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QUASI-BAER RING EXTENSIONS AND BIREGRULAR RINGS

GARY F. BIRKENMEIER, J IN YONG KIM AND J A E K E O L PARK

A ring R with unity is called a (quasi-) Baer ring if the left annihilator of every
(left ideal) nonempty subset of R is generated (as a left ideal) by an idempotent.
Armendariz has shown that if R is a reduced Pi-ring whose centre is Baer, then
R is Baer. We generalise his result by considering the broader question: when
does the (quasi-) Baer condition extend to a ring from a subring? Also it is well
known that a regular ring is Baer if and only if its lattice of principal right ideals
is complete. Analogously, we prove that a biregular ring is quasi-Baer if and only
if its lattice of principal ideals is complete.

Throughout R will denote a ring with unity, B(# ) its set of central idempotents,
Cen (R) its centre, ZT{R) and Zi(R) its right and left singular ideals, respectively. All
subrings have a unity which may not coincide with the unity of the overring. The word
"ideal" used alone (that is, without the adjectives "left" or "right") means a two-sided
ideal. Recall from [19] that R is a Baer ring if the right annihilator of every nonempty
subset of R is generated (as a right ideal) by an idempotent. The study of Baer rings
has its roots in functional analysis [3] and [19]. In [19] Kaplansky introduced Baer rings
to abstract various properties of von Neumann algebras and complete regular *-rings.
The class of Baer rings includes the von Neumann algebras (for example, the algebra
of all bounded operators on a Hilbert space), the commutative C* -algebras C(T) of
continuous complex valued functions on a Stonian space T, and the regular rings whose
lattice of principal right ideals is complete (for example, regular rings which are right
continuous or right self-injective). Also the Sherman-Takeda theorem [24] and [28]
shows that every C* -algebra has a universal enveloping von Neumann algebra (hence
a Baer ring).

In [12] Clark defines a ring to be quasi-Baer if the left annihilator of every ideal is
generated (as a left ideal) by an idempotent (equivalently, the left annihilator of every
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left ideal is generated (as a left ideal) by an idempotent). Moreover, he shows the left-
right symmetry of this condition by proving that R is quasi-Baer if and only if the right
annihilator of every right ideal is generated (as a right ideal) by an idempotent. He then
uses this condition to characterise when a finite dimensional algebra with unity over
an algebraically closed field is isomorphic to a twisted matrix units semigroup algebra.
Further work appeared in [4, 6, 7, 22]. Every prime ring is a quasi-Baer ring. Since
Baer rings are nonsmgular, the prime rings R with Zr(R) ^ 0 [20] are quasi-Baer but
not Baer. Every semiprime right FPF ring is quasi-Baer [14, p. 168]. In [22] Pollingher
and Zaks show that the class of quasi-Baer rings is closed under n-by-n matrix rings
and under n-by-n upper (or lower) triangular matrix rings. Furthermore, it follows
from their results that the quasi-Baer condition is a Morita invariant property. Thus
the n-by-n (n > 1) matrix ring over a non-Priifer commutative domain is a prime PI
quasi-Baer ring which is not Baer [19, p.17]. Also the n-by-n (n > 1) upper triangular
matrix ring over a domain which is not a division ring is quasi-Baer but not Baer [19,
p.16]. Thus the class of quasi-Baer rings seems to behave better than the class of Baer
rings under various extensions.

As motivation for this paper we recall the following results:

(1) [1, Theorem D] Let R be a reduced (that is, R has no nonzero nilpotent
elements) Pi-ring. If Cen (R) is Baer, then R is a Baer ring.

(2) [27, p.79] A regular ring is complete (that is, its lattice of principal right
ideals is complete) if and only if it is a Baer ring.

(3) [19, Theorem 7] The centre of a Baer ring is a Baer ring.

As mentioned above there are prime PI rings which are not Baer. In [21, Ex-
ample 3], there is a regular Pi-ring R with Cen (R) a Baer ring, but R is not Baer.
However these rings are quasi-Baer.

