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Abstract

In this paper, we prove that the bound

max{|8A − 7A|, |5f (A) − 4f (A)|} � |A| 3
2 + 1

54

holds for all A ⊂R, and for all convex functions f which satisfy an additional technical
condition. This technical condition is satisfied by the logarithmic function, and this fact can
be used to deduce a sum-product estimate

max{|16A|, |A(16)|} � |A| 3
2 +c,

for some c > 0. Previously, no sum-product estimate over R with exponent strictly greater
than 3/2 was known for any number of variables. Moreover, the technical condition on f
seems to be satisfied for most interesting cases, and we give some further applications. In
particular, we show that

|AA| ≤ K|A| =⇒ ∀d ∈R \ {0}, |{(a, b) ∈ A × A:a − b = d}| � KC|A| 2
3 −c′

,

where c, C > 0 are absolute constants.

2020 Mathematics Subject Classification: 11B30 (Primary); 11A99 (Secondary)

1. Introduction

Given a finite set A ⊂R, let A + A and AA denote the sum set and product set of A
respectively. That is,

A + A := {a + b : a, b ∈ A}, AA := {ab : a, b ∈ A}.
The Erdős–Szemerédi [4] sum-product conjecture states that, for all ε > 0, the bound

max{|A + A|, |AA|} ≥ |A|2−ε (1)

holds for all sufficiently large A ⊂N.
One can also consider an analogue of the Erdős–Szemerédi conjecture with more vari-

ables. The notation kA and A(k) are used for the k-fold sum set and k-fold product set
respectively. That is,
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2 OLIVER ROCHE–NEWTON

kA := {a1 + · · · + ak : a1, . . . , ak ∈ A}, A(k) := {a1 · · · ak : a1, . . . , ak ∈ A}.
An analogue of (1) for the k-fold sum and product sets was also considered in [4]. An
outstanding result of Bourgain and Chang [1] establishes that one of the iterated sum set
or product set must exhibit unbounded growth. They proved that, for all h ∈N, there exists
k ∈N such that

max
{
|kA|, |A(k)|

}
≥ |A|h (2)

holds for all A ⊂N. See also [10] for an alternative and more easily digestible proof of the
Bourgain–Chang Theorem.

The sum-product problem can also be studied for A ⊂R, and indeed most contemporary
work on the conjectured bound (1) uses geometric arguments that hold over the reals. The
current best estimate towards this conjecture is the bound1

max {|A + A|, |AA|} � |A| 4
3 + 2

1167 −o(1),

due to Rudnev and Stevens [8]. This estimate holds for all A ⊂R, and no quantitative
improvements are known if we instead consider an arbitrary set A of integers.

On the other hand, progress for the real k-fold analogue of the Erdős–Szemerédi
Conjecture lags far behind the best-known results over N. For instance, the bound (2) is not
known to hold even for h = 3/2 for A ⊂R, at which point the dominant geometric methods
appear to reach their limitation.

The main result of this paper gives some progress for this problem, pushing the growth
exponent for the k-fold sum-product problem beyond the threshold 3/2.

THEOREM 1·1. There exists an absolute constant c > 0 such that, for any finite set
A ⊂R

max{|16A|, |A(16)|} ≥ |A| 3
2 +c.

Theorem 1·1 is a special case of a more general result (see the forthcoming Theorem 5·1)
concerning the relationship between convexity and sum sets. The guiding idea here is that
strictly convex or concave functions disturb any additive structure existing in a set. This idea
has been explored in several papers, including the pioneering work of Elekes, Nathanson
and Ruzsa [3], who broke new ground using incidence theory.

