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INTRODUCTION AND PRELIMINARIES

Abstract

In this chapter, we draw motivation from real-world networks and formulate
random graph models for them. We focus on some of the models that have re-
ceived the most attention in the literature, namely, Erdős–Rényi random graphs,
inhomogeneous random graphs, configuration models, and preferential attach-
ment models. We follow van der Hofstad (2017), which we refer to as [V1], both
for motivation and for the introduction to the random graph models involved.

Looking Back, and Ahead
In Volume 1 of this pair of books, we discussed various models having flexible degree se-
quences. The generalized random graph and the configuration model give us static flexible
models for random graphs with various degree sequences. Because of their dynamic nature,
preferential attachment models give us a convincing explanation of the abundance of power-
law degree sequences in various applications. We will often refer to Volume 1. When we do
so, we write [V1, Theorem 2.17] to signify that we refer to Theorem 2.17 in van der Hofstad
(2017).

In [V1, Chapters 6–8], we focussed on the properties of the degrees of such graphs. How-
ever, we noted in [V1, Chapter 1] that not only do many real-world networks have degree
sequences that are rather different from the ones of the Erdős–Rényi random graph, also
many examples have a giant connected component and are small worlds.

In Chapters 3–8, we will return to the models discussed in [V1, Chapters 6–8], and fo-
cus on their local structure, and their connected components, as well as on their distance
structure. Interestingly, a large chunk of the non-rigorous physics literature suggests that the
behavior in various different random graph models can be described by only a few essential
parameters. The key parameter of each of these models is the power-law degree exponent,
and the physics literature predicts the behavior in random graph models with similar degree
sequences to be similar. This is an example of the notion of universality, a central notion in
statistical physics. Despite its importance, there are only a few examples of universality that
can be rigorously proved. In Chapters 3–8, we investigate the level of universality present in
random graph models.

Organization of this Chapter
This chapter is organized as follows. In Section 1.1 we discuss real-world networks and the
inspiration that they provide. In Section 1.2, we then discuss how graph sequences, where
the size of the involved graphs tends to infinity, aim at describing large complex networks.
In Section 1.3 we recall the definition of several random graph models, as introduced in
Volume 1. In Section 1.4, we discuss power-law random variables, as they play an impor-
tant role in this book. In Section 1.5 we recall some of the standard notation and notions
used in this book. We close this chapter with notes and discussion in Section 1.6 and with
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4 Introduction and Preliminaries

exercises in Section 1.7. We give few references to the literature within this chapter, but
defer a discussion of the history of the various models to the extensive notes in Section 1.6.

1.1 MOTIVATION: REAL-WORLD NETWORKS

In the past two decades, an enormous research effort has been performed with regard to mod-
eling various real-world phenomena using networks. Networks arise in various applications
ranging from the connections between friends in friendship networks to the connectivity of
neurons in the brain, to the relations between companies and countries in economics, and the
hyperlinks between webpages in the World-Wide Web. The advent of the computer era has
made many network data sets available. Around 1999–2000, various groups started to inves-
tigate network data from an empirical perspective. [V1, Chapter 1] gives many examples of
real-world networks and the empirical findings from them. Here we give some basics.

1.1.1 GRAPHS AND NETWORKS

A graphG = (V,E) consists of a collection V = V (G) of vertices, also called a vertex set,
and a collection of edges E = E(G), often called an edge set. The vertices correspond to
the objects that we model; the edges indicate some relation between pairs of these objects. In
our settings, graphs are usually undirected. Thus, an edge is an unordered pair {u, v} ∈ E
indicating that u and v with u, v ∈ V (G) are directly connected. When G is undirected,
if u is directly connected to v then also v is directly connected to u. Therefore, an edge
can be seen as a pair of vertices. When dealing with social networks, the vertices represent
the individuals in the population while the edges represent the friendships among them. We
sometimes work with multi-graphs, which are graphs possibly having self-loops or multiple
edges between vertices, and we will clearly indicate when we do so.

We mainly deal with finite graphs and then, for simplicity, we often take V = [n] :=
{1, . . . , n}. The degree d(G)

u of a vertex u ∈ V (G) in the graph G is equal to the number of
edges containing u, i.e.,

d(G)

u = #{v ∈ V (G) : {u, v} ∈ E(G)}. (1.1.1)

Often, we deal with the degree of a random vertex in G. Let o ∈ V (G) be a vertex chosen
uniformly at random (uar) in V (G). The typical degree is the random variable Dn given by

Dn = d(G)

o . (1.1.2)

It is not hard to see that the probability mass function of Dn is given by

P(Dn = k) =
1

|V (G)|
∑

v∈V (G)

1{d(G)
v =k}, (1.1.3)

where, for a set A, we write |A| for its size. Exercise 1.1 asks you to prove (1.1.3).
The average degree in a network is equal to

1

|V (G)|
∑

v∈V (G)

d(G)

v =
2|E(G)|
|V (G)|

. (1.1.4)
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1.1 Motivation: Real-World Networks 5

Figure 1.1 Average degrees in the 727 networks of size larger than 10,000 from the
KONECT data base.

We can rewrite (1.1.4) as

1

|V (G)|
∑

v∈V (G)

d(G)

v = E[Dn], (1.1.5)

where the expectation is with respect to the random vertex o in Dn = d(G)

o (recall (1.1.2)).
The average degree can take any value in between 0 for an empty graph, and |V (G)| − 1
for a complete graph. In reality, however, we see that the average degree of many real-
world networks is not very large, i.e., these networks tend to be sparse. Figure 1.1 shows
the average degrees in the KONECT data base, and we see that the average degree does not
seem to grow with the network size.

We next discuss some common features that many real-world networks turn out to have.

1.1.2 SCALE-FREE PHENOMENON

The first, maybe quite surprising, fundamental property of many real-world networks is
that the number of vertices with degree at least k decays slowly for large k. This implies
that degrees are highly variable and that, even though the average degree is not particularly
large, there exist vertices with extremely high degree. Often, the tail of the empirical degree
distribution seems to fall off as an inverse power of k. This is called a “power-law degree
sequence,” and the resulting graphs often go under the name “scale-free graphs.” This is
visualized for the Autonomous Systems (AS) graph from the Internet in Figure 1.5(a), where
the degree distribution of the AS graph is plotted on a log–log scale. Thus, we see a plot of
log k 7→ log nk, where nk is the number of vertices with degree k. When nk is proportional
to an inverse power of k, i.e., when, for some normalizing constant cn and exponent τ ,

nk ≈ cnk−τ , (1.1.6)
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6 Introduction and Preliminaries

Figure 1.2 Maximal degrees in the 727 networks of size larger than 10,000 from
the KONECT data base. Linear regression gives log dmax = 0.742 + 0.519 logn.

and thus

log nk ≈ log cn − τ log k, (1.1.7)

so that the plot of log k 7→ log nk is close to a straight line. This is the reason why degree
sequences in networks are often depicted in a log–log fashion, rather than in the more cus-
tomary form of k 7→ nk. Here, and in the remainder of this section, we write ≈ to denote
an uncontrolled approximation. The power-law exponent τ can be estimated by the absolute
value of the slope of the line in the log–log plot. Naturally, we must have that∑

k

nk = |V (Gn)| <∞, (1.1.8)

so that it is reasonable to assume that τ > 1. In fact, many networks are sparse, meaning
that their average

∑
k knk/|V (Gn)| remains uniformly bounded, which in turn suggests

that τ > 2 is to be expected. See Figure 1.2 for the maximal degrees in the KONECT data
base in log–log scale, which should be compared with Figure 1.1. While there does not seem
to be a trend in Figure 1.1, there does seem to be one in Figure 1.2; this indicates that the
log of the maximal degree tends to grow linearly with the log of the network size. The latter
is consistent with power-law degrees.

Let us define the degree distribution by p(Gn)

k = nk/|V (Gn)| = P(Dn = k) (recall
(1.1.2) and (1.1.3)), so that p(Gn)

k equals the probability that a uniformly chosen vertex in a
graph Gn with n vertices has degree k (recall (1.1.3)). Then (1.1.6) can be reexpressed as

p(Gn)

k ≈ ck−τ , (1.1.9)

where again ≈ denotes an uncontrolled approximation.
Vertices with extremely high degrees go under various names, indicating their importance

in the field. They are often called hubs, like the hubs in airport networks. Another name for
them is super-spreader, indicating the importance of the high-degree vertices in spreading
information or diseases. The hubs quantify the level of inhomogeneity in the real-world
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1.1 Motivation: Real-World Networks 7

Figure 1.3 (a) Log–log plot of the degree sequence in the 2007 Internet Movie
Data base. (b) Log–log plot of the probability mass function of the Autonomous
Systems degree sequence on April 2014, on a log–log scale from Krioukov et al.
(2012) (data courtesy of Dmitri Krioukov). This degree distribution looks smoother
than others (see e.g., Figure 1.3(a) and 1.4), due to binning of the data.

networks, and a large part of this book is centered around rigorously establishing the effect
that the high-degree vertices have on various properties of the graphs involved.

Further, a central topic in network science is how the behavior of stochastic processes
on networks is affected by degree inhomogeneities. Such effects are especially significant
when the networks are “scale-free,” meaning that they can be well approximated by power
laws with exponents τ satisfying τ ∈ (2, 3), so that random variables with such degrees
have infinite variance. Since maximal degrees of networks of size n can be expected to
grow as n1/(τ−1) (see Exercise 1.2 for an illuminating example), Figure 1.2 suggests that,
on average, 1/(τ − 1) ≈ 0.519, so that, again on average, τ ≈ 2.93, which is in line with
such predictions.

For the Internet, log–log plots of degree sequences first appeared in a paper by the Falout-
sos brothers (1999) (see Figure 1.3(b) for the degree sequence in the Autonomous Systems
graph, where the degree distribution looks relatively smooth because it is binned). Here,
the power-law exponent is estimated as τ ≈ 2.15–2.20. Figure 1.3(a) displays the degree
distribution in the Internet Movie Data base (IMDb), in which the vertices are actors and
two actors are connected when they have acted together in a movie. Figure 1.4 displays the
degree-sequence for both the in- as well as the out-degrees in various World-Wide Web data
bases.

Recent Discussion on Power-Law Degrees in Real-World Networks
Recently, a vigorous discussion has emerged on how often real-world networks have power-
law degree distributions. This discussion was spurred by Broido and Clauset (2019), who
claimed (even as the title of their paper) that

Scale-free networks are rare.

What did they do to reach this conclusion? Broido and Clauset (2019) performed the first
extensive analysis of a large number of real-world network data sets, and compared degree
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8 Introduction and Preliminaries

Table 1.1 For comparison, fits of scale-free and alternative distributions to real-world networks
taken from (Broido and Clauset, 2019, Table 1). Listed are the percentage of network data sets that
favor the power-law model MPL, the alternative model MAlt, or neither, under a likelihood-ratio test,
along with the form of the alternative distribution indicated by the alternative density x 7→ f(x).

Alternative f(x) ∝ MPL Inconclusive MAlt

Exponential e−λx 33% 26% 41%
Log-normal 1

xe−(log x−µ)2/(2σ2) 12% 40% 48%
Weibull e−(x/b)a 33% 20% 47%
Power law with cutoff x−τ e−Ax – 44% 56%

Figure 1.4 The probability mass function of the in- and out-degree sequences in
the Berkeley-Stanford and Google competition graph data sets of the World Wide
Web in Leskovec et al. (2009). (a) In-degree; (b) out-degree.

sequences of these real-world networks with power-law, as well as with log-normal, expo-
nential and Weibull distributions. They also made comparisons with power-law distributions
having exponential truncation. The main conclusion of Broido and Clauset (2019) was that,
in many cases, alternative distributions are preferred over power laws (see also Table 1.1).

Clearly this work caused quite a stir, as the conclusion, if correct, would make about 20
years of network science close to redundant from a practical perspective. Barabási (2018)
wrote a blog post containing detailed criticism of the methods and results in Broido and
Clauset (2019), see also Voitalov et al. (2019). Holme (2019) summarized the status of the
arguments in 2019, reaching an almost philosophical conclusion:

Still, it often feels like the topic of scale-free networks transcends science – debating them
probably has some dimension of collective soul searching as our field slowly gravitates

toward data science, away from complexity science.

So, what did the discussion focus on? Here is a list of questions:

What are power-law data? An important question in the discussion on power-law degree
distributions is how to interpret the approximation sign in (1.1.9). Most approaches start
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1.1 Motivation: Real-World Networks 9

by assuming that the data are realizations of independent and identically distributed (iid)
random variables. This can only be an assumption, as degree distributions are mostly
graphical (meaning that they can arise as degree sequences of graphs without self-loops
and multiple edges), which introduces dependencies between them (if only because the
sum of the degrees needs to be even). However, without this assumption, virtually any
analysis becomes impossible, so let us assume this as well.

Under the above assumption, one needs to infer the degree distribution from the sample
of degrees obtained from a real-world network. We denote the asymptotic degree distri-
bution by pk, i.e., the proportion of vertices of degree k in the infinite-graph limit. Under
this assumption, p(Gn)

k in (1.1.9) is the empirical probability mass function corresponding
to the true underlying degree distribution (pk)k≥0. The question is thus what probability
mass functions (pk)k≥0 correspond to a power law.

Broido and Clauset (2019) interpreted the power-law assumption as

pk = ck−τ for all k ≥ kmin, (1.1.10)

and pk arbitrary for k ∈ [kmin − 1]; here c > 0 is chosen appropriately. The inclusion
of the kmin parameter is based on the observation that small values of k generally do not
satisfy the pure power law (see also Clauset et al. (2009), where (1.1.10) first appeared).

Barabási (2018) instead argued from the perspective of generative models (such as the
preferential attachment models described in Section 1.3.5, as well as in Chapters 5 and 8):

In other words, by 2001 it was pretty clear that there is no one-size-fits-all formula for
the degree distribution for networks driven by the scale-free mechanism. A pure power
law only emerges in simple idealised models, driven by only growth and preferential

attachment, and free of any additional effects.

Bear in mind that this dynamical approach is very different from that of Broido and
Clauset (2019), as the degrees in generative models can hardly be expected to be real-
izations of an iid sample! Barabási (2018) instead advocated a theory that predicts power
laws with exponential truncation for many settings, meaning that

pk = ck−τe−Ak for all k ≥ dmin, (1.1.11)

where dmin denotes the minimal degree in the graph and c, A > 0 are appropriate con-
stants, but the theory also allows for “additional effects,” such as vertex fitnesses that
describe intrinsic differences in how likely it is to connect to vertices, and that may be
realistic in some real-world networks.