In this paper we investigate the following questions:

(1) If the centre of a ring R is Baer when is R quasi-Baer?
(2) More generally, when does the quasi-Baer condition extend to a ring from

a subring?
(3) Is the lattice of principal ideals of a biregular ring R complete if and only

if R is a quasi-Baer ring?

The following results are an indication of our work:

(1) Let S be a semiprime quasi-Baer subring of R such that B(S) C B(il)
and every nonzero ideal of R has nonzero intersection with S. Then R
is a semiprime quasi-Baer ring.

(2) Let S be a semiprime quasi-Baer subring of R. If any of the following
conditions are satisfied, then R is a semiprime quasi-Baer ring:
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(i) 5 is a right order in R;

(ii) Zr(S) = 0 and Rs is an essential extension of 5 s ;

(iii) R is the Martindale ring of quotients of S.

(3) Let i t be a semiprime Pi-ring or a biregular ring. Then i t is a quasi-Baer
ring if and only if Cen (R) is a Baer ring.

(4) Every separable algebra with the centre Baer is quasi-Baer. In particular,
every Azumaya algebra with the centre Baer is quasi-Baer.

(5) Let i t be a biregular ring. Then its lattice of principal ideals is complete
if and only if i t is a quasi-Baer ring if and only if Cen (R) is a Baer ring.

Recall R is biregular if every principal ideal is generated by a central idempotent.
Recall from [5] an idempotent e 6 i t is left (respectively right) semicentral in R if
eRe = Re (respectively eRe = eR). We use St(R) and Sr(R) for the sets of all left
and all right semicentral idempotents of R, respectively. For a nonempty subset X
of R, £R(X) and ffl(X) denote the left annihilator and the right annihilator of X,
respectively. If the context is clear, we may delete the subscript i t . If / and J are
right (respectively left) ideals of R, then / <Z%" J (respectively I C | s ' J ) denotes I is
essential in J as it-modules.

1. PRELIMINARIES AND E X A M P L E S

In this section we establish some elementary properties of quasi-Baer rings which
are necessary for our main results in the following sections.

LEMMA 1 . 1 . For an idempotent e of R, the following conditions are equivalent:

(i) eeSe(R);
(ii) l - e€<S r ( i t ) ;
(iii) xe = exe, for each x € R;

(iv) ( l-e)i te = 0;
(v) (1 - e)x = (1 — e)x(l — e), for each x e R;

(vi) eR is an ideal of R;
(vii) it(l - e) is an ideal of R;

(viii) eit(l — e) is an ideal of R and eR = eit(l — e) © Re, as a direct sum of
left ideals.

PROPOSITION 1.2. A ring R is quasi-Baer if and only if whenever I is an

ideal of R there exists e e Si(R) such that I C eR and £(I) n eit = eit(l - e).

PROOF: Assume that R is quasi-Baer and / is an ideal of R. Then there exists
c € ST(R) such that i(I) = Re. Then I C (1 - c)R. Let e = 1 - c. By Lemma 1.1,
e e St(R) • Now i(I) n eit = eit n it(l - e) = eit(l - e).
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Conversely, let / be an ideal of R, and assume there exsits e 6 Si(R) such that
/ C eR and 1(1) n eR = eR(l - e). Let a € 1(1). Then a = ae + a(l - e). So
ea = eae + ea(l — e). But ea € £(I) n eii. Hence ea = ea(l — e), so eae = 0. But
e € <S*(.R), so 0 = eae = ae by Lemma 1.1. Thus a = a(l — e) e R(l — e). Hence
1(1) = R(l - e). Therefore R is a quasi-Baer ring. D

Observe that if R is quasi-Baer and I is an ideal of R, the idempotent e in
Proposition 1.2 satisfies e.R = r(t(I)).

COROLLARY 1 .3 . If R is a quasi-Baer ring and I is an ideal of R, then there
exsits e e St(R) such that I C eR and I + eR(\ — e) is right essential in eR and
eR(l — e) is an ideal of R. In particular, if I contains the prime radical of R (for
example, R is semiprime) or e is central, then I is right essential in eR. Moreover if
I is not right essential in eR, then there exists a closed right ideal 0 / X = eX(l — e)
such that lnX = 0 and I® X C*" eR.