Recently, a new elementary method was introduced by Solymosi (see [9]) which has
enabled further progress. This “squeezing” technique was used in [5] to prove that the
bound

|A + A − A||f (A) + f (A) − f (A)| � |A|3
log |A| (3)

holds for all A ⊂R. A further improvement, removing the logarithmic factor, was later given
by Bradshaw [2]. This technique has also been used in [6] to give improved bounds for
the number of distinct dot products determined by a point set in R

2. The same squeezing
technique is the main tool for this paper, and a closer analysis allows for an improvement to

1 Here and throughout this paper, the notation X � Y , Y � X, X = �(Y), and Y = O(X) are all equivalent
and mean that X ≥ cY for some absolute constant c > 0.
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A better than 3/2 exponent for iterated sums and products over R 3

the bound (3) by introducing more variables, provided that the convex function f satisfies an
additional technical condition.

As another application of our general result, we prove the following result concerning the
number of additive representations for sets with small multiplicative doubling.

THEOREM 1·2. There exist absolute constants c, C > 0 such that, for any finite set A of
positive reals and any t ∈R \ {0},

|AA| ≤ K|A| =⇒ |{(a, b) ∈ A × A : a − b = t}| � KC|A| 2
3 −c.

A weaker version of Theorem 1·2, without the constant c, can be proven by a simple
application of the Szemerédi-Trotter Theorem. Such results are sometimes referred to in
the sum-product community as threshold bounds. Most of these bounds have now been
improved by refining and augmenting these basic arguments. Theorem 1·2 represents an
improvement for one of the last standing threshold bounds in sum-product theory.

1·1. Notation.

Henceforth, all sets introduced in this paper are assumed to be finite unless stated oth-
erwise. We use log to denote the logarithm function with base 2 and ln for the logarithmic
function with base e. As mentioned in an earlier footnote, throughout this paper, the notation
X � Y , Y � X, X = �(Y), and Y = O(X) are all equivalent and mean that X ≥ cY for some
absolute constant c > 0. X �a Y means that the implied constant is no longer absolute, but
depends on a.

2. Preliminary results

The main external result that will be used in this paper is taken from [2], and concerns
the growth of iterated sum sets of f (A) when f is a highly convex function and A has small
additive growth.

For an interval I, we say f : I →R is a 0-convex function if it is strictly monotone on I,
and in general, f is k-convex on I if each of the derivatives f (1), . . . , f (k+1) exists and, for all
x ∈ I and 1 ≤ j ≤ k + 1, f j(x) = 0 (hence all but the last derivative are strictly monotone).

THEOREM 2·1. Let A be a finite set of real numbers contained in an interval I and let
f : I →R be a function which is k-convex, for some k ≥ 1. Suppose that |A + A − A| ≤ K|A|.
Then

∣∣2kf (A) − (2k − 1)f (A)
∣∣ ≥ |A|k+1

(CK)2k+1−k−2

for some absolute constant C > 0.

Theorem 2·1 represents and improvement to an earlier result from [5] by removing all
logarithmic factors.

We will use the following result of Elekes, Nathanson and Ruzsa [3].

THEOREM 2·2. Let I be an interval, let f : I →R be a strictly convex or concave function,
and suppose that A ⊂ I. Then, for all k ∈N,

|kA||kf (A)| � |A|3−21−k
.
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Setting f (x) = ln x in Theorem 2·2 establishes that the bound (2) holds over the reals for
all h < 3/2. The proof of Theorem 2·2 uses a variant of the Szemerédi–Trotter Theorem
applied iteratively.

We will use the Plünnecke–Ruzsa Theorem to control the growth of iterated sum sets.

THEOREM 2·3. Let X and Y be sets in an abelian group. Then for any non-negative
integers k and l such that k + l > 1,

|kX − lX| ≤ |X + Y|k+l

|Y|k+l−1
.

We will also use the following form of the Ruzsa Triangle Inequality.

THEOREM 2·4 For any sets X,Y,Z in an abelian group,

|Y − Z| ≤ |X + Y||X + Z|
|X| .

3. The main general result

All of the results mentioned in the introduction are derived from the forthcoming
Theorem 3·1, and the purpose of this section is to state and prove this result.