Voitalov et al. (2019) took a static approach related to that of Broido and Clauset
(2019), but instead assumed more general power laws of the form

1− F (x) =
∑
k>x

pk = x−(τ−1)L(x) for all x ≥ 1, (1.1.12)

where x 7→ L(x) is a so-called slowly varying function, meaning a function that does not
change the power-law exponent, in that it grows or decays more slowly than any power
at infinity. See [V1, Definition 1.5], or Definition 1.19 below, for a precise definition. In
particular, distributions that satisfy (1.1.10) also satisfy (1.1.12), but not necessarily the
other way around.
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10 Introduction and Preliminaries

The advantage of working with (1.1.12) is that this definition is quite general, yet a
large body of work within the extreme-value statistics community becomes available.
These results, as summarized in Voitalov et al. (2019), allow for the “most accurate”
ways of estimating the power-law exponent τ , which brings us to the next question.

How to estimate the power-law exponent? Since Broido and Clauset (2019) interpreted
the power-law assumption as in (1.1.10), estimating the model parameters then boiled
down to estimating kmin and τ . For this, Broido and Clauset (2019) relied on the first pa-
per on estimating power-law exponents in the area of networks, by Clauset et al. (2009),
who proposed the power-law-fit method (PLFIT). This method chooses the best possible
kmin on the basis of the difference between the empirical degree distribution for values
above kmin and the power-law distribution function based on (1.1.10) with an appropri-
ately estimated value τ̂ of τ , as proposed by Hill (1975), for realizations above kmin.

The estimator τ̂PLFit is then the estimator of τ corresponding to the optimal kmin. The
PLFIT method was recently proved to be a consistent method by Bhattacharya et al.
(2020), which means that the estimator will, in the limit, converge in probability to the
correct value τ , even under the weaker assumption in (1.1.12). Of course, the question
remains whether τ̂PLFit is a good estimator, for example in the sense that the rate of con-
vergence of τ̂PLFit to τ is optimal. The results and simulations in Drees et al. (2020)
suggest that, even in the case of a pure power law as in (1.1.10) with kmin = 1, τ̂PLFit is
outperformed by more classical estimators (such as the maximum likelihood estimator for
τ ). Voitalov et al. (2019) rely on the estimators proposed in the extreme-value literature;
see e.g. Danielsson et al. (2001); Draisma et al. (1999); Hall and Welsh (1984) for such
methods and Resnick (2007); Beirlant et al. (2006) for extensive overviews of extreme-
value statistics.

The dynamical approach by Barabási (2018) instead focusses on estimating the param-
eters in the proposed dynamical models, a highly interesting topic that is beyond the scope
of this book.

How to perform tests? When confronted with a model, or with two competing models
such as in Table 1.1, a statistician would often like to compare the fit of these models
to the data, so as to be able to choose between them. When both models are parametric,
meaning that they involve a finite number of parameters, like the models in Table 1.1,
this can be done using a so-called likelihood-ratio test. For this, one computes the likeli-
hood of the data (basically the probability that the model in question gives rise to exactly
what was found in the data) for each of the models, and then takes the ratio of the two
likelihoods. In the settings in Table 1.1, this means that the likelihood of the data for the
power-law model is divided by that for the alternative model. When this exceeds a certain
threshold, the test does not reject the possibility that the data comes from a power law,
otherwise it rejects the null hypothesis of a power-law degree distribution. This is done for
each of the networks in the data base, and Table 1.1 indicates the percentages for which
each of the models is deemed the most likely.

Unfortunately, such likelihood ratio tests can be performed only when one compares
parametric settings. The setting in (1.1.12) is non-parametric, as it involves the unknown
slowly varying function x 7→ L(x), and thus, in that setting, no statistical test can be
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performed unless one makes parametric assumptions on the shape of x 7→ L(x) (by
assuming, for example, that L(x) is a power of log x). Thus, the parametric choice in
(1.1.10) is crucial in that it allows for a testing procedure to be performed. Alternatively,
if one does not believe in the “pure” power-law form as in (1.1.10), then tests are no
longer feasible. What approach should one then follow? See Artico et al. (2020) for a
related testing procedure, in which the authors reached a rather different conclusion than
that of Broido and Clauset (2019).

How to partition networks? Broido and Clauset (2019) investigated a large body of net-
works, relying on a data base consisting of 927 real-world networks from the KONECT
project; see http://konect.cc as well as Kunegis (2013). We are also relying on this
data base for graphs showing network properties, such as average and maximal degrees,
etc. These networks vary in size, as well as in their properties (directed versus undirected,
static versus temporal, etc.). In their paper, Broido and Clauset (2019) report percentages
of networks having certain properties; see for example Table 1.1.

A substantial part of the discussion around Broido and Clauset (2019) focusses on
whether these percentages are representative. Take the example of a directed network,
which has several degree distributions, namely, in-degree, out-degree, and total degree
distributions (in the latter, the directions are simply ignored). This “diversity of degree
distributions” becomes even more pronounced when the network is temporal, meaning
that edges come and go as time progresses. When does one say that a temporal network
has a power-law degree distribution? When one of these degree distributions is classified
as power-law, when a certain percentage of them is, or when all of them are?

What is our approach in this book? We prefer to avoid the precise debate about whether
power laws in degree distributions are omnipresent or rare. We view power laws as a way
to model settings where there is a large amount of variability in the data, and where the
maximum values of the degrees are several orders of magnitude larger than the average
values (compare Figures 1.1 and 1.2). Power laws predict such differences in scale.

There is little debate about the fact that degree distributions in networks tend to be
highly inhomogeneous. Power laws are the model of choice to model such inhomo-
geneities, certainly in settings where empirical moments (for example, empirical vari-
ances) are very large. Further, inhomogeneities lead to interesting differences in structure
of the networks in question, which will be a focal point of this book. All the alternative
models in Table 1.1 have tails that are too thin for such differences to emerge. Thus, it
is natural to focus on models with power-law degrees to highlight the relation between
degree structure and network topology. Therefore, we often consider degree distributions
that are either exactly described by power laws or are bounded above or below by them.
The focus then resides in how the degree power-law exponent τ changes the network
topology.

After this extensive discussion of degrees in graphs, we continue by discussing graph
distances and their relation to small-world phenomena, a topic that is much less heatedly
debated.
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1.1.3 SMALL-WORLD PHENOMENON

A second fundamental network property observed in many real-world networks is the fact
that typical distances between vertices are small. This is called the “small-world” phenome-
non (see, e.g., the book by Watts (1999)). In particular, such networks are highly connected:
their largest connected component contains a significant proportion of the vertices. Many
networks, such as the Internet, even consist of one connected component, since otherwise
e-mail messages could not be delivered between pairs of vertices in distinct connected com-
ponents.

Graph distances between pairs of vertices tend to be quite small in most networks. For
example, in the Internet, IP packets cannot use more than a threshold of physical links, and if
distances in the Internet were larger than this threshold then the e-mail service would simply
break down. Thus, the Internet graph has evolved in such a way that typical distances are
relatively small, even though the Internet itself is rather large. As seen in Figure 1.5(a), the
number of Autonomous Systems (ASs) traversed by an e-mail data set, sometimes referred
to as the AS-count, is typically at most 7. In Figure 1.5(b), the proportion of routers traversed
by an e-mail message between two uniformly chosen routers, referred to as the hopcount, is
shown. It shows that the number of routers traversed is at most 27. Figure 1.6 shows typical
distances in the IMDb; the distances are quite small despite the fact that the network contains
more than one million vertices.

The small-world nature of real-world networks is highly significant. Indeed, in small
worlds, news can spread quickly as relatively few people are needed to spread it between two
typical individuals. This is quite helpful in the Internet, where e-mail messages hop along
the edges of the network. At the other side of the spectrum, it also implies that infectious
diseases can spread quite quickly, as just a few infections can carry the disease to a large part
of the population. This implies that diseases have a large potential of becoming pandemic,
as the corona pandemic has made painfully clear.

Let us continue this discussion by formally introducing graph distances, as displayed in
Figures 1.5 and 1.6. For a graph G = (V (G), E(G)) and a pair of vertices u, v ∈ V (G),
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Figure 1.5 (a) Number of Autonomous Systems traversed in hopcount data. (b)
Internet hopcount data (courtesy of Hongsuda Tangmunarunkit).
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Figure 1.6 Typical distances in the Internet Movie Data base (IMDb) in 2003.

we let the graph distance distG(u, v) between u and v be equal to the minimal number of
edges in a path linking u and v. When u and v are not in the same connected component,
we set distG(u, v) = ∞. We are interested in settings where G has a high amount of
connectivity, so that many pairs of vertices are connected to one another by short paths. In
order to describe the typical distances between vertices, we draw o1 and o2 independently
and uar from V (G), and we investigate the random variable

distG(o1, o2). (1.1.13)

The quantity in (1.1.13) is a random variable even for deterministic graphs, owing to the
presence of the two uar-chosen vertices o1, o2 ∈ V (G). Figures 1.5 and 1.6 display the
probability mass functions of this random variable for some real-world networks.

Often, we consider distG(o1, o2) conditional on distG(o1, o2) <∞. This means that we
consider the typical number of edges between a uniformly chosen pair of connected vertices.
As a result, distG(o1, o2) is sometimes referred to as the typical distance.

The nice property of distG(o1, o2) is that its distribution tells us something about all
possible distances in the graph. An alternative and frequently used measure of distance in a
graph is the diameter of the graph G, defined as

diam(G) = max
u,v∈V (G)

distG(u, v). (1.1.14)

However, the diameter has several disadvantages. First, in many instances, the diameter
is algorithmically more difficult to compute than the typical distances (since one has to
compute the distances between all pairs of vertices and maximize over them). Second, it
is a number instead of a distribution of a random variable, and therefore contains far less
information than the distribution distG(o1, o2). Finally, the diameter is highly sensitive to
relatively small changes in the graphG under consideration. For example, adding a relatively
small string of connected vertices to a graph (each of the vertices in the string having degree
2) may drastically change the diameter, while it hardly influences the typical distances.
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14 Introduction and Preliminaries

1.1.4 RELATED NETWORK PROPERTIES

There are many more features that one could take into account when modeling real-world
networks. See e.g., [V1, Section 1.5] for a slightly expanded discussion of such features.
Other features that many networks share, or, rather, form a way to distinguish between them,
are the following:

(a) their degree correlations, measuring the extent to which high-degree vertices tend to be
connected to high-degree vertices rather than to low-degree vertices (and vice versa);

(b) their clustering, measuring the extent to which pairs of neighbors of vertices are neigh-
bors themselves;

(c) their community structure, measuring the extent to which the network has more densely-
connected subgraphs;

(d) their spatial structure, where the spatial component is either describing true vertex lo-
cations in real-world networks, or instead some latent geometry in them. The spatial
structure is such that vertices that are near are more likely to be connected.

See, e.g., the book by Newman (2010) for an extensive discussion of such features, as
well as the algorithmic problems that arise from them. We also refer the reader to Chapter
9, where we discuss several related models that focus on these properties.

1.2 RANDOM GRAPHS AND REAL-WORLD NETWORKS

In this section we discuss how random graph sequences can be used to model real-world
networks. We start by discussing graph sequences.

Graph Sequences
Motivated by the previous section, in which empirical evidence was discussed showing that
many real-world networks are scale free and small world, we set about the question of how to
model them. Since many networks are quite large, mathematically, we model real-world net-
works by graph sequences (Gn)n≥1, whereGn = (V (Gn), E(Gn)) has size |V (Gn)| = n
and we take the limit n → ∞. Since most real-world networks are such that the average
degree remains bounded, we will focus on the sparse regime. In the sparse regime (recall
(1.1.2) and (1.1.3)), it is assumed that

lim sup
n→∞

E[Dn] = lim sup
n→∞

1

|V (Gn)|
∑

v∈V (Gn)

d(Gn)

v <∞. (1.2.1)

Furthermore, we aim to study graphs that are asymptotically well behaved. For example,
we often either assume, or prove, that the typical degree distribution converges, i.e., there
exists a limiting degree random variable D such that

Dn
d−→ D, (1.2.2)

where d−→ denotes weak convergence of random variables. Also, we assume that our graphs
are small worlds, which is often translated in the asymptotic sense that there exists a constant
K <∞ such that
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1.2 Random Graphs and Real-World Networks 15

lim
n→∞

P(distG(o1, o2) ≤ K log n) = 1, (1.2.3)

where n denotes the network size. Sometimes, we even discuss ultra-small worlds, for
which

lim
n→∞

P(distG(o1, o2) ≤ ε log n) = 1 (1.2.4)

for every ε > 0. In what follows, we discuss random graph models that share these two
features.

Random Graphs as Models for Real-World Networks
Real-world networks tend to be quite complex and unpredictable. This is understandable,
since connections often arise rather irregularly. We model such irregular behavior by letting
connections arise through a random process, thus leading us to study random graphs. By
the previous discussion, our graphs are large and their sizes n tend to infinity.

In such settings, we can either model the graphs by fixing their size to be large, or rather
by letting the graphs grow to infinite size in a consistent manner. We refer to these two
settings as static and dynamic random graphs. Both are useful viewpoints. Indeed, a static
graph is a model for a snapshot of a network at a fixed time, where we do not know how the
connections arose over time. Many network data sets are of this form. A dynamic setting,
however, may be useful when we know how the network came to be as it is. In the static
setting, we can make model assumptions on the degrees such that they are scale free. In
the dynamic setting, we can let the evolution of the graphs give rise to power-law degree
sequences, so that these settings may provide explanations for the frequent occurrence of
power laws in real-world networks.

Most of the random graph models that have been investigated in the (extensive) literature
are caricatures of reality, in the sense that one cannot confidently argue that they describe
any real-world network quantitatively correctly. However, these random graph models do
provide insight into how any of the above features can influence the global behavior of
networks. In this way, they provide possible explanations of the empirical properties of real-
world networks that are observed. Also, random graph models can be used as null models,
where certain aspects of real-world networks are taken into account while others are not.
This gives a qualitative way of investigating the importance of such empirical features in
the real world. Often, real-world networks are compared with uniform random graphs with
certain specified properties, such as their number of edges or even their degree sequence.
Below, we will come back to how to generate random graphs uar from the collection of all
graphs with these properties.

In the next section we describe four models of random graphs, three of which are static
and one is dynamic. Below, we frequently write f(n) = O(g(n)) if |f(n)|/|g(n)| is
uniformly bounded from above by a positive constant as n → ∞, f(n) = Θ(g(n)) if
f(n) = O(g(n)) and g(n) = O(f(n)), and f(n) = o(g(n)) if f(n)/g(n) tends to 0 as
n→∞. We say that f(n)� g(n) when g(n) = o(f(n)).
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16 Introduction and Preliminaries

1.3 RANDOM GRAPH MODELS

We start with the most basic and simple random graph model, which has proved to be a
source of tremendous inspiration, both for its mathematical beauty, as well as for providing
a starting point for the analysis of random graphs.