From Corollary 1.3, a right duo quasi-Baer (hence Baer) ring is a right CS-ring.
However there are commutative self-injective rings which are not Baer (for example,
Z4). Thus Corollary 1.3 has no converse.

PROPOSITION 1.4. Let R be a quasi-Baer ring.

(i) R is semiprime if and only if Si(R) = B(.R).
(ii) If every essential right ideal of R is an essential extension of an ideal of R

(for example, if R has essential right socle), then R is right nonsingular.

PROOF: (i) For any e e Si(R), by Lemma 1.1, eR(l — e) is an ideal of R and
(1 — e)Re = 0. Note that eR(l — e) is nilpotent. If R is semiprime, eR(l — e) — 0 and
so e e B(R). Hence St(R) = B(R). Conversely, assume St(R) = B(R). Suppose that
there exists a nonzero ideal I of R such that I2 = 0. Then there exists O ^ e e B(R)
such that r(7) = eR. But I C r(I). So / = el = Ie = 0, a contradiction. Therefore
R is semiprime.

(ii) Let 0 ^ x € ZT(R). Then r(x) C«" R. Hence there exists an ideal / of R
such that / C r(x) and / C«" R. So xl = 0. Thus I C r(xR) and r(xR) = eR
for some e = e2 6 R. Since / is right essential in R. Then c = 1. So 1 = 0, a
contradiction. D

The next two results give conditions which guarantee when the quasi-Baer condition
implies the Baer condition. R is called an Abelian ring if every idempotent of R is
central.

PROPOSITION 1.5 . The following conditions are equivalent:

(i) R is an Abelian Baer ring.
(ii) R is a reduced quasi-Baer ring.
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P R O O F : (i)=*-(ii). Let 0 ^ x e JR such tha t x2 = 0 . T h e n there exists e € B(R)

such tha t r(x) = eR. Then x = ex = xe = 0 . Hence R is reduced. Clearly R is

quasi-Baer.

(ii)=>(i). This par t is a consequence of [4, Lemma 1]. D

Recall from [2] tha t R is said to satisfy the IFP (insertion of factors property)

if rji(x) is an ideal of R for all x e R (equivalently, rR(X) is an ideal of R for all

nonempty subsets X of R). Ris strongly right (resptively left) bounded if every nonzero

right (respectively left) ideal contains a nonzero ideal. R is strongly bounded if it is bo th

strongly right and strongly left bounded.

PROPOSITION 1 . 6 . Let R be a quasi-Baer ring. If R satisfies either of the

following conditions, then R is a reduced Baer ring.

(i) R has IFP.

(ii) R is strongly right bounded.

PROOF: If R has IFP, then it is immediate that R is a Baer ring. By [25, Lemma
2.7], R is Abelian. Prom Proposition 1.5, R is reduced. Now assume that R is strongly
right bounded. Let 0 # X C R. Then r(RXR) = eR C r(X) for some idempotent
e € R. Hence r(X) = eR © A for some A. If A ^ 0, there exists a nonzero ideal
S C A. Then (RXR)B = 0. So B CeR,a contradiction. Therefore R is a Baer ring.
Suppose x i= 0 but a:2 = 0. Then there exists a nonzero ideal / of R such that / C xR
and I2 = 0. Then r(I) = /fl for some idempotent / . Then I C fR. Also there
exists a nonzero ideal J of R such that J C (1 — e)i?. Then J C r(I), a contradiction.
Therefore R is reduced. D

A ring R is said to be right PP if every principal right ideal of R is protective.
Note that a ring R is right PP if and only if for any x 6 R there is an idempotent e
in R such that r(z) = eR. Similarly left PP ring can be defined. A ring R is called
PP if it is both right and left PP. Since a left hereditary ring is left PP and if it has no
infinite set of pairwise orthogonal idempotents, then it is Baer [26], so one may raise
the following question: If R is a left hereditary ring, is it quasi-Baer? The following
example, due to Chase [9] (see also [10, Example 8.2]), answers this question in the
negative.

oo

EXAMPLE 1.7. In A = J~[ Z2, consider T = {(a»»)^Li I °» is eventually constant}
" = 1 °o (Til Tll\

a n d / = { ( a n ) ~ = 1 | o n = 0 e v e n t u a l l y } = © Z 2 . N o w l e t R=[ ' ' . T h e n
n=l \ " *• J

by Chase [9], the ring R is a left hereditary ring. Let

( o , o , . . . ) l€R-
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/O T/I\ (Til T/I\
Then aR = I ' 1. In this case r(aR) = 1 I. But there does not exist
an idempotent e € R such that r(aR) = eii.