Before doing so, we need to introduce the function fd, which is central to this paper. Let
a ∈R and let I denote the interval I = (a, ∞). Suppose that f : I →R is a strictly convex or
concave function. Let d be a strictly positive real number. Define the function

fd : I → J, fd(x) := f (x + d) − f (x).

Here J denotes the range of fd, and J is always an interval. Since f is strictly convex or
concave, it follows that the function fd is monotone. In particular, the inverse function
f −1
d : J → I is defined.

THEOREM 3·1. Let a ∈R, let I denote the interval I = (a, ∞), and let m ∈N. Suppose
that A ⊂ I is a finite set. Suppose that f : (a, ∞) →R is a strictly convex or concave function.
Suppose also that, for any d ∈ (0, ∞), the function f −1

d : J → I has the property that its first
three derivatives have a combined total of at most m zeroes. Then

|8A − 7A|16|5f (A) − 4f (A)|11 �m |A|41. (4)

In particular,

max{|8A − 7A|, |5f (A) − 4f (A)|} �m |A| 3
2 + 1

54 . (5)

Proof. The inequality (5) follows from (4) by the pigeonhole principle. Therefore, it is
sufficient to prove (4). We will consider the case where f is strictly convex only. For strictly
concave f , the same proof works with some minor modifications. Write A = {a1 < . . . < an}.
Given d ∈R, define

Ad := {ai ∈ A : ai+1 − ai = d}.
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A better than 3/2 exponent for iterated sums and products over R 5

Claim 1. There exists a set D′ such that∑
d∈D′

|Ad| ≥ n

6
, (6)

and, for all d ∈ D′,

|Ad| ≥ n2

12|A + A − A| . (7)

Proof of Claim 1. Order the indices i ∈ [n − 1] in ascending order according to the value
ai+1 − ai, with ties broken arbitrarily. Let I denote the first �n/2� − 1 indices, and let J
denote the remaining indices. Observe that |J | ≥ n/2. Define

D := {ai+1 − ai : i ∈ I}.
It follows from this ordering that, for all i ∈ I and j ∈J

ai+1 − ai ≤ aj+1 − aj.

Therefore, for each j ∈J ,

{aj + d : d ∈ D} ⊂ (aj, aj+1].

Hence we obtain |D| elements of A + A − A in the interval (aj, aj+1]. Since these intervals
are disjoint, we can repeat this argument for all j ∈J to obtain

|A + A − A| ≥
∑
j∈J

|D| ≥ |D|n
2

.

A rearrangement of this inequality gives the bound

|D| ≤ 2|A + A − A|
n

. (8)

Next, observe that ∑
d∈D

|Ad| ≥ |I| ≥ n/3. (9)

Define

D′ :=
{

d ∈ D : |Ad| ≥ n

6|D|
}

and note that ∑
d∈D\D′

|Ad| ≤ |D| · n

6|D| = n

6
.

It therefore follows from (9) that that
∑

d∈D′ |Ad| ≥ n/6, thus proving (6). Finally, it follows
from (8) and the definition of D′ that, for all d ∈ D′,

|Ad| ≥ n

6|D| ≥ n2

12|A + A − A| .
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Claim 1 allows us to henceforth assume that

|Ad| ≥ 8m (10)

holds for all d ∈ D′. Indeed, suppose that this is not the case. Then it follows from the
inequality (7) that

|A + A − A| � |A|2
m

,

which is strong enough to imply the intended bound (4).
Next, we make some additional refinements to the sets Ad. This is done in order to set up

a lower bound for iterated sums of f (A).
Recall from the definition at the beginning of this section that fd(x) := f (x + d) − f (x).

For a given d ∈ D′, write

Ad = {ai1 , . . . , aiM },
where i1 < . . . < iM . Here, we have used M as a temporary notation for the cardinality of
Ad (this is simply done to make the subscript more readable). We assume for simplicity that
this number is divisible by 4. Let A′

d denote the smallest half of Ad, so

A′
d = {

ai1 , . . . , aiM/2

}
.