1.3.1 ERDŐS–RÉNYI RANDOM GRAPH

The Erdős–Rényi random graph is the simplest possible random graph. In it, we make every
possible edge between a collection of n vertices independently either open or closed with
equal probability. This means that the Erdős–Rényi random graph has vertex set [n] =
{1, . . . , n}, and the edge uv is occupied or present with probability p, and vacant or absent
otherwise, independently of all the other edges. Here we denote the edge between vertices
u, v ∈ [n] by uv. The parameter p is called the edge probability. The above random graph is
denoted by ERn(p). The model is named after Erdős and Rényi, since they made profound
contributions in the study of this model. Exercise 1.3 investigates the uniform nature of
ERn(p) with p = 1

2
. Alternatively speaking, ERn(p) with p = 1

2
is the null model, where

we take no properties of the network into account except for the total number of edges. The
vertices in this model have expected degree (n− 1)/2, which is quite large. As a result, this
model is not sparse at all. Thus, we next make this model sparse by making p smaller.

Since each edge is occupied with probability p, we obtain that

P(Dn = k) =

(
n− 1

k

)
pk(1− p)n−1−k = P(Bin(n− 1, p) = k), (1.3.1)

where Bin(m, p) is a binomial random variable with m trials and success probability p.
Note that

E[Dn] = (n− 1)p, (1.3.2)

so for this model to be sparse, we need that p becomes small with n. Thus, we take

p =
λ

n
, (1.3.3)

and study the graph as λ is held fixed while n→∞. In this regime, we know that

Dn
d−→ D, (1.3.4)

withD ∼ Poi(λ), where Poi(λ) is a Poisson random variable with mean λ. It turns out that
this result can be strengthened to the statement that the proportion of vertices with degree
k also converges to the probability mass function of a Poisson random variable (see [V1,
Section 5.4], and in particular [V1, Theorem 5.12]), i.e., for every k ≥ 0,

P (n)

k =
1

n

∑
v∈[n]

1{dv=k}
P−→ pk ≡ e−λ

λk

k!
, (1.3.5)

where dv denotes the degree of v ∈ [n].
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1.3 Random Graph Models 17

It is well known that the Poisson distribution has very thin tails, even thinner than any
exponential, as you are requested to prove in Exercise 1.4. We conclude that the Erdős–
Rényi random graph is not a good model for real-world networks with their highly variable
degree distributions. In the next subsection, we discuss inhomogeneous extensions of Erdős–
Rényi random graphs which can have highly variable degrees.

1.3.2 INHOMOGENEOUS RANDOM GRAPHS

In inhomogeneous random graphs, we keep the independence of the edges, but make the
edge probabilities different for different edges. We will discuss such general inhomogeneous
random graphs in Chapter 3 below. Here, we start with one key example, which has attracted
most attention in the literature so far and is also discussed in great detail in [V1, Chapter 6].

Rank-1 Inhomogeneous Random Graphs
The simplest inhomogeneous random graph models are sometimes referred to as rank-1
models, since the edge probabilities are (close to) products of vertex weights (see Remark
1.5 below for more details). This means that the expected number of edges between vertices,
when viewed as a matrix, is (close to) a rank-1 matrix. We start by discussing one such
model, which is the so-called generalized random graph.

In the generalized random graph model, the edge probability of the edge between vertices
u and v, for u 6= v, is equal to

puv = p(GRG)

uv =
wuwv

`n + wuwv
, (1.3.6)

wherew = (wv)v∈[n] are the vertex weights, and `n is the total vertex weight, given by

`n =
∑
v∈[n]

wv. (1.3.7)

We denote the resulting graph by GRGn(w). In many cases, the vertex weights actually
depend on n, and it would be more appropriate (but also more cumbersome), to write the
weights as w(n) = (w(n)

v )v∈[n]. To keep the notation simple, we refrain from making the
dependence on n explicit. A special case of the generalized random graph occurs when
we take wv ≡ nλ

n−λ , in which case puv = λ/n for all u, v ∈ [n] so that we retrieve the
Erdős–Rényi random graph ERn(λ/n).

The generalized random graph GRGn(w) is close to many other inhomogeneous random
graph models, such as the random graph with prescribed expected degrees or Chung–Lu
model, denoted by CLn(w), where instead

puv = p(CL)

uv = min(wuwv/`n, 1). (1.3.8)

A further adaptation is the so-called Poissonian random graph or Norros–Reittu model,
denoted by NRn(w), for which

puv = p(NR)

uv = 1− exp (−wuwv/`n) . (1.3.9)

See [V1, Sections 6.7 and 6.8] for conditions under which these random graphs are asymp-
totically equivalent, meaning that all events have equal asymptotic probabilities.
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18 Introduction and Preliminaries

Naturally, the topology of the generalized random graph depends sensitively upon the
choice of the vertex weights w = (wv)v∈[n]. These vertex weights can be rather general,
and we investigate both settings where the weights are deterministic as well as settings
where they are random. In order to describe the empirical proportions of the weights, we
define their empirical distribution function to be

Fn(x) =
1

n

∑
v∈[n]

1{wv≤x}, x ≥ 0. (1.3.10)

We can interpret Fn as the distribution of the weight of a uniformly chosen vertex in [n] (see
Exercise 1.7). We denote the weight of a uniformly chosen vertex o in [n] by Wn = wo, so
that, by Exercise 1.7, Wn has distribution function Fn.

The degree distribution can converge only when the vertex weights are sufficiently regular.
We often assume that the vertex weights satisfy the following regularity conditions, which
turn out to imply convergence of the degree distribution in the generalized random graph:

Condition 1.1 (Regularity conditions for vertex weights) There exists a distribution func-
tion F such that, as n→∞, the following conditions hold:

(a) Weak convergence of vertex weights. As n→∞,

Wn
d−→W, (1.3.11)

where Wn and W have distribution functions Fn and F , respectively. Equivalently, for any
x for which x 7→ F (x) is continuous,

lim
n→∞

Fn(x) = F (x). (1.3.12)

(b) Convergence of average vertex weight. As n→∞,

E[Wn]→ E[W ] ∈ (0,∞), (1.3.13)

where Wn and W have distribution functions Fn and F from part (a) above, respectively.

(c) Convergence of second moment of vertex weights. As n→∞,

E[W 2
n ]→ E[W 2] <∞, (1.3.14)

where Wn and W have distribution functions Fn and F from part (a) above, respectively.

Condition 1.1 is virtually the same as [V1, Condition 6.4]. Condition 1.1(a) guarantees
that the weight of a “typical” vertex is close to a random variable W that is independent of
n. Condition 1.1(b) implies that the average weight of the vertices in GRGn(w) converges
to the expectation of the limiting weight variable. In turn, this implies that the expectation
of the average degree in GRGn(w) converges to the expectation of this limiting random
variable as well. Condition 1.1(c) ensures the convergence of the second moment of the
weights to the second moment of the limiting weight variable.

Remark 1.2 (Regularity for random weights) Sometimes we are interested in cases where
the weights of the vertices are random themselves. For example, this arises when the weights
w = (wv)v∈[n] are realizations of iid random variables. Then, the function Fn is also a ran-
dom distribution function. Indeed, in this caseFn is the empirical distribution function of the
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1.3 Random Graph Models 19

random weights (wv)v∈[n]. We stress that E[Wn] is then to be interpreted as 1
n

∑
v∈[n]wv,

which is itself random. Therefore, in Condition 1.1 we require random variables to converge,
and there are several notions of convergence that may be used. The notion of convergence
that we assume is convergence in probability (see [V1, Section 6.2]). J

Let us now discuss some canonical examples of weight distributions that satisfy the Reg-
ularity Condition 1.1.

Weights Moderated by a Distribution Function
Let F be a distribution function for which F (0) = 0 and fix

wv = [1− F ]−1(v/n), (1.3.15)

where [1 − F ]−1 is the generalized inverse function of 1 − F , defined, for u ∈ (0, 1), by
(recall [V1, (6.2.14) and (6.2.15)])

[1− F ]−1(u) = inf{x : [1− F ](x) ≤ u}. (1.3.16)

For the choice (1.3.15), we can explicitly compute Fn as (see [V1, (6.2.17)])

Fn(x) =
1

n

(⌊
nF (x)

⌋
+ 1
)
∧ 1, (1.3.17)

where x ∧ y denotes the minimum of x, y ∈ R. It is not hard to see that Condition 1.1(a)
holds for (wv)v∈[n] as in (1.3.15), while Condition 1.1(b) holds when E[W ] ∈ (0,∞), and
Condition 1.1(c) holds when E[W 2] <∞, as can be concluded from Exercise 1.9.

Independent and Identically Distributed Weights
We now discuss the setting where the weights are an independent and identically distributed
(iid) sequence of random variables, for which Conditions 1.1(b) and (c) follow from the law
of large numbers, and Condition 1.1(a) from the Glivenko–Cantelli Theorem. Since we will
often deal with ratios of the form wuwv/(

∑
k∈[n]wk), we assume that P(w = 0) = 0 to

avoid situations where all weights are zero.
Both settings, i.e., with weights (wv)v∈[n] as in (1.3.15), and with iid weights (wv)v∈[n],

have their own merits. The great advantage of iid weights is that the vertices in the resulting
graph are, in distribution, the same. More precisely, the vertices are completely exchangea-
ble, as in the Erdős–Rényi random graph ERn(p). Unfortunately, when we take the weights
to be iid, in the resulting graph the edges are no longer independent (despite the fact that they
are conditionally independent given the weights). In what follows, we focus on the setting
where the weights are prescribed. When the weights are deterministic, this changes nothing;
when the weights are iid, this means that we are conditioning on the weights.

Degrees in Generalized Random Graphs
We write dv for the degree of vertex v in GRGn(w). Thus, dv is given by

dv =
∑
u∈[n]

1{uv∈E(GRGn(w))}. (1.3.18)
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20 Introduction and Preliminaries

For k ≥ 0, we let

P (n)

k =
1

n

∑
v∈[n]

1{dv=k} (1.3.19)

denote the proportion of vertices with degree k of GRGn(w). We call (P (n)

k )k≥0 the de-
gree sequence of GRGn(w). We denote the probability mass function of a mixed-Poisson
distribution by pk, i.e., for k ≥ 0,

pk = E
[
e−W

W k

k!

]
, (1.3.20)

whereW is a random variable having distribution function F from Condition 1.1. The main
result concerning the vertex degrees is as follows:

Theorem 1.3 (Degree sequence of GRGn(w)) Assume that Conditions 1.1(a),(b) hold.
Then, for every ε > 0,

P
( ∞∑
k=0

|P (n)

k − pk| ≥ ε
)
→ 0, (1.3.21)

where (pk)k≥0 is given by (1.3.20).

Proof This is given in [V1, Theorem 6.10].

Consequently, with Dn = do denoting the degree of a random vertex, we obtain

Dn
d−→ D, (1.3.22)

where P(D = k) = pk, defined in (1.3.20), as shown in Exercise 1.10.

Recall from Section 1.1.2 that we are often interested in scale-free random graphs, i.e.,
random graphs for which the degree distribution obeys a power law. We see from Theorem
1.3 that this is true precisely whenD obeys a power law. This, in turn, occurs precisely when
W obeys a power law, for example, when, for w large,

P(W > w) =
c

wτ−1
(1 + o(1)). (1.3.23)

Then, for w large,

P(D > w) = P(W > w)(1 + o(1)). (1.3.24)

This follows from Theorem 1.3, in combination with [V1, Exercise 6.12], which shows that
the tail behavior of a mixed-Poisson distribution and that of its weight distribution agree for
power laws.

Generalized Random Graph Conditioned on its Degrees
The generalized random graph with edge probabilities as in (1.3.6) is rather special. In-
deed, when we condition on its degree sequence, the graph has a uniform distribution over
the set of all graphs with the same degree sequence. For this, note that GRGn(w) can be
equivalently encoded by (Xuv)1≤u≤v≤n, where Xuv is the indicator that the edge uv is oc-
cupied. Then, (Xuv)1≤u≤v≤n are independent Bernoulli random variables with edge prob-
abilities as in (1.3.6). By convention, let Xvv = 0 for every v ∈ [n], and Xvu = Xuv for
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1.3 Random Graph Models 21

1 ≤ u < v ≤ n. In terms of the variables X = (Xuv)1≤u<v≤n, let dv(X) =
∑

u∈[n]Xuv

be the degree of vertex v. Then, the uniformity is equivalent to the statement that, for each
x = (xuv)1≤u<v≤n such that dv(x) = dv for every v ∈ [n],

P(X = x | dv(X) = dv ∀v ∈ [n]) =
1

#{y : dv(y) = dv ∀v ∈ [n]}
, (1.3.25)

that is, the distribution is uniform over all graphs with the prescribed degree sequence. This
turns out to be rather convenient, and thus we state it formally here:

Theorem 1.4 (GRG conditioned on degrees has a uniform law) The generalized random
graph GRGn(w) with edge probabilities (puv)1≤u<v≤n given by

puv =
wuwv

`n + wuwv
, (1.3.26)

conditioned on {dv(X) = dv∀v ∈ [n]}, is uniform over all graphs with degrees (dv)v∈[n].

Proof See [V1, Theorem 6.15].

In Chapter 3 below, we discuss a far more general setting of inhomogeneous random
graphs. The analysis of such random graphs is substantially more challenging than the rank-
1 case. As explained in more detail there, this is due to the fact that these random graphs
are no longer locally described by single-type branching processes, but rather by multi-type
branching processes.

Remark 1.5 (What’s in a name?) The models discussed here, GRGn(w) in (1.3.6) as
well as CLn(w) in (1.3.8) and NRn(w) in (1.3.9), go under various names in the literature.
Bollobás et al. (2007) referred to them as a rank-1 random graph, because puv ≈ wuwv/`n
and the matrix (wuwv/`n)u,v∈[n] has rank one. In the physics literature, they go under the
name of hidden variable models, where the weights (wv)v∈[n] are interpreted as the hidden
variables (and they are often assumed to be iid). Owing to the uniformity in the conditional
distribution given its degrees, GRGn(w) is also a maximal entropy model, as will be ex-
plained in more detail in Section 9.4.4. Finally, some researchers call them soft configuration
models; see Remark 1.6 for further discussion of this phrase. J

1.3.3 CONFIGURATION MODELS

The configuration model is a model in which the degrees of vertices are fixed beforehand.
Such a model is more flexible than the generalized random graph. For example, the gener-
alized random graph always has a positive proportion of vertices of degree 0, 1, 2, etc., as
easily follows from Theorem 1.3.