PROPOS IT I ON 1 .8 . The centre of a quasi-Baer ring is a Baer ring.

PROOF: Let R be a quasi-Baer ring. Then for a nonempty subset X of Cen (R)
there exists e e S<(.R) such that rR(X) = rK(XR) = eR. But rR(X) = ^it(X) =
Rf for some idempotent / . Since eR = .R/, it follows that e = / 6 Cen(ii). So
*"Cen(ii)(.XP) = eCen(E). Therefore Cen(B) is a Baer ring. •

In general the converse of Proposition 1.8 does not hold.

EXAMPLE 1.9. For a field F, let

IF Mat2(F) Mat2(F)\
R = I 0 F Mat2(F) I ,

\0 0 F )

which is a subring of the 3-by-3 upper triangular matrix ring over Mat2(F). Then R
is a Pi-ring whose centre is Baer, but the ring R is not quasi-Baer.

In the next section we determine conditions for which the converse of Proposi-
tion 1.8 does hold.

2. EXTENDING THE QUASI-BAER CONDITION

In this section first we consider the problem of extending the quasi-Baer condition
to a ring from one of its subrings with semiprime condition. Then we also consider
extending the quasi-Baer ring condition from subrings without semiprime condition,
but with strengthening the intersection condition. We use our results to generalise a
result of Armendariz [1].

LEMMA 2 . 1 . Let S be a semiprime quasi-Baer subring of R with unity I5 such
that B(S) C Se(R) and for each nonzero ideal I of R if rR(I) ^ 0 then rs(I n S ) C
rji(I) and I D S / 0 . Then R is a semiprime quasi-Baer ring and Is = 1R .

PROOF: Suppose K is a nonzero ideal of R such that K2 = 0. Then (K n S)2 = 0
and K n 5 ^ 0, a contradiction. Therefore J? is a semiprime ring and so B(S) C
Si{R) = B(R) by assumption and Proposition 1.4. Thus l s e B(R). Since
[(Is - 1R)-R] n S = 0, it follows that ( l s - 1R)R = 0. So ls = 1R-

Now assume / is a nonzero ideal of R such that ra(/) / 0. Then rs(I n S) = eS,
for some e € B(5), and / n 5 / 0. Hence rjt(I) = eR® A for some ideal A of R.

First assume e = 0 and consider the following cases:

CASE 1. Assume TR{A) ^ 0. Since A is a nonzero ideal of R, rs{A n S ) C rR(A) and
A n S # 0 . Let O j t s g i n S . Then s € rs(I n 5) = 0, a contradiction.
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C A S E 2. Assume rR(A) = 0. Then AI ^ 0. So 0 j= A C rR(AI). Hence there exists
0 ^ s e AT n 5 . But s € r s ( / n 5) = 0, a contradiction.

Consequently, it follows that e ^ 0. If A = 0, we are finished. So assume A / 0.
Since 0 ^ eR C rR(A), there exists 0 / s e i n S . Then s € r s ( / n S ) C ei?, a
contradiction. Hence A = 0 and so ?\R(7) = ei?. Therefore i i is quasi-Baer. D

T H E O R E M 2 . 2 . Let S be a semiprime quasi-Baer suiM-ing of 72 with unity I s
such that B(S) C St(R) and every nonzero ideal of R has nonzero intersection with
S. Then R is a semiprime quasi-Baer ring and Is = lji •