Observe that, since f is strictly convex,

fd
(
ai1

)
< . . . < fd

(
aiM

)
.

Define

td := fd
(
aiM/2

)
.

That is, td is the largest element of fd
(
A′

d

)
. Hence fd

(
A′

d

) ⊂ (0, td].
In the forthcoming argument, it will be helpful to force the elements of fd

(
A′

d

)
to be

slightly closer to each other.n For each aij ∈ A′
d, the image fd

(
aij

)
belongs to one of the

intervals (0, td/2] or (td/2, td], and so it follows that at least half of the elements fd
(
aij

)
are

in the same interval. In order to simplify the notation further, let us assume that the first of
these intervals is well populated. In particular, if we define

A′′
d := {ai1 , . . . , aiM/4},

then fd
(
A′′

d

) ⊂ (0, td/2], and it follows that

2fd
(
A′′

d

) − 2fd
(
A′′

d

) ⊂ ( − td, td).

We use the notation Ld for the additive tripling of the set fd
(
A′′

d

)
, that is

|fd
(
A′′

d

) + fd
(
A′′

d

) − fd
(
A′′

d

)| = Ld|fd
(
A′′

d

)| = Ld|A′′
d|. (11)

A basic version of the forthcoming argument can be used to prove the bound |2f (A) −
f (A)| � ∑

d∈D′ |Ad|2, which can then be combined with the ideas present in the proof of
Claim 1 to prove the bound (3), even removing the log factor. The difference in approach for
the following claim is that we squeeze an iterated difference set into the gaps, which results
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A better than 3/2 exponent for iterated sums and products over R 7

in some improvement unless the previously defined parameter Ld is constant. A similar
approach was recently used in [7].

Claim 2.

|5f (A) − 4f (A)| �
∑
d∈D′

|Ad|2Ld.

Proof of Claim 2. Let d ∈ D′ and let Ed denote the non-negative elements of 2fd
(
A′′

d

) −
2fd

(
A′′

d

)
. So, Ed ⊂ [0, td), and since the difference set is symmetric,

|Ed| �
∣∣2fd

(
A′′

d

) − 2fd
(
A′′

d

)∣∣ ≥ ∣∣2fd
(
A′′

d

) − fd
(
A′′

d

)∣∣. (12)

Now, let M/2 < j ≤ M and consider the set of sums

f
(
aij

) + Ed ⊂ [
f
(
aij

)
, f

(
aij

) + td
) ⊂ [

f
(
aij

)
, f

(
aij+1

))
. (13)

The first inclusion above is valid because Ed ⊂ [0, td). The second is equivalent to the
inequality

f
(
aij

) + td ≤ f
(
aij+1

)
. (14)

Since aij ∈ Ad, it follows that aij+1 = aij + d, and so the inequality (14) can be written as
fd

(
aij

) ≥ td = fd
(
aiM/2

)
. This is valid, since fd is monotone increasing and j > M/2. We have

thus verified the inclusion (13).
On the other hand, it follows from the construction of the set Ed that Ed ⊂ 4f (A) − 4f (A),

and therefore

f
(
aij

) + Ed ⊂ (5f (A) − 4f (A)) ∩ [
f
(
aij

)
, f

(
aij+1

))
.

We have thus identified |Ed| elements of 5f (A) − 4f (A) lying in between consecutive ele-
ments of f (A). We repeat this process for each M/2 < j < M, and then for each d ∈ D′,
yielding

|5f (A) − 4f (A)| ≥
∑
d∈D′

|Ad|
2

|Ed| �
∑
d∈D′

|Ad|
∣∣2fd

(
A′′

d

) − fd
(
A′′

d

)∣∣

�
∑
d∈D′

|Ad|2Ld.