Fix an integer n that denotes the number of vertices in the random graph. Consider a
sequence of degrees d = (dv)v∈[n]. Again, it might be more appropriate, but also more
cumbersome, to write the degrees as d(n) = (d(n)

v )v∈[n], and so we will refrain from this. The
aim is to construct an undirected (multi-)graph with n vertices, where vertex v has degree
dv. Here a multi-graph is a graph possibly having self-loops and multiple edges between
pairs of vertices.
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22 Introduction and Preliminaries

Without loss of generality, we assume throughout this chapter that dv ≥ 1 for all v ∈ [n],
since, when dv = 0, vertex v is isolated and can be removed from the graph. One possible
random graph model takes the uniform measure over such undirected and simple graphs.
Here, we call a multi-graph simple when it has no self-loops, and no multiple edges exist
between any pair of vertices. However, the set of undirected simple graphs with n vertices
where vertex v has degree dv may be empty. For example, in order for such a graph to exist,
we must assume that the total degree

`n =
∑
v∈[n]

dv (1.3.27)

is even.
We wish to construct a simple graph such that d = (dv)v∈[n] are the degrees of the n

vertices. Even when `n =
∑

v∈[n] dv is even, however, this is not always possible. Therefore,
instead, we construct a multi-graph. One way of obtaining such a multi-graph with the given
degree sequence is to pair the half-edges attached to the different vertices in a uniform way.
Two half-edges together form an edge, thus creating the edges in the graph. Let us explain
this in more detail.

To construct the multi-graph where vertex v has degree dv for all v ∈ [n], we have n
separate vertices and, incident to vertex v, we have dv half-edges. Every half-edge needs
to be connected to another half-edge to form an edge, and by forming all edges we build
the graph. For this, the half-edges are numbered in an arbitrary order from 1 to `n. We start
by randomly connecting the first half-edge with one of the `n − 1 remaining half-edges.
Once paired, two half-edges form a single edge of the multi-graph, and these half-edges are
removed from the list of half-edges that need to be paired. Hence, a half-edge can be seen
as the left or the right half of an edge. We continue the procedure of randomly choosing and
pairing the half-edges until all half-edges are connected, and we call the resulting graph the
configuration model with degree sequence d, abbreviated as CMn(d). The pairing of the
half-edges that induces the configuration model graph is sometimes called a configurationl.

A careful reader may worry about the order in which the half-edges are being paired.
In fact, this ordering turns out to be irrelevant since the random pairing of half-edges is
completely exchangeable. It can even be done in a random fashion, which will be useful
when investigating neighborhoods in the configuration model. See e.g., [V1, Definition 7.5
and Lemma 7.6] for more details on this exchangeability.

Interestingly, one can rather explicitly compute the distribution of CMn(d). To do so,
note that CMn(d) is characterized by the random vector (Xuv)1≤u≤v≤n. Here Xuv is the
number of edges between vertex u and v, and Xvv is the number of self-loops incident to
vertex v, so that

dv = Xvv +
∑
u∈[n]

Xuv. (1.3.28)

Note furthermore that Xvv appears twice in (1.3.28), which is natural, since a self-loop
consists of two half-edges. This does not conflict with the definition of dv for GRGn(w),
since Xuu = 0 and Xu,v ∈ {0, 1} for GRGn(w).
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In terms of this notation, and writing G = (xuv)u,v∈[n] to denote a multi-graph on [n],

P(CMn(d) = G) =
1

(`n − 1)!!

∏
v∈[n] dv!∏

v∈[n] 2xvv
∏

1≤u≤v≤n xuv!
. (1.3.29)

See, e.g., [V1, Proposition 7.7] for this result. In particular, P(CMn(d) = G) is the same
for each simple G, where G is simple when xvv = 0 for every v ∈ [n] and xuv ∈ {0, 1}
for every 1 ≤ u < v ≤ n. Thus, the configuration model conditioned on simplicity is a
uniform random graph with the prescribed degree distribution. This is quite relevant, as it
gives a convenient way to obtain such a uniform graph, which is a highly non-trivial fact.

Remark 1.6 (What’s in a name continued?) The name configuration model was invented
by Bollobás (1980), who considered the matching of half-edges to be the configuration on
which the model is based. The model of study for Bollobás (1980) was the uniform simple
random regular graph, where all degrees are the same, as we discuss further below. Molloy
and Reed (1995, 1998) extended it to general degrees. As a result, it is sometimes also called
the Molloy–Reed model. With Xuv equal to the number of edges between vertices u and v,

E[Xuv] =
dudv
`n − 1

, (1.3.30)

since each of the dv half-edges incident to vertex v has probability du/(`n − 1) to be con-
nected to vertex u. Since (1.3.30) is close to the edge probability puv in rank-1 random
graphs (recall Remark 1.5), rank-1 random graphs are sometimes called soft configuration
models. The configuration-model degree constraint is instead viewed as a hard constraint.J

The uniform nature of the configuration model conditioned on simplicity partly explains
its popularity, and it has become one of the most highly studied random graph models. It also
implies that, conditioned on simplicity, the configuration model is the null model for a real-
world network where all the degrees are fixed. This allows one to distinguish the relevance
of the degree inhomogeneity from other features of the network, such as its community
structure, clustering, etc.

As for GRGn(w), we again impose regularity conditions on the degree sequence d. In
order to state these assumptions, we introduce some notation. We denote the degree of a
uniformly chosen vertex o in [n] by Dn = do. The random variable Dn has distribution
function Fn given by

Fn(x) =
1

n

∑
v∈[n]

1{dv≤x}, (1.3.31)

which is the empirical distribution of the degrees. We assume that the vertex degrees satisfy
the following regularity conditions:

Condition 1.7 (Regularity conditions for vertex degrees)

(a) Weak convergence of vertex degrees. There exists a distribution function F such that,
as n→∞,

Dn
d−→ D, (1.3.32)

where Dn and D have distribution functions Fn and F , respectively.
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Equivalently, for any x ∈ R,

lim
n→∞

Fn(x) = F (x). (1.3.33)

Further, we assume that F (0) = 0, i.e., P(D ≥ 1) = 1.
(b) Convergence of average vertex degree. As n→∞,

E[Dn]→ E[D] <∞, (1.3.34)

whereDn andD have the distribution functions Fn and F from part (a) above, respectively.

(c) Convergence of second moment of vertex degrees. As n→∞,

E[D2
n]→ E[D2] ∈ (0,∞), (1.3.35)

where Dn and D have distribution functions Fn and F from part (a) above, respectively.

The possibility that one will obtain a non-simple graph is a major disadvantage of the
configuration model. There are two ways of dealing with this complication, as follows:

Erased Configuration Model
The first way of dealing with self-loops and multi-edges is to erase the problems. This
means that we replace CMn(d) = (Xuv)1≤u≤v≤n by its erased version ECMn(d) =
(X(er)

uv )1≤u≤v≤n, where X(er)
vv ≡ 0, while X(er)

uv = 1 precisely when Xuv ≥ 1. In words,
we remove the self-loops and merge all multiple edges to a single edge. Of course, this
changes the precise degree distribution. However, [V1, Theorem 7.10] (see also Theorem
1.8 below) shows that only a small proportion of the edges is erased, so that the erasing
does not change the asymptotic degree distribution. See [V1, Section 7.3] for more details.
Of course, the downside of this approach is that the degrees are changed by the procedure,
while we would like to keep the degrees precisely as specified.

Let us describe the degree distribution in the erased configuration model in more detail,
to study the effect of the erasure of self-loops and multiple edges. We denote the degrees in
the erased configuration model byD(er) = (D(er)

v )v∈[n], so that

D(er)

v = dv − 2sv −mv, (1.3.36)

where (dv)v∈[n] are the degrees in CMn(d), sv = xvv is the number of self-loops of vertex
v in CMn(d), and

mv =
∑
u6=v

(xuv − 1)1{xuv≥2} (1.3.37)

is the number of multiple edges removed from v.
Denote the empirical degree sequence (p(n)

k )k≥1 in CMn(d) by

p(n)

k = P(Dn = k) =
1

n

∑
v∈[n]

1{dv=k}, (1.3.38)

and denote the related degree sequence in the erased configuration model (P (er)

k )k≥1 by

P (er)

k =
1

n

∑
v∈[n]

1{D(er)
v =k}. (1.3.39)
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From the notation it should be clear that (p(n)

k )k≥1 is a deterministic sequence when d =
(dv)v∈[n] is deterministic, while (P (er)

k )k≥1 is a random sequence, since the erased degrees
(D(er)

v )v∈[n] form a random vector even when d = (dv)v∈[n] is deterministic.
Now we are ready to state the main result concerning the degree sequence of the erased

configuration model:

Theorem 1.8 (Degree sequence of erased configuration model with fixed degrees) For
fixed degrees d satisfying Conditions 1.7(a),(b), the degree sequence of the erased config-
uration model (P (er)

k )k≥1 converges in probability to (pk)k≥1. More precisely, for every
ε > 0,

P
( ∞∑
k=1

|P (er)

k − pk| ≥ ε
)
→ 0, (1.3.40)

where pk = P(D = k) as in Condition 1.7(a).

Proof See [V1, Theorem 7.10].
Theorem 1.8 indeed shows that most of the edges are kept in the erasure procedure; see

Exercise 1.17.

Configuration Model Conditioned on Simplicity
The second solution to the multi-graph problem of the configuration model is to throw away
the result when it is not simple, and try again. Therefore, this construction is sometimes
called the repeated configuration model. It turns out that, when Conditions 1.7(a)–(c) hold
(see [V1, Theorem 7.12]),

lim
n→∞

P(CMn(d) is a simple graph) = e−ν/2−ν
2/4, (1.3.41)

where

ν =
E[D(D − 1)]

E[D]
(1.3.42)

is the expected forward degree. This is a realistic option when E[D2] < ∞. Unfortu-
nately, this is not an option when the asymptotic degrees obey an asymptotic power law with
τ ∈ (2, 3) (as, e.g., in (1.1.12)), since then E[D2] = ∞. Note that, by (1.3.29), CMn(d)
conditioned on simplicity is a uniform random graph with the prescribed degree sequence.
We denote this random graph by UGn(d). We return to the difficulty of generating simple
graphs with infinite-variance degrees in Section 1.3.4 below.

Relation between Generalized Random Graph and Configuration Model
Since CMn(d) conditioned on simplicity yields a uniform (simple) random graph with these
degrees, and, also, by (1.3.25), GRGn(w) conditioned on its degrees is a uniform (simple)
random graph with the given degree distribution, the laws of these (conditioned) random
graph models are the same. As a result, one can prove results for GRGn(w) by proving them
for CMn(d) under the appropriate degree conditions, and then proving that GRGn(w)
satisfies these conditions in probability.

A further useful result in this direction is that the weight regularity conditions in Condi-
tions 1.1(a),(b) imply the degree regularity conditions in Conditions 1.7(a),(b):
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Theorem 1.9 (Regularity conditions for weights and degrees) Let dv be the degree of
vertex v in GRGn(w), and let d = (dv)v∈[n]. Then, d satisfies Conditions 1.7(a),(b) in
probability whenw satisfies Conditions 1.1(a),(b), where

P(D = k) = E
[W k

k!
e−W

]
(1.3.43)

denotes the mixed-Poisson distribution with mixing distributionW having distribution func-
tion F in Condition 1.1(a). Further, d satisfies Conditions 1.7(a)–(c) in probability whenw
satisfies Conditions 1.1(a)–(c).

Proof See [V1, Theorem 7.19]. The weak convergence in Condition 1.7(a) follows from
Theorem 1.3.

Remark 1.10 (Proving results for GRGn(w) through CMn(d)) Combined with Theorem
1.4, Theorem 1.9 allows us to prove many results for the generalized random graph by first
proving them for the configuration model under appropriate conditions on its degrees, and
then extending them to the generalized random graph by proving that its degrees satisfy the
assumptions made. In particular, any property that holds in probability for CMn(d) can be
extended to GRGn(w) in this way. See [V1, Sections 6.6 and 7.5] for more details. This
strategy is also frequently used in the present volume. J

A Useful Degree-Truncation Argument for Heavy-Tailed Degrees
Recall from Section 1.1.2 that many real-world networks have substantial inhomogeneities
in their degrees. As a result, we frequently discuss configuration models with power-law
degrees, giving rise to degree distributions with maxima that grow as a positive power of
n. Such large degrees can be inconvenient in technical estimates. We next present a useful
degree-truncation argument for the configuration model, which allows us to compare such
a model with an alternative configuration model with bounded degrees. In its statement, we
write x ∧ y for the minimum of x, y ∈ R:

Theorem 1.11 (Degree truncation for configuration models) Consider CMn(d) with gen-
eral degrees. Fix b ≥ 1. There exists a related configuration model CMn′(d

′) with n′ ≥ n
that is coupled to CMn(d) and satisfies the following:

(a) the degrees in CMn′(d
′) are a truncated version of those in CMn(d), i.e., d′v = (dv∧b)

for v ∈ [n], and d′v = 1 for v ∈ [n′] \ [n];
(b) the total degree in CMn′(d

′) is the same as that in CMn(d), i.e.,
∑

v∈[n′]d
′
v=
∑

v∈[n]dv;
(c) for all u, v ∈ [n], if u and v are connected in CMn′(d

′), then so are u and v in
CMn(d), i.e., distCMn(d)(u, v) ≤ distCM

n′ (d
′)(u, v) almost surely.

Remark 1.12 (Truncation of degrees in range) The construction that proves Theorem 1.11
is highly flexible, and also allows for a degree truncation that maintains restrictions on the
minimal degree dmin = minv∈[n] dv. Indeed, fix b ≥ 2. There exists a related configuration
model CMn′(d

′) satisfying (b) and (c) in Theorem 1.11, while (a) is replaced by d′v = dv
when dv < 2b, by d′v = b when dv ≥ 2b for v ∈ [n], and by b ≤ d′v < 2b for v ∈ [n′]\ [n],
so that d′min = minv∈[n′] d

′
v ≥ dmin ∧ b. J
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Proof The proof relies on an “explosion” or “fragmentation” of the vertices [n] in CMn(d).
Label the half-edges from 1 to `n. We go through the vertices v ∈ [n] one by one. When
dv ≤ b, we do nothing. When dv > b, we let d′v = b and keep the b half-edges with the
lowest labels. The remaining dv − b half-edges are exploded from vertex v, in that they
are incident to vertices of degree 1 in CMn′(d

′), and are given vertex labels above n. We
give the exploded half-edges the remaining labels of the half-edges incident to v. Thus, the
half-edges receive labels both in CMn(d) as well as in CMn′(d

′), and the labels of the half-
edges incident to v ∈ [n] in CMn′(d

′) are a subset of those in CMn(d). In total, we thus
create an extra n+ =

∑
v∈[n](dv−b)∨0 “exploded” vertices of degree 1, and n′ = n+n+,

where x ∨ y denotes the maximum of x, y ∈ R.
We then pair the half-edges randomly, in the same way in CMn(d) as in CMn′(d

′). This
means that when the half-edge with label x is paired with the half-edge with label y in
CMn(d), then also the half-edge with label x is paired with the half-edge with label y in
CMn′(d

′), for all x, y ∈ [`n].
We now check parts (a)–(c). Obviously parts (a) and (b) follow from the construction. For

part (c), we note that all exploded vertices in [n+] \ [n] have degree 1. Further, for vertices
u, v ∈ [n], if there exists a path in CMn′(d

′) connecting them then the intermediate vertices
have degree at least 2, so that they cannot correspond to exploded vertices and must there-
fore in CMn′(d

′) have labels in [n]. Thus, the same path of paired half-edges also exists in
CMn(d), so that u and v are also connected in CMn(d).