PROOF: AS in the proof of Lemma 2.1, R is semiprime and Is = 1R. Assume that
7 is a nonzero ideal of R. If rR(I) = 0, then rR(I) is generated by an idempotent.
So assume rR(I) / 0. Then rs(lnS) = eS where e e B(5) C St(R) = B{R) and
7nS / 0. Suppose Ie / 0. Then there exsits 0 ^ s € IeDS. So 0 / (7 n S)nrs(7 n 5),
a contradiction to the semiprimeness of S. Thus Ie = 0, so f\s(7nS) C rR(I). By
Lemma 2.1, R is a quasi-Baer ring. D

COROLLARY 2 . 3 . Let S be a semiprime quasi-Baer subring of a ring R. If any
of the following conditions are satisfied, then R is a semiprime quasi-Baer ring.

(i) R C Qr(S), where Qr(S) is the maximal ring of right quotients of S.
(ii) S is a right order in R.
(iii) R is the Maxtindale ring of quotients of S.

PROOF: For the conditions (i)-(iii), Rs is an essential extension of Ss and B(5) C
B(i?). Thus the result is a consequence of Theorem 2.2. D

THEOREM 2 . 4 . Let S be a quasi-Baer subring of a ring R such that every
nonzero ideal of R has nonzero intersection with S. If R satisfies any of the following
conditions, then R is a semiprime right nonsingular quasi-Baer ring and S is a reduced
Baer ring.

(i) For each s 6 S, rR(s) is an ideal of R.
(ii) R has the IFP.
(iii) S is contained in the centre of R.

PROOF: Assume condition (i). Then S has the IFP. By Propositions 1.5 and 1.6,
5 is a reduced Baer ring. As in Lemma 2.1, Is = IR. Let e e B(S). Then lR — e e S.
So TR{1R - e) = eR is an ideal of R. Hence e e St(R). By Theorem 2.2, R is a
semiprime quasi-Baer ring. Assume Zr(R) ^ 0. Then there exists 0 / s e S n Zr(R).
Hence rs{s) = rR(sR) = cR for some c e B(R), a contradiction. Therefore R is right
nonsingular. Observe that conditions (ii) and (iii) both imply condition (i). Also note
that for conditions (ii) and (iii), R is also left nonsingular. D

COROLLARY 2 . 5 . Assume that R is a bireguJar ring or a semiprime Pi-ring.
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Then R is a quasi-Baer ring if and only if Cen (R) is a Baer ring.

PROOF: Assume that Cen (iZ) is a Baer ring. By definition, a biregular ring satis-
fies the condition that every nonzero ideal has nonzero intersection with the centre. This
is also true for semiprime Pi-rings [23]. The result is now a consequence of Theorem
2,4 (iii). The converse follows from Proposition 1.8. D

EXAMPLE 2.6.

(i) There is a biregular ring R with the centre Baer, but R is not Baer (see
Example 3.6).

(ii) Let R be a non-Priifer commutative domain. Then by [26], there is a
positive integer n such that Matn (ii) is not Baer, but it is semiprime PI
with the centre Baer.

(iii) There is a semiprime ring which is neither PI nor biregular, but every
nonzero ideal has nonzero intersection with the centre and the centre is a
Baer ring (see Theorem 2.4 (iii)). Let R = Z{x,y}/(yx — xy — 1), where
li{x, y} is the free algebra over the ring Z of integers and {yx — xy—1) is
the ideal of Z{x, y} generated by yx — xy — l. Then ii is a domain which
is neither PI nor biregular. But every nonzero ideal contains a nonzero
central element. Also the centre of ii is Z.

The condition that ii is a Pi-ring in Corollary 2.5 is not superfluous. Indeed, by
the second example in [1, p.471] and [21, Example 5], there are reduced rings ii with
the centre Baer, but R is not quasi-Baer. Moreover, the condition that -R is semiprime
in Corollary 2.5 is not superfluous. Let i i be the ring in Example 1.9. Then ii is a
Pi-ring with the centre Baer. But R is not quasi-Baer.

Note that semiprime Pi-rings are nonsingular rings by [15] and have bounded index
of nilpotency by [18, Theorem 10.8.2]. So one may raise the following question from
Corollary 2.5: Assume that R is a nonsingular Pi-ring of bounded index of niipotency.