This completes the proof of the claim.

Before moving on to use Claim 2, let us pause to make a quick remark about its proof.
We use the trivial bound

∣∣2fd
(
A′′

d

) − 2fd
(
A′′

d

)∣∣ ≥ ∣∣2fd
(
A′′

d

) − fd
(
A′′

d

)∣∣
in (12). In principle, it looks like it may be possible to work only with the three vari-
able set 2fd

(
A′′

d

) − fd
(
A′′

d

)
in this claim. If this argument could be handled successfully, one

would be able to replace the set 5f (A) − 4f (A) in the statement of Theorem 5·1 with the set
4f (A) − 3f (A). However, we would like to add only positive elements when employing the
squeezing technique. This is where the symmetry of the four variable set 2fd

(
A′′

d

) − 2fd
(
A′′

d

)
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8 OLIVER ROCHE–NEWTON

is useful, and we were not able to find a way to make this argument work without this
symmetry.

Claim 2 gives us some new information unless Ld is very small. However, if this is the
case, the next claim allows us to win on the A side. The idea here is that, if Ld really is small,
then this implies that some additive structure is buried in f (A), which in turn should imply
that A grows under addition.

Claim 3. For any d ∈ D′

|Ld| � |Ad|4/11

m15/11|8A − 7A|1/11
.

Proof of Claim 3. Recall the assumption from the statement of the theorem that the func-
tion f −1

d : J → I exists and that its first three derivatives have a total of at most m zeroes.
We use these zeroes to divide the domain of f −1

d into m + 1 pairwise disjoint subintervals
J1, . . . , Jm+1 ⊂ J, such that on each of the subintervals, all of the first three derivatives are
non-zero.

Let

I1 = f −1
d (J1), . . . , Im+1 = f −1

d (Jm+1).

Observe that the intervals I1, . . . , Im+1 ⊂ I are pairwise disjoint, and that the union
⋃m+1

i=1 Ii

is equal to the the set I with at most m points removed. Since A′′
d ⊂ I, it follows that there is

some index i such that

|A′′
d ∩ Ii| ≥ |A′′

d| − m

m + 1
≥ |A′′

d|
16m

� |Ad|
m

.

The inequality above makes use of 10. Let

A′′′
d := A′′

d ∩ Ii

and define g : Ji → Ii to be the function f −1
d with the domain restricted to Ji. Since the first

three derivatives of g are all non-zero in Ji, the function g is by definition 3-convex. It follows
from the definition (11) that
∣∣fd(A′′′

d

) + fd
(
A′′′

d

) − fd
(
A′′′

d

)∣∣ ≤ ∣∣fd(A′′
d

) + fd
(
A′′

d

) − fd
(
A′′

d

)∣∣ = Ld
∣∣fd(A′′

d

)∣∣ ≤ 16mLd
∣∣fd(A′′′

d

)∣∣.
Apply Theorem 2·1 with

f = g, k = 3, A = fd
(
A′′′

d

)
, K = 16mLd.

It follows that

|8A − 7A| ≥ ∣∣8A′′′
d − 7A′′′

d

∣∣ � |A′′′
d |4

(mLd)11
� |Ad|4

m15L11
d

.

A rearrangement of this inequality gives the claimed bound.

The final task is to combine the inequalities from the previous three claims to complete the
proof. By applying Claim 2, Claim 3 and then the two inequalities (7) and (6) from Claim 1,
we have
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|5f (A) − 4f (A)| �
∑
d∈D′

|Ad|2Ld � 1

m15/11|8A − 7A|1/11

∑
d∈D

|Ad|26/11

� 1

m15/11|8A − 7A|1/11

(
n2

|A + A − A|
)15/11 ∑

d∈D

|Ad|

� 1

m15/11|8A − 7A|1/11

(
n2

|A + A − A|
)15/11

n.