We conclude by adapting the construction to prove the statement in Remark 1.12. We
again go through the vertices v ∈ [n] one by one. When dv < 2b, we do nothing. When
dv ≥ 2b, we let d′v = b and keep the b half-edges with the lowest labels. The remain-
ing dv − b half-edges are exploded from vertex v, in that they are incident to “exploded”
vertices that all have degree b in CMn′(d

′) possibly except for one vertex that has de-
gree in [b, 2b), and are given vertex labels above n. This means that a vertex of degree
dv ≥ 2b is replaced by one vertex in [n] and bdv/bc − 1 vertices in [n′] \ [n], of which all,
possibly except for the last vertex, have degree b, and the degree of the last vertex equals
dv − b(bdv/bc − 1) ∈ [b, 2b). We again give the exploded half-edges the remaining labels
of the half-edges incident to v. This identifies the desired construction for Remark 1.12. For
part (c), we note that the half-edges incident to exploded vertices arise from the same vertex
in [n] as before explosion, so a path between vertices u′, v′ ∈ [n′] in CMn′(d

′) implies that
a path between the vertices u, v ∈ [n] that correspond to u′, v′ exists. This implies that part
(c) holds.

1.3.4 UNIFORM RANDOM GRAPHS AND SWITCHING ALGORITHMS FOR THEM

So far, we have focussed on obtaining a uniform random graph with a prescribed degree
sequence by conditioning the configuration model on being simple. As explained above,
this does not work so well when the degrees have infinite variance. Another setting where
this method fails to deliver occurs when the average degree is large rather than bounded, so
that the graph is no longer sparse in the strict sense (recall Section 1.1.1).

An alternative method for producing a sample from the uniform distribution on simple
graphs uses a switching algorithm. A switching algorithm is a Markov chain on the space of
simple graphs, where, in each step, some edges in the graph are rewired while keeping the
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graph simple. Under mild conditions on the precise switching dynamics, the uniform distri-
bution is the stationary distribution of this Markov chain, so letting the switching algorithm
run for an infinitely long time, we obtain a perfect sample from the uniform distribution. The
“mild” conditions follow, for example, when the switch chain is doubly stochastic.

Switching algorithms can also be used rather effectively to compute probabilities of cer-
tain events for uniform random graphs with specified degrees, as we explain later. As such,
switching methods form an indispensable tool in studying uniform random graphs with pre-
scribed degrees. We start by explaining the basic switching algorithms and their relation to
uniform sampling.

Switch Markov Chain
The switch Markov chain is a Markov chain on the space of simple graphs with prescribed
degrees given by d. Fix a simple graph G = ([n], E(G)) for which the degree of vertex v
equals dv for all v ∈ [n]. We assume that such a simple graph exists, i.e., we assume that
d = (dv)v∈[n] is graphical.

In order to describe the dynamics of the switch chain, choose two edges {u, v} and {x, y}
uar from the edge set E(G), where G is the current simple graph. The possible switches of
these two edges are (1) {u, x} and {v, y}; (2) {v, x} and {u, y}; and (3) {u, v} and {x, y}
(so that no change is made). Choose each of these three options with probability equal to 1

3
,

and write the chosen edges as e1, e2. Accept the switch when the resulting graph with edges
{e1, e2}∪ (E(G)\

{
{u, v}, {x, y}

}
) is simple, and reject the switch otherwise (so that the

graph remains unchanged under the dynamics).
It is not hard to see that the resulting Markov chain is aperiodic and irreducible. Further,

the switch chain is doubly stochastic since it is reversible. As a result, its stationary dis-
tribution is the uniform random graph with prescribed degree sequence d, which we have
denoted by UGn(d), as required.

The above method works rather generally, and, in the limit of infinitely many switches,
produces a sample from UGn(d) for every graphical degree sequence, even when the de-
grees are large. As a result, this chain is the method of choice to produce a sample of
UGn(d) when the probability of simplicity of the configuration model vanishes. However,
it is unclear precisely how often one needs to switch in order for the Markov chain to be
sufficiently close to the uniform (and thus stationary) distribution. See the notes in Section
1.6 for a discussion of the history of the switch chain, as well as the available results about
its convergence.

Switching Methods for Random Graphs with Prescribed Degrees
Switching algorithms can also be used to prove properties about uniform random graphs with
prescribed degrees. Here, we explain how switching can be used to estimate the connection
probability between vertices of specific degrees in a uniform random graph. Recall that
`n =

∑
v∈[n] dv. Then, the asymptotics for the edge probabilities for UGn(d) are given in

the following theorem, where E(UGn(d)) denotes the edge set of UGn(d):

Theorem 1.13 (Edge probabilities for uniform random graphs with prescribed degrees)
Assume that the empirical distribution Fn of d satisfies, for all x ≥ 1,

https://doi.org/10.1017/9781316795552.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316795552.002


1.3 Random Graph Models 29

[1− Fn](x) ≤ cFx−(τ−1), (1.3.44)

for some cF > 0 and τ ∈ (2, 3). Let U denote a set of unordered pairs of vertices and let
EU = {{s, t} ∈ E(UGn(d)) ∀{s, t} ∈ U} denote the event that {s, t} is an edge for
every {s, t} ∈ U . Then, assuming that |U | = O(1), for every {u, v} /∈ U ,

P({u, v} ∈ E(UGn(d)) | EU) = (1 + o(1))
(du − |Uu|)(dv − |Uv|)

`n + (du − |Uu|)(dv − |Uv|)
, (1.3.45)

where Uv denotes the set of pairs in U that contain v ∈ [n].

Remark 1.14 (Relation to ECMn(d) and GRGn(w)) Theorem 1.13 shows that, when
dudv � `n,

1− P({u, v} ∈ E(UGn(d))) = (1 + o(1))
`n
dudv

. (1.3.46)

In the erased configuration model, on the other hand,

1− P({u, v} ∈ E(ECMn(d))) ≤ e−dudv/(2`n), (1.3.47)

as will be crucially used in Chapter 7 below (see Lemma 7.12 for a proof of (1.3.47)).
Thus, the probability that two high-degree vertices are not connected is much smaller for
ECMn(d) than for UGn(d). On a related note, the fact that

P({u, v} ∈ E(UGn(d))) ≈ dudv
`n + dudv

,

as in GRGn(w) when w = d, indicates once more that GRGn(w) and UGn(d) are
closely related. J

We now proceed with the proof of Theorem 1.13. We first prove a useful lemma about
the number of 2-paths starting from a specified vertex, where a 2-path is a path consisting of
two edges:

Lemma 1.15 (The number of 2-paths) Assume that d satisfies (1.3.44) for some cF > 0
and τ ∈ (2, 3). For any graphG whose degree sequence is d, the number of 2-paths starting
from any specified vertex is O(n(2τ−3)/(τ−1)2

) = o(n).

Proof Without loss of generality we may assume that the degrees are ordered from large to
small as d1 ≥ d2 ≥ · · · ≥ dn. Then, for every v ∈ [n], the number of vertices with degree
at least dv is at least v. By (1.3.44), for every v ∈ [n],

cFn(dv − 1)1−τ ≥ n[1− Fn](dv − 1) ≥ v. (1.3.48)
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Thus, dv ≤ (cFn/v)
1/(τ−1)

+ 1. The number of 2-paths from any vertex is bounded by∑d1

v=1 dv, which is at most

d1∑
v=1

((cFn
v

)1/(τ−1)

+ 1
)

= (cFn)
1/(τ−1)

d1∑
v=1

v−1/(τ−1) + d1 (1.3.49)

= O
(
n1/(τ−1)

)
d

(τ−2)/(τ−1)
1 = O

(
n(2τ−3)/(τ−1)2

)
,

since d1 ≤ (cFn)1/(τ−1) + 1. Since τ ∈ (2, 3), the above is o(n).

Proof of Theorem 1.13. To compute the asymptotics of P({u, v} ∈ E(UGn(d)) | EU),
we switch between two classes of graphs, S and S̄ . Class S consists of graphs where all
edges in {u, v}∪U are present, whereas S̄ consists of all graphs where every {s, t} ∈ U is
present, but {u, v} is not. Recall that EU = {{s, t} ∈ E(UGn(d)) ∀{s, t} ∈ U} denotes
the event that {s, t} is an edge for every {s, t} ∈ U . Then, since the law on simple graphs
is uniform (see also Exercise 1.18),

P({u, v} ∈ E(UGn(d)) | EU) =
|S|

|S|+ |S̄|
=

1

1 + |S̄|/|S|
, (1.3.50)

and we are left to compute the asymptotics of |S̄|/|S|.
For this, we define an operation called a forward switching that converts a graph in G ∈
S to a graph G′ ∈ S̄ . The reverse operation, converting G′ to G, is called a backward
switching. Then we estimate |S̄|/|S| by counting the number of forward switchings that can
be applied to the graph G ∈ S , and the number of backward switchings that can be applied
to the graph G′ ∈ S̄ . In our switching, we wish to have control on whether {u, v} is present
or not, so we tune it to take this restriction into account.

The forward switching on G ∈ S is defined by choosing two edges and specifying their
ends as {x, a} and {y, b}. We write this as directed edges (x, a) since the roles of x and a
are different, as indicated in Figure 1.7. We assume that EU occurs. The choice must satisfy
the following constraints:

(1) none of {u, x}, {v, y}, or {a, b} is an edge in G;
(2) {x, a}, {y, b} 6∈ U ;
(3) all of u, v, x, y, a, and b must be distinct except that x = y is permitted.

Figure 1.7 Forward and backward switchings. The edge {u, v} is present on the
left, but not on the right.
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Given a valid choice, forward switching replaces the three edges {u, v}, {x, a}, and {y, b}
by {u, x}, {v, y}, and {a, b}, while ensuring that the graph after switching is simple. Note
that forward switching preserves the degree sequence, and converts a graph in S to a graph
in S̄ . See Figure 1.7 for an illustration of both the forward and backward switchings.

Next, we estimate the number of ways to perform a forward switching to a graph G in S ,
denoted by f(G), and the number of ways to perform a backward switching to a graph G′

in S̄ , denoted by b(G). The number of total switchings between S and S̄ is equal to (see
Exercise 1.19)

|S|E[f(G)] = |S̄|E[b(G′)], (1.3.51)

where the expectation is over a uniformly random G ∈ S on the left-hand side, and over a
uniformly random G′ ∈ S̄ on the right-hand side, respectively. Consequently,

|S̄|
|S|

=
E[f(G)]

E[b(G′)]
. (1.3.52)

We next compute each of these factors.

The Number of Forward Switchings: Computing E[f(G)]

Given an arbitrary graph G ∈ S , the number of ways to carry out a forward switching is at
most `2n, since there are at most `n ways to choose (x, a), and at most `n ways to choose
(y, b). Note that choosing (x, a) for the first directed edge and (y, b) for the second directed
edge results in a different switch from vice versa.

To find a lower bound on the number of ways of performing a forward switching, we
subtract from `2n an upper bound on the number of invalid choices for (x, a) and (y, b).
Such invalid choices can be categorized as follows:

(a) at least one of {u, x}, {a, b}, {v, y} is an edge in G;
(b) at least one of {x, a} or {y, b} is in U ;
(c) any vertex overlap other than x = y (i.e., if one of a or b is equal to one of x or y, or if

a = b, or if one of u or v is one of {a, b, x, y}).

We now bound all these different categories of invalid choices. To find an upper bound
for (a), note that any choice in case (a) must involve a single edge, and a 2-path starting from
a specified vertex. By Lemma 1.15, the number of choices for (a) is then upper bounded by
3 × o(`n) × `n = o(`2n) (noting that n = Θ(`n)). The number of choices for case (b) is
O(`n), as |U | = O(1), and there are at most `n ways to choose the other directed edge,
which is not restricted to be in U .

To bound the number of choices for (c), we investigate each case:

(c1) Either a or b is equal to x or y, or a = b. In this case, x, y, a, b forms a 2-path in G.
Thus, there are at most 5×n×o(`n) = o(`2n) choices (noting that n = Θ(`n)), where
n is the number of ways to choose a vertex, and o(`n) bounds the number of 2-paths
starting from this specified vertex.

(c2) One of u and v is one of {a, b, x, y}. In this case, there is one 2-path starting from u
or v, and a single edge. Thus, there are at most 8× `n× dmax = o(`2n) choices, where
dmax = maxv∈[n] dv bounds the number of ways to choose a vertex adjacent to u or v
and `n bounds the number of ways to choose a single edge, by Lemma 1.15.
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Thus, the number of invalid choices for (x, a) and (y, b) is o(`2n), so that the number of
forward switchings which can be applied to any G ∈ S is (1 + o(1))`2n. We conclude that

E[f(G)] = (1 + o(1))`2n. (1.3.53)

The Number of Backward Switchings: Computing E[b(G′)]

Given a graph G′ ∈ S̄ , consider the backward switchings that can be applied to G′. There
are at most `n(du − |Uu|)(dv − |Uv|) ways to do the backward switching, since we are
choosing an edge that is adjacent to u but not in U , an edge that is adjacent to v but not in
U , and another directed edge (a, b). For a lower bound, we consider the following forbidden
choices:

(a′) at least one of {x, a} or {y, b} is an edge;

(b′) {a, b} ∈ U ;

(c′) any vertices overlapping other than x = y (i.e., when {a, b} ∩ {u, v, x, y} 6= ∅).

We now go through each of these forbidden cases.
For (a′), suppose that {x, a} is present, giving the 2-path {x, a}, {a, b} in G′. There

are at most (du − |Uu|)(dv − |Uv|) ways to choose x and y. Given any choice for x and
y, by Lemma 1.15, there are at most o(`n) ways to choose a 2-path starting from x in
G′, and hence o(`n) ways to choose a, b. Thus, the total number of choices is at most
o((du − |Uu|)(dv − |Uv|)`n). The case where {y, b} is an edge is symmetric.

For (b′), there are O(1) choices for choosing {a, b} since |U | = O(1), and at most
(du − |Uu|)(dv − |Uv|) choices for x and y. Thus, the number of choices for case (b′) is
O((du − |Uu|)(dv − |Uv|)) = o((du − |Uu|)(dv − |Uv|)`n).

For (c′), the case where a or b is equal to x or y corresponds to a 2-path starting from u or
v together with a single edge from u or v. Since o(`n) bounds the number of 2-paths starting
from u or v and du−|Uu|+dv−|Uv| bounds the number of ways to choose the single edge,
there are o(`n(dv−|Uv|))+o(`n(du−|Uu|)) total choices. If a or b is equal to u or v, there
are (du − |Uu|)(dv − |Uv|) ways to choose x and y, and at most du + dv ways to choose
the last vertex as a neighbor of u or v. Thus, there are O((du − |Uu|)(dv − |Uv|)dmax) =
o((du − |Uu|)(dv − |Uv|)`n) total choices, since dmax = O(n1/(τ−1)) = o(n) = o(`n).