If the centre is Baer, then is R quasi-Baer? But the ring i i in Example 1.9 is a
nonsingular Pi-ring of bounded index of nilpotency and the centre is Baer. But R is
not quasi-Baer.

For any C-algebra ii (C is a commutative ring with unity), we can form the so
called enveloping algebra Re = R ® R°, where R° denotes the C-algebra opposite to

C
R. The algebra R has a structure as a left R? -module induced by (x ® y) • r = xry.
Recall that a C-algebra R is called separable if R is a projective left Re -module. A
separable algebra R is called an Azumaya algebra if C is the centre of i i , that is, R

is a central separable algebra. D

COROLLARY 2 . 7 . Every separable algebra with the centre Baer is quasi-Baer.

In particular, every Azumaya algebra with the centre Baer is quasi-Baer.
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P R O O F : Let R be a separable algebra. Then by [13, Theorem 3.8] R is separable
as an algebra over its centre. By [13, Corollary 3.7, p.54], every nonzero ideal of R has
nonzero intersection with the centre. Thus by Theorem 2.4 (iii), R is quasi-Baer. D

FVom now on we consider extending the quasi-Baer ring condition from subrings
without semiprime condition. But we strengthen the intersection condition.

THEOREM 2 . 8 . Let S be a quasi-Baer subring of a ring R such that every

nonzero one-sided ideal of R has nonzero intersection with S. If R is left (or right)

nonsingular, then R is quasi-Baer.

P R O O F : Assume that R is left nonsingular. Let / be a nonzero ideal of R. Then
there exists e = e2 € S such that rs(lnS) = eS. Observe R(I n S) Cf" / . Since
R is left nonsingular, rR(R(I d S)) = rji(I). Hence TR(I) = eR © A for some right
ideal A of R. If A # 0, then there exists 0 ^ s 6 A 0 S. Then s e rs(InS)C eR,

a contradiction. Therefore rii(I) = eR. Consequently, R is a quasi-Baer ring. The
argument is similar when R is right nonsingular. D

COROLLARY 2 . 9 . Let S be a nonsingular quasi-Baer ring whose maximal right
and left quotient rings coincide. If S is a subring of R such that Rs (or sR) is an
essential extension of S, then R is quasi-Baer.

PROOF: By [16, Exercise 12, p.68], if Rs is an essential extension of 5s, then
R is both a right and a left quotient ring of 5. Prom [16, Proposition 2.32], R is
nonsingular. Now Theorem 2.8 yields the result. D

Note if R is a right nonsingular CS-ring, then R is a Baer ring [11] whose maximal
right and left quotient rings of R coincide [29]. For our next result, note that Baer
rings, right hereditary rings and regular rings are right PP rings.

COROLLARY 2 . 1 0 . Let 5 be a right PP quasi-Baer subring of R such that
every one-sided ideal of R has nonzero intersection with S. Then R is a nonsingular
quasi-Baer ring.

PROOF: Assume that ZT(R) / 0. Then there exists 0 ^ s € Zr(R)nS. So
rs(s) = eS for some 0 / e = e2 e S. Thus rR(s) = eR® A for some right ideal A of
R. If A ^ 0, then there exists 0 ^ o € A fl S. So a 6 rs(») C efl, a contradiction.
Similarly, Zt(R) = 0. The result is now a consequence of Theorem 2.8. u

Observe that [21, Example 3] and Example 3.7 are regular (hence PP) quasi-Baer
rings which are not Baer.

COROLLARY 2 . 1 1 . Let 5 be a Baer subring of R such that every nonzero ideal
of R has nonzero intersection with S. If R is a strongly bounded ring, then R is a
reduced Baer ring.

PROOF: Since R is strongly bounded, every nonzero one-sided ideal has nonzero
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intersection with 5 . Since S is a Baer ring, it is both a right and a left PP ring. Now
the result follows from Corollary 2.10 and Proposition 1.6. D

Now we show that Corollaries 2.5 and 2.11 are generalisations of Armendariz's
result [1, Theorem D].