A rearrangement of this gives

|8A − 7A|16|5f (A) − 4f (A)|11 ≥ |8A − 7A||A + A − A|15|5f (A) − 4f (A)|11 � n41

m15
.

This completes the proof of (4), and therefore also that of Theorem 3·1.

4. Applying Theorem 3·1 for some particular convex functions of interest

COROLLARY 4·1. Suppose that A ⊂ (0, ∞) is a finite set. Then

max

{
|8A − 7A|,

∣∣∣∣AAAAA

AAAA

∣∣∣∣
}

� |A| 3
2 + 1

54 .

Proof. Apply Theorem 3·1 with f (x) = ln x. The function fd : (0, ∞) → (0, ∞) is
defined by

fd(x) = ln

(
x + d

x

)
.

Its inverse is

f −1
d : (0, ∞) → (0, ∞), f −1

d (x) = d

ex − 1
.

A direct calculation shows that the first three derivatives of f −1
d are non-zero in (0, ∞).

Indeed, the first three derivatives are

(
f −1
d

)(1)(x) = −dex

(ex − 1)2
,

(
f −1
d

)(2)(x) = dex(ex + 1)

(ex − 1)3
,

(
f −1
d

)(3)(x) = −dex
(
e2x + 4ex + 1

)
(ex − 1)4

.

In this case, the condition that A consists only of positive elements is not significant. For
an arbitrary finite set A ⊂R, at least (|A| − 1)/2 of the elements have (strictly) the same sign.
let A′ ⊂ A be a set with size at least (|A| − 1)/2 such that all elements of A′ have the same
sign. If A′ ⊂ (0, ∞) then apply Corollary 4·1 to A′. Otherwise, it can be applied to −A′ to
give the same result.
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COROLLARY 4·2. Let λ be any strictly positive real number and suppose that X ⊂ (0, ∞)
is a finite set. Then

max

{∣∣∣∣X(8)

X(7)

∣∣∣∣ ,

∣∣∣∣ (X + λ)(5)

(X + λ)(4)

∣∣∣∣
}

� |X| 3
2 + 1

54 .

Proof. Apply Theorem 3·1 with A = ln X and f (x) = ln (ex + λ). The function fd : R→
(0, d) is defined by

fd(x) = ln

(
ex+d + λ

ex + λ

)
.

Its inverse is

f −1
d : (0, d) →R, f −1

d (x) = ln

(
λ(ex − 1)

ed − ex

)
.

The first three derivatives of f −1
d are

(
f −1
d

)(1)(x) =
(
ed − 1

)
ex

(ex − 1)
(
ed − ex

) ,

(
f −1
d

)(2)(x) =
(
ed − 1

)
ex

(
e2x − ed

)
(ex − 1)2

(
ed − ex

)2
,

(
f −1
d

)(3)(x) =
(
ed − 1

)
ex

[
e4x + (ed + 1)e3x − 6ede2x + (

e2d + ed
)
ex + e2d

]
(ex − 1)3

(
ed − ex

)3
.

The three derivatives have a combined total of at most 5 zeroes in (0,d), and so Theorem 3·1
can indeed be applied with m = 5.

Unfortunately, the condition that A consists of a set of positive reals appears to be a more
meaningful restriction for Corollary 4·2, and this cannot be easily removed by applying the
result to a dilate of the set.

We have also directly verified that the additional condition of Theorem 3·1 is valid for
other notable functions such as f (x) = ex and f (x) = x3. The details of these calculations are
omitted. It appears likely that Theorem 3·1 also holds for f (x) = xd with d ≥ 3 an integer.
However, the additional condition does not hold for the quadratic function f (x) = x2.

We now use Corollary 4·2 to prove Theorem 1·2. We state and prove a more quantitatively
precise version of the theorem below.

COROLLARY 4·3. Let A be a set of positive real numbers and suppose that |AA| ≤ K|A|.
Then, for all t ∈R such that t = 0,

|{(a, b) ∈ A × A : a − b = t}| � K
405
41 |A| 2

3 − 1
123 .