We conclude that the number of backward switchings that can be applied to any graph
G′ ∈ S ′ is (du − |Uu|)(dv − |Uv|)`n(1 + o(1)), so that

E[b(G′)] = (du − |Uu|)(dv − |Uv|)`n(1 + o(1)). (1.3.54)

Conclusion
Combining (1.3.52), (1.3.53), and (1.3.54) results in

|S̄|/|S| = (1 + o(1))
`2n

(du − |Uu|)(dv − |Uv|)`n
, (1.3.55)
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and thus (1.3.50) yields

P({u, v} ∈ E(UGn(d)) | EU) =
1

1 + |S̄|/|S|

= (1 + o(1))
(du − |Uu|)(dv − |Uv|)

`n + (du − |Uu|)(dv − |Uv|)
. (1.3.56)

Remark 1.16 (Uniform random graphs and configuration models) Owing to the close links
between uniform random graphs with prescribed degrees and configuration models, we treat
the two models together, in Chapters 4 and 7. J

1.3.5 PREFERENTIAL ATTACHMENT MODELS

Most networks grow in time. Preferential attachment models describe growing networks,
where the numbers of edges and vertices grow with time. Here we give a brief introduc-
tion. The model that we investigate produces a graph sequence denoted by (PA(m,δ)

n (a))n≥1

and which, for every time n, yields a graph of n vertices and mn edges for some m =
1, 2, . . . This model is denoted by (PA(m,δ)

n (a))n≥1 in [V1, Chapter 8]. Below, we define
(PA(m,δ)

n (b))n≥1 and (PA(m,δ)

n (d))n≥1, which are variations of this model.
We start by defining the model for m = 1, for which the graph consists of a collection of

trees. In this case, PA(1,δ)

1 (a) consists of a single vertex with a single self-loop. We denote
the vertices of PA(1,δ)

n (a) by v(1)

1 , . . . , v(1)

n . We denote the degree of vertex v(1)

i in PA(1,δ)

n (a)
by Di(n), where, by convention, a self-loop increases the degree by 2.

We next describe the evolution of the graph. Conditional on PA(1,δ)

n (a), the growth rule
to obtain PA(1,δ)

n+1(a) is as follows. Add a single vertex v(1)

n+1 having a single edge. This edge
is connected to a second vertex (including itself), according to the probabilities

P
(
v(1)

n+1 → v(1)

i | PA(1,δ)

n (a)
)

=


1 + δ

n(2 + δ) + (1 + δ)
for i = n+ 1,

Di(n) + δ

n(2 + δ) + (1 + δ)
for i ∈ [n].

(1.3.57)

This preferential attachment mechanism is called affine, since the attachment probabilities
in (1.3.57) depend in an affine way on the degrees of the random graph PA(1,δ)

n (a).
The model with m > 1 is defined in terms of the model for m = 1 as follows. Fix δ ≥
−m. We start with PA(1,δ/m)

mn (a), and denote the vertices in PA(1,δ/m)

mn (a) by v(1)

1 , . . . , v(1)

mn.
Then we identify or collapse the m vertices v(1)

1 , . . . , v(1)

m in PA(1,δ/m)

mn (a) to become vertex
v(m)

1 in PA(m,δ)

n (a). In doing so, we let all the edges that are incident to any of the vertices
in v(1)

1 , . . . , v(1)

m be incident to the new vertex v(m)

1 in PA(m,δ)

n (a). Then, we collapse the
m vertices v(1)

m+1, . . . , v
(1)

2m in PA(1,δ/m)

mn (a) to become vertex v(m)

2 in PA(m,δ)

n (a), etc. More
generally, we collapse the m vertices v(1)

(j−1)m+1, . . . , v
(1)

jm in PA(1,δ/m)

mn (a) to become vertex
v(m)

j in PA(m,δ)

n (a). This defines the model for general m ≥ 1.
The resulting graph PA(m,δ)

n (a) is a multi-graph with precisely n vertices and mn edges,
so that the total degree is equal to 2mn. The model with δ = 0 is sometimes called the
proportional model. The inclusion of the extra parameter δ > −m is relevant, though, as
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we will see later. It can be useful to think of edges and vertices as carrying weights, where a
vertex has weight δ and an edge has weight 1. Then, the vertex v(1)

n+1 attaches its edges with
a probability proportional to the weight of the vertex plus the edges to which it is incident.
This, for example, explains why PA(1,δ/m)

mn (a) needs to be used in the collapsing procedure,
rather than PA(1,δ)

mn (a).
The preferential attachment model (PA(m,δ)

n (a))n≥1 is increasing in time, in the sense
that vertices and edges, once they have appeared, remain there forever. Thus, the degrees
are monotonically increasing in time. Moreover, vertices with a high degree have a higher
chance of attracting further edges of later vertices. Therefore, the model is sometimes called
the rich-get-richer model. It is not hard to see that Di(n)

a.s.−→ ∞ for each fixed i ≥ 1,
as n → ∞ (see Exercise 1.20). As a result, one could also call the preferential attachment
model the old-get-richer model.

Degrees of Fixed Vertices
We start by investigating the degrees of fixed vertices as n→∞, i.e., we will study Di(n)
for fixed i as n → ∞. To formulate our results, we define the Gamma function t 7→ Γ(t)
for t > 0 by

Γ(t) =

∫ ∞
0

xt−1e−xdx. (1.3.58)

The following theorem describes the evolution of the degree of fixed vertices:

Theorem 1.17 (Degrees of fixed vertices) Consider PA(m,δ)

n (a) withm ≥ 1 and δ > −m.
Then, Di(n)/n1/(2+δ/m) converges almost surely to a random variable ξi as n→∞.

Proof This is to be found in [V1, Theorem 8.2 and (8.3.11)].

It turns out that also n−1/(2+δ/m) maxv∈[n]Dv(n)
a.s.−→ M for some limiting positive

and finite random variable M (see [V1, Section 8.7]). In analogy to iid random variables,
this fact suggests that the degree of a random vertex satisfies a power law with power-law
exponent τ = 3 + δ/m, and this is our next item on the agenda.

Degree Sequence of the Preferential Attachment Model
We write

Pk(n) =
1

n

∑
i∈[n]

1{Di(n)=k} (1.3.59)

for the (random) proportion of vertices with degree k at time n. For m ≥ 1 and δ > −m,
we define (pk)k≥0 by pk = 0 for k = 0, . . . ,m− 1 and, for k ≥ m,

pk = (2 + δ/m)
Γ(k + δ)Γ(m+ 2 + δ + δ/m)

Γ(m+ δ)Γ(k + 3 + δ + δ/m)
. (1.3.60)

It turns out that (pk)k≥0 is a probability mass function (see [V1, Section 8.4]). It arises as
the limiting degree distribution for PA(m,δ)

n (a), as shown in the following theorem:
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Theorem 1.18 (Degree sequence in preferential attachment model) Consider PA(m,δ)

n (a)
withm ≥ 1 and δ > −m. There exists a constantC = C(m, δ) > 0 such that, as n→∞,

P
(

max
k
|Pk(n)− pk| ≥ C

√
log n

n

)
= o(1). (1.3.61)

Proof See [V1, Theorem 8.3].

We next investigate the scale-free properties of (pk)k≥0 by investigating the asymptotics
of pk for k large. By (1.3.60) and Stirling’s formula, as k →∞ we have

pk = cm,δk
−τ (1 +O(1/k)), (1.3.62)

where

τ = 3 + δ/m > 2, and cm,δ = (2 + δ/m)
Γ(m+ 2 + δ + δ/m)

Γ(m+ δ)
. (1.3.63)

Therefore, by Theorem 1.18 and (1.3.62), the asymptotic degree sequence of PA(m,δ)

n (a) is
close to a power law with exponent τ = 3 + δ/m. We note that any exponent τ > 2 can be
obtained by choosing δ > −m and m ≥ 1 appropriately.

Related Preferential Attachment Rules
In this book, we also sometimes investigate the related (PA(m,δ)

n (b))n≥1 model, in which
self-loops for m = 1 in (1.3.57) are not allowed, so that

P
(
v(1)

n+1 → v(1)

i | PA(1,δ)

n (b)
)

=
Di(n) + δ

n(2 + δ)
for i ∈ [n]. (1.3.64)

For m = 1, this model starts with two vertices and two edges in between, so that at time n,
there are precisely n edges. The model for m ≥ 2 is again defined in terms of the model
(PA(1,δ/m)

nm (b))n≥1 for m = 1 by collapsing blocks of m vertices, so that PA(m,δ)

n (b) has n
vertices and mn edges. The advantage of (PA(m,δ)

n (b))n≥1 compared to (PA(m,δ)

n (a))n≥1 is
that (PA(m,δ)

n (b))n≥1 is naturally connected, while (PA(m,δ)

n (a))n≥1 may not be. Note that
PA(m,δ)

n (b) can contain self-loops when m ≥ 2, due to the collapsing procedure.
(Model (PA(m,δ)

n (c))n≥1, as formulated in [V1, Section 8.3], is defined by connecting
edges with probability α to a uniformly chosen vertex and with probability 1−α to a vertex
chosen proportionally to its degrees. It turns out to be equivalent to (PA(m,δ)

n (a))n≥1. We
will not discuss this model further here.)

Another adaptation of the preferential attachment rule arises when no self-loops are ever
allowed, while the degrees are updated when the m edges incident to the new vertex are
being attached. We denote this model by (PA(m,δ)

n (d))n≥1. In this case, the model starts at
time n = 2 with two vertices labeled 1 and 2, and m edges between them. PA(m,δ)

n (d) has
vertex set [n], and m(n− 1) edges. At time n+ 1, for m ≥ 1 and j ∈ {0, . . . ,m− 1}, we
attach the (j + 1)th edge of vertex v(m)

n+1 to vertex v(m)

i with probability

P
(
v(m)

n+1,j+1 → v(m)

i | PA(m,δ)

n,j (d)
)

=
Di(n, j) + δ

n(2m+ δ)
for i ∈ [n]. (1.3.65)
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Here, Di(n, j) is the degree of vertex v(m)

i after the connection of the edges incident to the
first n+ 1 vertices, as well as the first j edges incident to vertex v(m)

n+1, and PA(m,δ)

n,j (d) is the
graph of the first n vertices, as well as the first j edges incident to vertex v(m)

n+1. The model
is by default connected, and at time n consists of n+ 1 vertices and mn edges. For m = 1,
apart from the different starting graphs, models (b) and (d) are identical. Indeed, PA(1,δ)

n (b)
for n = 2 consist of two vertices with two edges between them, while PA(1,δ)

n (d) for n = 2
consists of two vertices with one edge between them for PA(1,δ)

n (d).
Many other adaptations are possible and have been investigated in the literature, such

as settings where the m edges incident to v(m)

n+1 are independently connected as in (1.3.65)
when j = 0. We refrain from discussing these. It is not hard to verify that Theorem 1.18
holds for all these adaptations, which explains why authors have often opted for the version
of the model that is most convenient for them. From the perspective of local convergence, it
turns out that (PA(m,δ)

n (d))n≥1 is the most convenient, as we will see in Chapter 5. On the
other hand, Theorem 1.17 contains minor adaptations between models, particularly since the
limiting random variables (ξi)i≥1 do depend on the precise model.

Bernoulli Preferential Attachment Model
We finally discuss a model that is quite a bit different from the other preferential attachment
models discussed above. The main difference is that in this model, the number of edges is
not fixed, but instead there is conditional independence in the edge attachments. We call
this model the Bernoulli preferential attachment model, as the attachment indicators are all
conditionally independent Bernoulli variables. Let us now give the details.

Fix a preferential attachment function f : N0 7→ (0,∞). Then, the graph evolves as
follows. We start with a graph BPA(f)

1 containing one vertex v1 and no edges. At each
time n ≥ 2, we add a vertex vn. Conditional on BPA(f)

n−1, and independently for every
v ∈ [n− 1], we connect this vertex to v by a directed edge with probability

f(D(in)

v (n− 1))

n− 1
, (1.3.66)

where D(in)

v (n − 1) is the in-degree of vertex v at time n − 1. This creates the random
graph BPA(f)

n . Note that the number of edges in the random graph process (BPA(f)

n )n≥1 is
a random variable, and thus not fixed. In particular, it makes a difference whether we use the
in-degree in (1.3.66) or the total degree.

We consider functions f : N 7→ (0,∞) that satisfy that f(k + 1) − f(k) < 1 for every
k ≥ 0. Under this assumption and when f(0) ≤ 1, the empirical degree sequence converges
as n→∞, i.e.,

Pk(n) ≡ 1

n

∑
i∈[n]

1{Di(n)=k}
P−→ pk, where pk =

1

1 + f(k)

k−1∏
l=0

f(l)

1 + f(l)
. (1.3.67)

In particular, log(1/pk)/ log k → 1+1/γ when f(k)/k → γ ∈ (0, 1) (see Exercise 1.23).
Remarkably, when f(k) = γk+ β, the power-law exponent of the degree distribution does
not depend on β. The restriction that f(k+ 1)− f(k) < 1 is needed to prevent the degrees
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from exploding. Further, log(1/pk) ∼ k1−α/(γ(1 − α)) when f(k) ∼ γkα for some
α ∈ (0, 1) (see Exercise 1.24). Interestingly, there exists a persistent hub, i.e., a vertex
that has maximal degree for all but finitely many times, when

∑
k≥1 1/f(k)2 < ∞. When∑

k≥1 1/f(k)2 =∞, this does not happen.

1.3.6 UNIVERSALITY OF RANDOM GRAPHS

There are many other graph topologies where one can expect results similar to those in
the random graphs discussed above. We will discuss many related models in Chapter 9,
where we include several settings that are relevant in practice, such as directed graphs as
well as graphs with community structure and geometry. The random graph models that we
investigate are inhomogeneous, and one can expect that the results depend sensitively on the
amount of inhomogeneity present. This is reflected in the results that we prove, where the
precise asymptotics is different when the vertices have heavy-tailed rather than light-tailed
degrees. However, interestingly, what is “heavy tailed” and what is “light tailed” depends on
the precise model and setting at hand. Often, as we will see, the distinction depends on how
many moments the degree distribution has.

We have proposed many random graph models for real-world networks. Since these mod-
els aim at describing similar real-world networks, one would hope that they also give simi-
lar answers. Indeed, for a real-world network with a power-law degree sequence, we could
model its static structure by the configuration model with the same degree sequence, and its
dynamical properties by the preferential attachment model with similar scale-free degrees.
How do we interpret implications to the real world when these attempts give completely
different predictions?

Universality is the phrase physicists use when different models display similar behavior.
Models that show similar behavior are then in the same universality class. Enormous effort
has gone, and is currently going, into deciding whether various random graph models are
in the same universality class, or rather in different ones, and why. We will see that the
degree distribution decides the universality class for a wide range of models, as one might
possibly hope. This also explains why the degree distribution plays such a dominant role in
the investigation of random graphs. See Chapter 9 for more details.