COROLLARY 2 . 1 2 . [1, Theorem D] Let R be a reduced Pi-ring. If the centre
of R is a Baer ring, then R is a Baer ring.

PROOF: This result is a consequence of Corollary 2.5 and Proposition 1.5. Al-
ternatively, from [1, Theorem C] we have that R is strongly bounded. By [23] every
nonzero ideal has nonzero intersection with the centre. The result is now a consequence
of Corollary 2.11. D

3. BIREGULAR RINGS

Observe that biregular rings are "almost" quasi-Baer in the sense that the right
annihilator of every principal ideal is generated by an idempotent. Also every regular
ring is PP (which is "almost" Baer). It is well known [27, p.79] that a regular ring is
Baer if and only if its lattice of principal right ideals is complete. These observations
motivate us to ask: Can the quasi-Baer condition on a biregular ring be characterised
by the completeness of the lattice of its principal ideals?

In this section we answer this question in the aflirmative and apply some of the
results of previous sections. Our results rely on the methods used in [27] for analogous
results. We first show that, in general, a biregular ring is not quasi-Baer and vice versa.

EXAMPLE 3.1.

(i) Let W be the first Weyl algebra over a field of characteristic zero and let

{ oo 1

(xn) € I ! W \ xn is eventually constant >. Then it can be easily
n=l '

checked that the ring R is biregular, but not quasi-Baer.
(ii) For a positive integer n > 1, the n-by-n upper triangular matrix ring

over a field is quasi-Baer, but not biregular.
The following lemma was proved in [12, Theorem 2] for the case of Artinian quasi-

Baer rings.
LEMMA 3 . 2 . The set of right ideals generated by left semicentral idempotents of

R is a distributive subJattice of the lattice of ideals of R. More generally, if {ex}x€A Q
Se{R) and c e Se(R), then fe eA#) n cR = "£ {e\R D cR).

v A ' A

PROOF: Let c,ei,e2 € Sf(R). Hence e\R and e?R are ideals of R by Lemma 1.1.
Let e = ei + e% — e\e2. By direct calculation we have: e € Si(R); eiR + e2R = eR;
eiRr\e2R = eie2R; and eie2 e Si(R). Also we have (eiR + e2R)C\cR = eRncR = ecR,
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and (eiRDcR) + (e2RncR) = e.xcR + e2cR = (eic + e 2 c - exce2c)R = ecR. The
general distributive law follows routinely from the case A = {1,2}. Therefore the set
of right ideals generated by the left semicentral idempotents is a distributive sublattice
of the lattice of ideals of R. D

LEMMA 3 . 3 . Let R be a quasi-Baer ring. Tien the set of principal right ideals

generated by the left semicentral idempotents of R is a complete sublattice of the lattice

of ideals of R.

PROOF: Let {eA}AeA £ St(R). Observe that R(l - eA) is an ideal of R for
each A e A by Lemma 1.1. Then there exists an idempotent e such that f) e\R =

A€A

|~) r(R(l — e\)) = r (J~*R(l — eA)J = eR. Hence every subset of pr incipal r ight ide-
A6A ^ V '
als generated by left semicentral idempoten ts has a greates t lower bound . So t h e la t t ice
of principal right ideals generated by t h e left semicentral idempoten ts is complete . D

The following l emma is probably well known b u t we include a proof for complete-

ness.

LEMMA 3 . 4 . T h e centre of a biregular ring is regular.

PROOF: Let x e Cen(ii) . Then there exists e G B(R) such that xR = eR.

Since x = ex, we have a; Cen (12) C eCen(R). Also there exists r € R such that
e = xr = xer = rx. Let y e R. Then {er)y — y(er) = e(ry — yr) = rx(ry — yr) =

r(xry - xyr) = r(xry - yxr) - r(ey - ye) = re(y - y) = 0 . Thus er 6 Cen(.R). So
e G x Cen (R). Hence x Cen (R) = e Cen (R). D

THEOREM 3 . 5 . Let R be a biregular ring. Then the following conditions are

equivalent:

(i) R is a quasi-Baer ring.

(ii) The lattice of principal ideals of R is complete.