Proof. Write

rA−A(t) := |{(a, b) ∈ A × A : a − b = t}|.
Since rA−A(t) = rA−A( − t), we may assume without loss of generality that t is positive.
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Denote A(t) = A ∩ (A − t) and observe that |A(t)| = rA−A(t). Note also that A(t), A(t) + t ⊂
A. Apply Corollary 4·2 with

X = A(t), λ = t.

It follows that ∣∣∣∣A(8)

A(7)

∣∣∣∣ ≥ max

{∣∣∣∣A(t)(8)

A(t)(7)

∣∣∣∣ ,

∣∣∣∣ (A(t) + t)(5)

(A(t) + t)(4)

∣∣∣∣
}

� |A(t)| 3
2 + 1

54 .

However, using Theorem 2·3 in the multiplicative setting and the assumption that |AA| ≤
K|A| gives

|A(t)| 3
2 + 1

54 � K15|A|.
A rearrangement of this inequality completes the proof.

5. Proof of Theorem 1·1
In this section, we will prove Theorem 1·1. In fact, we will prove the following more gen-

eral statement, from which Theorem 1·1 follows by setting f (x) = ln x. A concrete value for
the constant c from Theorem 1·1 is given, namely c = 1/162, although the task of optimising
this constant is not pursued to its fullest here.

THEOREM 5·1. Let a ∈R and let I denote the interval I = (a, ∞). Suppose that A ⊂ I is
a finite set. Suppose that f : (a, ∞) →R is a strictly convex or concave function. Suppose
also that, for any d ∈ (0, ∞), the function f −1

d : J → I is 3-convex. Then

max{|16A|, |13f (A)|} � |A| 3
2 + 1

162 .

Proof. An application of Theorem 2·2 with k = 8 gives the bound

|8A||8f (A)| � |A|3− 1
128 . (15)

It follows that we may assume that

|8A| ≥ |A| 3
2 − 1

64 . (16)

Indeed, if (16) does not hold then (15) gives the bound |8f (A)| � |A| 3
2 + 1

128 , which is stronger
than the result claimed in the statement of Theorem 5·1.

Two applications of Theorem 2·4 give the bounds

|8A − 7A| ≤ |8A − 8A| ≤ |8A + 8A|2
|8A| = |16A|2

|8A|
and similarly

|5f (A) − 4f (A)| ≤ |13f (A)|2
|8f (A)| .

Combining these bounds with (4), it follows that

|16A|32

|8A|16
· |13f (A)|22

|8f (A)|11
≥ |8A − 7A|16|5f (A) − 4f (A)|11 � |A|41.
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Rearranging this inequality and then applying (15) yields

|16A|32|13f (A)|22 � |A|41(|A|3− 1
128 )11|8A|5.

Applying (16) and then tidying things up gives

|16A|32|13f (A)|22 � |A|81+ 1
2 − 21

128 ≥ |A|81+ 1
3 .

Finally, the claimed bound follows from the pigeonhole principle.

Acknowledgements. The author was supported by the Austrian Science Fund FWF
Project P 34180. Thanks to Brandon Hanson, Zach Hunter, Audie Warren and Dmitrii
Zhelezov for helpful conversations. Thanks also to the anonymous referee for helping to
remove the logarithmic factors from an earlier draft of this paper.

REFERENCES

[1] J. BOURGAIN and M.-C. CHANG. On the size of k-fold sum and product sets of integers. J. Amer.
Math. Soc. 17 (2004), 473–497.

[2] P. J. BRADSHAW. Growth in sumsets of higher convex functions. Combinatorica 43(4) (2023), 769–
789.

[3] G. ELEKES, M. NATHANSON and I. RUZSA. Convexity and sumsets. J Number Theory. 83 (1999),
194–201.
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