1.4 POWER LAWS AND THEIR PROPERTIES

In this book, we frequently deal with random variables having an (asymptotic) power-law
distribution. For such random variables, we often need to investigate truncated moments,
and we also often deal with their sized-biased distribution. In this section, we collect some
results concerning power-law random variables. We start by recalling the definition of a
power-law distribution:

Definition 1.19 (Power-law distributions) We say thatX has a power-law distribution with
exponent τ when there exists a function x 7→ L(x) that is slowly varying at infinity such
that

1− FX(x) = P(X > x) = L(x)x−(τ−1). (1.4.1)
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Here, we recall that a function x 7→ L(x) is slowly varying at infinity when, for every t > 0,

lim
x→∞

L(xt)

L(x)
= 1. (1.4.2)

J

A crucial result about slowly varying functions is Potter’s Theorem, which we next recall:

Theorem 1.20 (Potter’s Theorem) Let x 7→ L(x) be slowly varying at infinity. For every
δ, there exists a constant Cδ ≥ 1 such that, for all x ≥ 1,

x−δ/Cδ ≤ L(x) ≤ Cδxδ. (1.4.3)

Theorem 1.20 implies that the tail of any general power-law distribution, as in Definition
1.19, can be bounded above and below by that of a pure power-law distribution (i.e., one
without a slowly varying function) with a slightly adapted power-law exponent. As a result,
we can often deal with pure power laws instead.

We continue by studying the relation between power-law tails of the empirical degree
distribution and bounds on the degrees themselves:

Lemma 1.21 (Tail and degree bounds) Let d = (dv)v∈[n] be a degree distribution, d(1) ≥
d(2) ≥ · · · ≥ d(n−1) ≥ d(n) its non-increasing ordered version, and

Fn(x) =
1

n

∑
v∈[n]

1{dv≤x} (1.4.4)

its empirical distribution. Then

[1− Fn](x) ≤ cFx−(τ−1) ∀x ≥ 1 (1.4.5)

implies that

d(v) ≤ (cFn/v)
1/(τ−1)

+ 1 ∀v ∈ [n], (1.4.6)

while

d(v) ≤ (cFn/v)
1/(τ−1) ∀v ∈ [n] (1.4.7)

implies that

[1− Fn](x) ≤ cFx−(τ−1) ∀x ≥ 1. (1.4.8)

Proof Assume first that (1.4.5) holds. For every v ∈ [n], the number of vertices with
degree at least d(v) is at least v. By (1.4.5), for every v ∈ [n],

cFn(d(v) − 1)1−τ ≥ n[1− Fn](d(v) − 1) ≥ v. (1.4.9)

Thus, d(v) ≤ (cFn/v)
1/(τ−1)

+ 1, as required.
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Next, assume that (1.4.7) holds. Then

[1− Fn](x) =
1

n

∑
v∈[n]

1{dv>x} =
1

n

∑
v∈[n]

1{d(v)>x}

≤ 1

n

∑
v∈[n]

1{(cFn/v)1/(τ−1)>x}

=
1

n

∑
v∈[n]

1{v<ncF x−(τ−1)} ≤ cFx−(τ−1), (1.4.10)

as required.

We next study truncated moments of random variables whose tail is bounded by that of a
power law:

Lemma 1.22 (Truncated moments) Let X be a non-negative random variable whose dis-
tribution function FX(x) = P(X ≤ x) satisfies, for every x ≥ 1,

1− FX(x) ≤ CXx
−(τ−1). (1.4.11)

Then, for all a < τ − 1, there exists a constant CX(a) such that, for all ` ≥ 1,

E[Xa1{X>`}] ≤ CX(a)`a−(τ−1), (1.4.12)

while, for a > τ − 1 and all ` ≥ 1,

E[Xa1{X≤`}] ≤ CX(a)`a−(τ−1). (1.4.13)

Proof We note that for any cumulative distribution function x 7→ FX(x) on the non-
negative reals, we have a partial integration identity, stating that, for every f : R→ R,∫ ∞

u

f(x)FX(dx) = f(u)[1− FX(u)] +

∫ ∞
u

[f(x)− f(u)]FX(dx)

= f(u)[1− FX(u)] +

∫ ∞
u

∫ x

u

f ′(y)dyFX(dx)

= f(u)[1− FX(u)] +

∫ ∞
u

f ′(y)

∫ ∞
y

FX(dx)dy

= f(u)[1− FX(u)] +

∫ ∞
u

f ′(y)[1− FX(y)]dy, (1.4.14)

provided that either (a) y 7→ f ′(y)[1− FX(y)] is absolutely integrable, or (b) x 7→ f(x) is
either non-decreasing or non-increasing, so that f ′(y)[1−FX(y)] has a fixed sign. Here, the
interchange of the integration order is allowed by Fubini’s Theorem for non-negative func-
tions (Halmos, 1950, Section 36, Theorem B) when x 7→ f(x) is non-decreasing, and by
Fubini’s Theorem for absolutely–integrable functions (Halmos, 1950, Section 36, Theorem
C) when y 7→ f ′(y)[1− FX(y)] is absolutely integrable. Similarly, for f with f(0) = 0,∫ u

0

f(x)FX(dx) =

∫ u

0

∫ x

0

f ′(y)dyFX(dx) =

∫ u

0

f ′(y)

∫ u

y

FX(dx)dy

=

∫ u

0

f ′(y)[FX(u)− FX(y)]dy. (1.4.15)
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When X ≥ 0, using (1.4.11) and (1.4.14), for a < τ − 1 and ` > 0,

E
[
Xa1{X>`}

]
= `aP(X > `) +

∫ ∞
`

axa−1P(X > x)dx

≤ CX`
a−(τ−1) + aCX

∫ ∞
`

xa−1x−(τ−1)dx ≤ CX(a)`a−(τ−1). (1.4.16)

as required. Further, for a > τ − 1 and ` > 0, now using (1.4.15),

E
[
Xa1{X≤`}

]
≤ aCX

∫ `

0

xa−1x−(τ−1)dx ≤ CX(a)`a−(τ−1). (1.4.17)

An important notion in many graphs is the size-biased version X? of a non-negative
random variable X , which is given by

P(X? ≤ x) =
E[X1{X≤x}]

E[X]
. (1.4.18)

Exercise 1.25 shows that the size-biased distribution of the degree of a random vertex is the
degree of a random vertex in a random edge. Let F ?

X
denote the distribution function of X?.

The following lemma gives bounds on the tail of the distribution function F ?
X

:

Lemma 1.23 (Size-biased tail distribution) Let X be a non-negative random variable
whose distribution function FX(x) = P(X ≤ x) satisfies that there exists a CX such that,
for every x ≥ 1,

1− FX(x) ≤ CXx
−(τ−1). (1.4.19)

Assume that τ > 2, so that E[X] < ∞. Further, assume that E[X] > 0. Then, there exists
a constant C?

X
such that

1− F ?
X

(x) ≤ C?
X
x−(τ−2). (1.4.20)

Proof This follows immediately from (1.4.18), by using (1.4.12) with a = 1.

1.5 NOTATION AND PRELIMINARIES

Let us introduce some standard notation used throughout this book, and recall some prop-
erties of trees and Poisson processes.

Abbreviations
We write rhs for right-hand side, and lhs for left-hand side. Further, we abbreviate with
respect to by wrt.

Random variables
We write X d

= Y to denote that X and Y have the same distribution. We write X ∼ Be(p)
when X has a Bernoulli distribution with success probability p, i.e., P(X = 1) = 1 −
P(X = 0) = p. We write X ∼ Bin(n, p) when the random variable X has a binomial
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distribution with parameters n and p, and we write X ∼ Poi(λ) when X has a Poisson
distribution with parameter λ.

We write X ∼ Exp(λ) when X has an exponential distribution with mean 1/λ. We
write X ∼ Gam(r, λ) when X has a gamma distribution with scale parameter λ and shape
parameter r, for which the density, for x ≥ 0, is given by

fX(x) = λrxr−1e−λx/Γ(r), (1.5.1)

where r, λ > 0, and we recall (1.3.58), while fX(x) = 0 for x < 0. The random variable
Gam(r, λ) has mean r/λ and variance r/λ2. Finally, we write X ∼ Beta(α, β) when X
has a beta distribution with parameters α, β > 0, so that X has density, for x ∈ [0, 1],

fX(x) = xα−1(1− x)β−1/B(α, β), (1.5.2)

where

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
(1.5.3)

is the Beta-function, while fX(x) = 0 for x 6∈ [0, 1]. We sometimes abuse notation, and
write e.g., P(Bin(n, p) = k) to denote P(X = k) when X ∼ Bin(n, p).

We call a sequence of random variables (Xi)i≥1 independent and identically distributed
(iid) when they are independent, and Xi has the same distribution as X1 for every i ≥ 1.
For a finite set X , we say that X ∈ X is drawn uniformly at random (uar) when X has the
uniform distribution on X .

Convergence of Random Variables
We say that a sequence of events (En)n≥1 occurs with high probability (whp) when
limn→∞ P(En) = 1.

For sequences of random variables (Xn)n≥1, Xn
d−→ X denotes that Xn converges in

distribution to X , while Xn
P−→ X denotes that Xn converges in probability to X and

Xn
a.s.−→ X denotes that Xn converges almost surely to X . We write that Xn = OP(Yn)

when |Xn|/Yn is a tight sequence of random variables and Xn = ΘP(Yn) when Xn =

OP(Yn) and Yn = OP(Xn). Finally, we write that Xn = oP(Yn) when Xn/Yn
P−→ 0.

Stochastic Domination
We recall that a random variable X is stochastically dominated by a random variable Y
when FX(x) = P(X ≤ x) ≥ FY (x) = P(Y ≤ x) for every x ∈ R. We write this as
X � Y . See [V1, Section 2.3] for more details on stochastic ordering.

Two Useful Martingale Inequalities
Recall [V1, Section 2.5] for the definition of a martingale (Mn)n≥0. We rely on Doob’s
martingale inequality, which for a martingale (Mn)n≥0 states that

E
[

sup
m≤n

∣∣Mm − E[Mm]
∣∣2] ≤ Var(Mn). (1.5.4)
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An immediate consequence is Kolmogorov’s martingale inequality, which states that

P(sup
m≤n

∣∣Mm − E[Mm]
∣∣ ≥ ε) ≤ ε−2 Var(Mn). (1.5.5)

Densities in Inhomogeneous Poisson Processes
Let Π be an inhomogeneous Poisson process with intensity measure Λ: X → N, where
X ⊆ [0,∞). This means that the number of points Π(A) in A ⊆ X has a Poisson distri-
bution with parameter

∫
A Λ(dx), and the number of points in disjoint sets are independent

(see Last and Penrose (2018) for details on Poisson processes).
Let A be a bounded set. We wish to give a formula for the probability of the event that

the points of Π inA (of which there are Π(A)) are in (a1 + da1, . . . , ak + dak), where we
assume that a1 < a2 < · · · < ak. Thus, there is one point in a1 + da1, one in a2 + da2,
etc. Note that this event is a subset of the event Π(A) = k. Denote this event by P(a1 +
da1, . . . , ak + dak). Assume that x 7→ Λ(x) is continuous almost everywhere. Then, for
all measurableA ⊆ X and all ordered elements a1, . . . , ak ∈ A,

P(P(a1 + da1, . . . , ak + dak)) = e−
∫
A Λ(dx)

k∏
i=1

Λ(ai)dai. (1.5.6)

We refer to e−
∫
A Λ(dx) as the no-further-point probability, in that it ensures that Π has

precisely k points in A. We refer to Exercise 1.26 for a proof that (1.5.6) implies that
Π(A) ∼ Poi(

∫
A Λ(dx)), and Exercise 1.27 for a proof that (1.5.6) implies that Π(A)

and Π(B) are independent whenA and B are disjoint.

Ordered Trees and Their Exploration
In this book, trees play a central role, and it is important to be clear about exactly what we
mean by a tree. Trees are rooted and ordered. A tree t has root ∅, vertex set V (t) and edge
set E(t), and the vertex set will be given an ordering below.

It is convenient to think of a tree t with root ∅ as being labeled in the Ulam–Harris way,
so that a vertex v in generation k has a label ∅v1 · · · vk, where vi ∈ N. Naturally, there
are some restrictions, in that if ∅v1 · · · vk ∈ V (t), then also ∅v1 · · · vk−1 ∈ V (t), and
∅v1 · · · (vk − 1) ∈ V (t) when vk ≥ 2. We refer to [V1, Chapter 3] for details.

It will sometimes also be useful to explore trees in a breadth-first manner. This corre-
sponds to the lexicographical ordering in the Ulam–Harris encoding of the tree. Ulam–Harris
trees are also sometimes called plane trees (see, e.g., (Drmota, 2009, Chapter 1)). Let us now
make the breadth-first ordering of the tree precise:

Definition 1.24 (Breadth-first order on a tree) For v ∈ V (t), let |v| be its height. Thus
|v| = k when v = ∅v1 · · · vk and |∅| = 0. Let u, v ∈ V (t). Then u < v when either
|u| < |v| or |u| = |v| and u = ∅u1 · · ·uk and v = ∅v1 · · · vk are such that (u1, . . . , uk) <
(v1, . . . , vk) in the lexicographic sense. J

We next explain the breadth-first exploration of t:

Definition 1.25 (Breadth-first exploration of a tree) For a tree t of size |V (t)| = t, we let
(ak)

t
k=0 be the elements of V (t) ordered according to the breadth-first ordering of t (recall
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Definition 1.24). For i ≥ 1, let xi denote the number of children of vertex ai. Thus, if dv
denotes the degree of v ∈ V (t) in the tree t, we have x1 = da0

= d∅ and xi = dai − 1 for
i ≥ 2. The recursion

si = si−1 + xi − 1 for i ≥ 1, with s0 = 1, (1.5.7)

describes the evolution of the number of unexplored vertices in the breadth-first exploration.
For a finite tree t of size |V (t)| = t, thus si > 0 for i ∈ {0, . . . , t− 1} while st = 0. J

The sequence (xi)
t
i=1 gives an alternative encoding of the tree t that is often convenient.

Indeed, by Exercise 1.28, the sequence (xi)
t
i=1 is in one-to-one correspondence to t.

Unimodular Branching Process Trees
We next describe one type of random tree that occurs frequently in our analyses, the so-
called unimodular branching process tree:

Definition 1.26 (Unimodular branching process tree) Fix a probability distribution (pk)k≥1,
where pk = P(D = k) for some integer-valued random variable D. The unimodular
branching process tree with root-offspring distribution (pk)k≥1 is the branching process
where the root has offspring distribution (pk)k≥1, while all vertices in other generations
have offspring distribution p?k given by

p?k = P(D? − 1 = k) =
(k + 1)

E[D]
P(D = k + 1), (1.5.8)

where we recall that D? denotes the size-biased version of D in (1.4.18). J

It turns out that unimodular branching process trees arise as local limits of random graphs,
seen from a uniform vertex. The distribution (pk)k≥1, where pk = P(D = k), describes the
degree distribution in the graph, while the law (1.5.8) is related to the degree distribution of
other vertices that are close to a uniform vertex.