(iii) The Boolean ring of central idempotents of R is a self-injective ring.

(iv) The centre of R is a Baer ring.
(v) The centre of R is a continuous ring.

PROOF: (i)=>-(ii) Since R is semiprime, Se(R) = B(R) by Proposition 1.4. Thus
every principal ideal is the right ideal generated by some left semicentral idempotent.
By Lemma 3.2, the set of principal ideals forms a sublattice of the lattice of ideals of
R. Hence this implication is a consequence of Lemma 3.3.

(ii)=>(iii) Let {eA>AeA £ B(-R)- Then there exists e € B(R) such that f]exR -
A

eR. It follows that f\e\B(R) = eB(R). Hence the Boolean ring of central idempotents
A

of R is complete. By [27, p.250], the Boolean ring of central idempotents of R is self-

injective.
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(iii)=>(ii) Let {eA}A6A C B(R). By [27, pp.249-250], there exists e e B(R) such
that C\e\B(R) = eB(R). Clearly eR C f)e\R. Let x 6 f\e\R. There exists c e B{R)

A A A

such that RxR = cR. Then exc = c, for all A € A. So c € eB(R). Hence ifcr.R C efl.
Thus P| e\R = efl. Also we may check easily that fR is the greatest lower bound of

A

{e\R | A € A} as in Lemma 3.3. So the lattice of principal ideals of R is complete.
(ii) => (i) Let I be an ideal of R. There exists c G ~B(R) such that cR is the greatest

lower bound of the principal ideals (1 — e)R, for all central idempotents e in l(r(I)).

Let J = H (1 - e)H. Then c# C J . Hence J = cR® W. Let w e W. There
=€*(r(/))

exists v 6 B(fl) such that RwR = vi?. Then cR®vR = (c + t>).R, where c+i; 6 B(R).
Since aR is the greatest lower bound, then cR C (c + v)R C cR. So W = 0, and
cR = J. Let 6 e t(r(I)). Then there exists d g B(R) such that JR&JR = dR. Hence
d € l(r{I)). So cR C (1 - d)fl. Thus cfl C r(b). Hence cR C r(<(»-(/))) = r(J). Now
let a e r ( / ) . Then a = (1 — e)a e (1 — e)-R, for every central idempotent e € I(r{I)) •
So a ecR. Therefore r(/) = cR.

(i)-^(iv) This equivalence is a direct consequence of Proposition 1.8 and Corollary
2.5.

(iv) => (v) By Lemma 3.4, the centre of R is a commutative regular ring. Hence
the centre is cononsingular. By [11, Theorem 2.1] and [19, Theoem 7], the centre is a
CS regular ring. Prom [17, Corollary 13.4], the centre is a continuous ring.

(v) => (i) Since the centre is a continuous regular ring, then it is a nonsingular CS
ring. By [11, Theorem 2.1], the centre is a Baer ring. Now Corollary 2.5 yields that JR
is a quasi-Baer ring. D

EXAMPLE 3.6. There are rings R such that

(1) R is biregular quasi-Baer, but
(2) R is neither regular nor Baer.

(i) For a positive integer k > 1, let W be the fc-th Weyl algebra over a field of
chracteristic zero. Then W is a simple Noetherian domain which is neither left nor
right hereditary. So there exists a positive integer n such that Matn(W) is neither left
nor right PP by [26]. Hence it is not Baer. Obviously it is not regular.

(ii) By Zalesskii and Neroslavskii [10, Example 14.17, p.179], there is a simple
Noetherian ring R which is not a domain and in which 0 and 1 are the only idempotents.
Then A is an Abelian quasi-Baer ring which is neither regular nor Baer.

EXAMPLE 3.7. [8, Example 1.17] There is a ring R such that

(1) R is regular quasi-Baer, but
(2) R is neither biregular nor Baer.
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For a finite field F, let

IA 0 \
a

a

\o '••/

A e Matn(F), a 6 F, n = 1,2,...

Then R is prime regular, so R is quasi-Baer. But R cannot be Baer because of [8,
Theorem 1.14]. Also it can be easily checked that R cannot be biregular.
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