each of which contributes an allowable weighted surface area≪ M∗

M wd−1+δ .
To explicitly define our packing, we position S in R

d as

[0, M1w] × [0, M2w] × ⋅ ⋅ ⋅ × [0, Md w].

Index C as {Cn}M∗−1
n=0 from largest width to smallest width. We use the notation

wn ∶= w(Cn). By construction, wn ≤ wm if and only if n ≥ m. We further index
n = 0, 1, . . . , M∗ − 1 by ni = n i1 , i2 , . . . , id , where

n i1 , i2 , . . . , id ∶= i1 + i2 M1 + i3 M1 M2 + ⋅ ⋅ ⋅ + id M1 M2 . . . Md−1 ,

for ik = 0, . . . , Mk − 1 (with k = 1, 2, . . . , d). We use the notation Ci ∶= Cn i and wi ∶=
wn i . Position each Ci in S as

Ci ∶= [x 1
i , x 1

i +wi] × [x2
i , x2

i +wi] × ⋅ ⋅ ⋅ × [xd
i , xd

i +wi],

where, for any k ∈ {1, 2, . . . , d}, we define

xk
i =

Mk−1
∑
i′k=0

w i1 , . . . , ik−1 , i′k ,0, . . . ,0 −
Mk−1
∑

i′k=ik

w i1 , . . . , ik−1 , i′k , ik+1, . . . id

(see Figure 1).
We will verify that this is a legal packing shortly. Note that each (x 1

i , x2
i , . . . , xd

i ) is
asymptotically fixed at a lattice point as sd(C) ≪ ε, namely

(x 1
i , x2

i , . . . , xd
i ) = (wi1 , wi2 , . . . , wid) + OM(εw).(4.1)

Collect the subset of cubes from C which form its exterior “shell”:

C̃ = {Ci ∈ C ∶ ik = 0 or ik = Mk − 1, for some k ∈ {1, 2, . . . , d}}.

Let B be the smallest brick containing C ∖ C̃. By (4.1), B has dimensions

[w , (M1 − 1)w] × [w , (M2 − 1)w] × ⋅ ⋅ ⋅ × [w , (Md − 1)w] + o(1).

Define the simple solid K = B ∪ C = B ∪ C̃ (see Figure 2). Observe that

S ∖ K = (S ∖ B) ∖ C̃.

Observe that S ∖ B can be partitioned into O(M∗/M) bricksB′ each with dimensions
O(w). Each brick B′ ∈ B′ intersects at most O(1) cubes in C̃. This means that we can
partition B′ ∖ C̃ into O(1) bricks, each with weighted surface area less than that of B′,
which is≪ wd−1+δ . Thus, S ∖ K can be partitioned into bricks with allowable weighted
surface area≪ M∗

M wd−1+δ . It then suffices to show that K ∖ C can be partitioned into
bricks with weighted surface area≪ M∗

M wd−1+δ .
By Lemma 2.3, it suffices to show that C is a packing that is OM(ε)-snug in K.

First, observe that all of the cubes are inside of S. This follows from the bound wi ≤ w.
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Figure 1: The packing of the cubes C i in S. Here, d = 2, M1 = 3, M2 = 4, M∗ = 12, and i1 = i2 = 1.
Note that the diagram is not to scale.

Thus, we have to check that none of the cubes’ interiors overlap and that every cube
in C ∖ C̃ is touching the 2d adjacent cubes (the cubes in C̃ are already touching K by
construction).

Define πk to be the projection operator onto the xk-axis for every k ∈ {1, 2, . . . , d}.
Let Ẽ be the collection of 2d − 1 vectors e = (e1 , e2 , . . . , ed) such that every ek ∈ {0, 1},
but e ≠ 0. Let ek be the kth unit vector, namely (0, . . . , 0, 1, 0, . . . , 0), with a 1 in the
kth component, and let E ⊂ Ẽ be the collection of such d unit vectors. Define I be the
collection of i = (i1 , i2 , . . . , id) such that ik ∈ {0, 1, . . . , Mk − 2} for k ∈ {1, 2, . . . , d}.
By symmetry and the asymptotic positioning of the cubes (4.1), we only have to
worry about checking overlap on “adjacent” cubes, reducing the proof to showing
the following two claims:
(i) Let e ∈ E and i ∈ I. Then, for at least one k ∈ {1, 2, . . . , d}, we have that πk(C i) ∩

πk(C i+e) is exactly one point.
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Figure 2: The simple solid K is constructed from B and C.

(ii) Let e ∈ Ẽ ∖ E and i ∈ I. Then, for at least one k ∈ {1, 2, . . . , d}, we have that
πk(C i) ∩ πk(C i+e) is at most one point.

To see why this is sufficient to complete the proof, observe that as long as the boundary
of the cubes are touching, the asymptotic positioning of the cubes (4.1) ensures that
the nonoverlapping boundary will have area OM(εw), meaning that (i) will imply
that the packing is OM(ε)-snug. Clearly, (ii) implies that none of the cubes’ interiors
overlap, and thus our packing of C is valid.

To see (i), note that the construction of the C i immediately implies that for every
k ∈ {1, 2, . . . , d}, we have

πk(Ci+e k) ∩ πk(Ci) = {xk
i +wi}.

Now we show (ii). Fix some e = (e1 , e2 , . . . , ed) ∈ Ẽ ∖ E. Let k be the smallest index
such that the component ek is nonzero. Clearly, k ∈ {1, 2, . . . , d − 1}. Recall that

xk
i =

Mk−1
∑
i′k=0

w i1 , . . . , ik−1 , i′k ,0, . . . ,0 −
Mk−1
∑

i′k=ik

w i1 , . . . , ik−1 , i′k , ik+1, . . . id .

By the ordering of wi , we have that wi+e ≤ wi+e k . Thus, xi+e ≥ xi+e k = xi +wi . This
shows that πk(Ci+e) ∩ πk(Ci) is at most a singleton, as desired. This completes the
proof. ∎
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