We let BP≤r denote the branching process up to and including generation r, and write
BPr = BP≤r \ BP≤r−1 for the rth generation. It is convenient to think of the branching
process tree, denoted as BP, as being labeled in the Ulam–Harris way (recall Definitions
1.24 and 1.25), so that a vertex v in generation r has a label ∅a1 · · · ar, where ai ∈ N. When
applied toBP, we denote this process by (BP(t))t≥1,whereBP(t) consists of precisely t+1
vertices (with BP(0) equal to the root ∅).

1.6 NOTES AND DISCUSSION FOR CHAPTER 1

Sections 1.1–1.3 are in the majority summaries of chapters in Volume 1, to which we refer for notes and
discussion, so we restrict ourselves here to the exceptions.

Notes on Sections 1.1 and 1.2
See Barabási (2002) and Watts (2003) for expository accounts of the discovery of network properties by
Barabási, Watts, and co-authors. Newman et al. (2006) bundles together some of the original papers detail-
ing the empirical findings of real-world networks and the network models invented for them. The introduc-
tory book by Newman (2010) lists many of the empirical properties of, and scientific methods for, networks.
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See also Barabási (2016) for an online book giving an extensive background to the science of networks, and
Coscia (2021) for an “atlas to the aspiring network scientist.”

The discussion of the scale-free phenomenon in Section 1.1.2 has been substantially extended compared
with [V1, Section 1.4.1]. Artico et al. (2020) considered another static definition of the degree distribution,
based on that in preferential attachment models (which they call the degree distribution of the de Solla Price
model in honor of Price (1965), who invented the model for citation networks; see also Section 9.1.1). This
can be seen as an interpolation between the static approach of Broido and Clauset (2019) and the dynamic
approach advocated by Barabási (2018). Artico et al. (2020) used maximum-likelihood techniques to argue
that power-law network degree distributions are not rare, classifying almost 65% of the tested networks as
having a power-law tail with at least 80% power. We further refer to Nair et al. (2022) for an extensive
discussion on heavy-tailed phenomena.

Notes on Section 1.3
Erdős–Rényi random graph. The seminal papers Erdős and Rényi (1959, 1960, 1961a,b) investigated a
related model in which a collection ofm edges is chosen uar from the collection of

(
n
2

)
possible edges. The

model described here as the Erdős–Rényi random graph was actually not invented by Erdős and Rényi, but
rather by Gilbert (1959). When adding a fixed number of edges, the proportion of edges is 2m/n(n− 1) ≈
2m/n2, so we should think of m ≈ 2λn for a fair comparison. Note that when we condition the total
number of edges in the independent-edge model to be equal to m, the law of the Erdős–Rényi random
graph is equal to the model where a collection of m uniformly chosen edges is added, which explains the
close relation between the two models. Owing to the concentration of the total number of edges, we can
indeed roughly exchange the binomial model with p = λ/n with the combinatorial model with m = 2λn.
The combinatorial model has the nice feature that it produces a uniform graph from the collection of all
graphs with m edges, and thus could serve as a null model for a real-world network in which only the
number of edges is fixed. We can also view ERn(λ/n) as percolation on the complete graph. Percolation
is a paradigmatic model in statistical physics describing random failures in networks (see Grimmett (1999)
for an extensive overview of percolation theory focussing on Zd).
Inhomogeneous random graphs were first proposed by Söderberg (2002, 2003a,c,b). A general formal-
ism for inhomogeneous random graphs is described in the seminal work of Bollobás et al. (2007). The
generalized random graph was first introduced by Britton et al. (2006). The random graph with prescribed
expected degrees, or Chung–Lu model, was introduced, and studied intensively, by Chung and Lu (2002a,b,
2003, 2006a,b). The Poissonian random graph or Norros–Reittu model was introduced by Norros and Re-
ittu (2006). The conditions under which these random graphs are asymptotically equivalent [V1, Sections
6.7 and 6.8] were derived by Janson (2010a). Condition 1.1 has been slightly modified compared with [V1,
Condition 6.4], in that we now assume that E[W ] ∈ (0,∞), which excludes trivial cases where the graph
is almost empty.
Configuration model and uniform random graphs with prescribed degrees. The configuration model was in-
vented by Bollobás (1980) to study uniform random regular graphs (see also (Bollobás, 2001, Section 2.4)).
The introduction was inspired by, and generalized the results in, the work of Bender and Canfield (1978).
The original work allowed for a careful computation of the number of regular graphs, using a probabilistic
argument. This is the probabilistic method at its best, and also explains the emphasis on the study of the
probability for the graph to be simple, as we will see below. The configuration model, as well as uniform
random graphs with a prescribed degree sequence, were further studied in greater generality by Molloy and
Reed (1995, 1998). This extension is quite relevant to us, as the scale-free nature of many real-world ap-
plications encourages us to investigate configuration models with power-law degree sequences. Condition
1.7 is a minor modification of [V1, Condition 7.8]. The terms “erased” and “repeated configuration model”
were coined by Britton et al. (2006).

The degree-truncation argument for the configuration model is, to the best of our knowledge, novel.
Switching algorithms, as discussed in Section 1.3.4 have a long history, dating back at least to McKay
(1981), see also Erdős et al. (2022); Gao and Greenhill (2021); Gao and Wormald (2016); McKay and
Wormald (1990), as well as McKay (2011) and the references therein for overviews. The literature on switch
chains focusses on two key aspects: first, their rapid mixing (Erdős et al. (2022); Gao and Greenhill (2021),
and various related papers, for which we refer to Erdős et al. (2022)), and, second, counting the number
of simple graphs using switch chain arguments (as in Gao and Wormald (2016)), which is the approach
that we take in this section. Rapid mixing means that the mixing time of the switch chain is bounded by
an explicit power of the number of vertices (or number of edges, or both combined). The powers, however,
tend to be large, and thus “rapid mixing” may not be rapid enough to give good guarantees when one is

https://doi.org/10.1017/9781316795552.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316795552.002


1.7 Exercises for Chapter 1 45

trying to sample a uniform random graph of the degree distribution of some real-world network. Theorem
1.13 is adapted from Gao et al. (2020), where it was used to compute the number of triangles in uniform
random graphs with power-law degree distributions having infinite variance. See also Janson (2020b) for a
relation between the configuration model and uniform random graphs using switchings.
Preferential attachment models were first introduced in the context of complex networks by Barabási and
Albert (1999). Bollobás et al. (2001) studied the model by Barabási and Albert (1999), and later many other
papers followed on this, and related, models. Barabási and Albert (1999) and Bollobás et al. (2001) focussed
on the proportional model, for which δ = 0. The affine model was proposed by Dorogovtsev et al. (2000).
All these works were pre-dated by Price (1965); Simon (1955); Yule (1925); see [V1, Chapter 8] for more
details on the literature. The Bernoulli preferential attachment model was introduced and investigated by
Dereich and Mörters (2009, 2011, 2013).

Notes on Section 1.4
This material is folklore. A lot is known about slowly varying functions; we refer to the classic book on the
topic by Bingham et al. (1989) for details.

Notes on Section 1.5
Our choice of notation was heavily influenced by Janson (2011), to which we refer for further background
and equivalent notation.

1.7 EXERCISES FOR CHAPTER 1

Exercise 1.1 (Probability mass function typical degree) Prove that the probability mass function of the
degree of a uniform vertex is given by (1.1.3).

Exercise 1.2 (Growth maxima power-law random variables) Suppose that the non-negative random vari-
able X satisfies that there exists τ > 1,

P(X > x) = cXx
−(τ−1). (1.7.1)

Let (Xv)v∈[n] be a sequence of iid copies ofX . Show thatMn = maxv∈[n] Xv satisfies n−1/(τ−1)Mn
d−→

M for some limiting random variable M .

Exercise 1.3 (Uniform random graph) Consider ERn(p) with p = 1
2

. Show that the result is a uniform
graph, i.e., it has the same distribution as a uniform choice from all the graphs on n vertices.

Exercise 1.4 (Thin-tailed Poisson) Show that, limk→∞ eαkpk = 0 for every α > 0, where pk =
e−λλk/k! denotes the Poisson probability mass function.

Exercise 1.5 (A nice power-law distribution) Let the random variable X have generating function

GX(s) = E[sX ] = 1− (1− s)α. (1.7.2)

Fix α ∈ (0, 1). Identify the probability mass function P(X = k) of X .

Exercise 1.6 (A power-law distribution?) Consider G(s) = 1 − (1 − s)α as in Exercise 1.5, now for
α > 1. Is G(s) the generating function of a random variable?

Exercise 1.7 (Weight of uniformly chosen vertex) Let o be a vertex chosen uar from [n]. Show that the
weight wo of o has the distribution function Fn given in (1.3.10).

Exercise 1.8 (Maximal weight bound) Assume that Conditions 1.1(a) and (b) hold. Show that maxv∈[n]wv
= o(n). Further, show that maxv∈[n] wv = o(

√
n) when Conditions 1.1(a)–(c) hold.

Exercise 1.9 (Domination weights) Let Wn have the distribution function Fn from (1.3.17). Show that
Wn is stochastically dominated by the random variable W having distribution function F . Here we recall
that Wn is stochastically dominated by W when P(Wn ≤ w) ≥ P(W ≤ w) for all w ∈ R.

Exercise 1.10 (Degree of uniformly chosen vertex in GRGn(w)) Prove that the asymptotic degree in
GRGn(w) satisfies (1.3.22) under the conditions of Theorem 1.3.
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Exercise 1.11 (Power-law degrees in generalized random graphs) Prove that, under the conditions of
Theorem 1.3, the degree power-law tail in (1.3.24) for GRGn(w) follows from the weight power-law tail
in (1.3.23). Does the converse also hold?

Exercise 1.12 (Degree example) Let the degree sequence d = (dv)v∈[n] be given by

dv = 1 + (v mod 3). (1.7.3)

Show that Conditions 1.7(a)–(c) hold. What is the limiting degree variable D?

Exercise 1.13 (Poisson degree example) Let the degree sequence d = (dv)v∈[n] satisfy

nk/n→ e−λ
λk

k
(1.7.4)

and ∑
k≥0

knk/n→ λ,
∑
k≥0

k2nk/n→ λ(λ+ 1). (1.7.5)

Show that Conditions 1.7(a)–(c) hold. What is the limiting degree variable D?

Exercise 1.14 (Power-law degree example) Consider the random variable D having generating function,
for α ∈ (0, 1),

GD(s) = s− (1− s)α+1/(α+ 1). (1.7.6)

What is the probability mass function of D?

Exercise 1.15 (Power-law degree example) Consider the random variable D having generating function
(1.7.6) with α ∈ (0, 1). Show that D has an asymptotic power-law distribution and compute its power-law
exponent.

Exercise 1.16 (Power-law degree example (cont.)) Consider the degree sequence d = (dv)v∈[n] with
dv = [1 − F ]−1(v/n), where F is the distribution of a random variable D having generating function
(1.7.6) with α ∈ (0, 1). Show that Conditions 1.7(a) and (b) hold, but Condition 1.7(c) does not.

Exercise 1.17 (Number of erased edges) Assume that Conditions 1.7(a) and (b) hold. Show that Theorem
1.8 implies that the number of erased edges in ECMn(d) is oP(n).

Exercise 1.18 (Edge probability of uniform random graphs with prescribed degrees) Prove the formula
for the (conditional) edge probabilities in uniform random graphs with prescribed degrees in (1.3.50).

Exercise 1.19 (Edge probability of uniform random graphs with prescribed degrees (cont.)) Prove the
formula for the number of switches with and without a specific edge in uniform random graphs with pre-
scribed degrees in (1.3.51). Hint: Use an “out-is-in” argument that the number of switches from S to S̄ is
the same as the number of switches that enter S̄ from S.

Exercise 1.20 (Degrees grow to infinity almost surely) Consider the preferential attachment model
PA(m,δ)

n (a). Fix m = 1 and i ≥ 1. Prove that Di(n)
a.s.−→ ∞ as n → ∞, by using

∑n
s=i Is � Di(n),

where (In)n≥i is a sequence of independent Bernoulli random variables with P(In = 1) = (1+δ)/(n(2+
δ) + 1 + δ). What does this imply for m > 1?

Exercise 1.21 (Degrees of fixed vertices) Consider the preferential attachment model PA(m,δ)
n (a). Prove

Theorem 1.17 for m = 1 and δ > −1 using the martingale convergence theorem and the fact that

Mi(n) =
Di(n) + δ

1 + δ

n−1∏
s=i−1

(2 + δ)s+ 1 + δ

(2 + δ)(s+ 1)
(1.7.7)

is a martingale for every i ≥ 1 and for n ≥ i.

Exercise 1.22 (Power-law degree sequence) Prove that the limiting degree distribution of preferential
attachment models in (1.3.60) satisfies the power-law asymptotics in (1.3.63) by using Stirling’s formula.
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Exercise 1.23 (Degrees distribution of affine Bernoulli preferential attachment model) Recall the limiting
degree distribution (pk)k≥0 in (1.3.67). Show that pk ∼ cγ,βk

−(1+1/γ) when f(k) = γk + β. What is
cγ,β?

Exercise 1.24 (Degrees distribution of sublinear Bernoulli preferential attachment model) Recall the lim-
iting degree distribution (pk)k≥0 in (1.3.67). Show that log(1/pk) ∼ k1−α/(γ(1−α)) when f(k) ∼ γkα
for some α ∈ (0, 1).

Exercise 1.25 (Size-biased degree distribution and random edges) Let Dn be the degree of a random
vertex in a graph Gn = (V (Gn), E(Gn)) of size |V (Gn)| = n. Let D?

n be the degree of a random vertex
in an edge drawn uar from E(Gn). Show that D?

n has the size-biased distribution of Dn, where we recall
the definition of the size-biased distribution of a random variable from (1.4.18).

Exercise 1.26 (Number of points in an inhomogeneous Poisson process) Prove that the Poisson density
formula in (1.5.6) implies that the number of points of the Poisson process inA has the appropriate Poisson
distribution, i.e., Π(A) ∼ Poi(

∫
A Λ(dx)).

Exercise 1.27 (Number of points in an inhomogeneous Poisson process (cont.)) In the setting of Exercise
1.26, show that (1.5.6) implies that Π(A) and Π(B) are independent when A and B are disjoint.

Exercise 1.28 (Breadth-first encoding ordered rooted tree) Recall Definitions 1.24 and 1.25 for the breadth-
first order on, and exploration of, a rooted ordered tree. Show that the sequence (xi)

t
i=1 is in one-to-one

correspondence to the rooted ordered tree t.
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