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Abstract

When restricted to alternating links, both Heegaard Floer and Khovanov homology
concentrate along a single diagonal δ-grading. This leads to the broader class of thin links
that one would like to characterize without reference to the invariant in question. We
provide a relative version of thinness for tangles and use this to characterize thinness via
tangle decompositions along Conway spheres. These results bear a strong resemblance
to the L-space gluing theorem for three-manifolds with torus boundary. Our results are
based on certain immersed curve invariants for Conway tangles, namely the Heegaard
Floer invariant HFT and the Khovanov invariant K̃h that were developed by the authors
in previous works.

1. Introduction

Fox famously asked

What is an alternating knot?

He was interested in knowing if this property could be characterized without reference to knot
diagrams; see Lickorish [Lic97, Chapter 4]. A satisfying answer to Fox’s question was provided
by Greene [Gre17] and Howie [How17]: both works prove that a non-split link is alternating if
and only if it admits a pair of special spanning surfaces.

Bar-Natan conjectured [BN02] and Lee proved [Lee05] that alternating links have thin
Khovanov homology. Subsequently, Ozsváth and Szabó proved that alternating links have thin
knot Floer homology [OS03a, OS08]. That is, the relevant bigraded homology theory in each
case is supported along a single diagonal (taking the reduced version in the case of Khovanov’s
invariant). These diagonals give rise to the integer-valued δ-grading in each theory, so that
thinness is defined, algebraically, as follows.

Definition 1.1. A δ-graded vector space is called thin if it is supported in at most one δ-grading.

A link is called thin if its associated invariant is thin. Bar-Natan’s calculations showed that
non-alternating thin links exist in Khovanov homology, suggesting a broader class of links that
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appears harder to pin down. Restricting coefficients to the rational numbers for the moment,
Dowlin’s spectral sequence from Khovanov homology to knot Floer homology [Dow18] implies
that if a link is thin as measured by Khovanov homology then it must be thin as measured by
knot Floer homology. In fact, computations suggest that these notions of thinness coincide. Thus,
the question

What is a thin link?

is a natural one. In particular, is there a characterization of thinness that does not depend on
the bigraded link homology theory used? For example, quasi-alternating links were proved to be
thin by Manolescu and Ozsváth [MO08]. Interestingly, thin links that are not quasi-alternating
exist [Gre10] and indeed arise in infinite families [GW13]. A larger class has been proposed, two-
fold quasi-alternating [SS18], and one might ask whether this exactly captures the property of
being thin.

Beyond the homology theory in question, thinness may also depend on the coefficient system.
Indeed, Shumakovitch found a knot whose Khovanov homology is thin when computed over Q,
but not over the two-element field F (see [Shu21]); see Example 7.1 for further discussion. The
authors are unaware of any such example for knot Floer homology.

A change of perspective
The question ‘What is a thin link?’ may be placed in a broader context: Given any homology
theory H∗ (of CW-complexes, manifolds, links, etc.), a basic observation is that its dimension is
bounded below by the absolute value of its Euler characteristic χ. Thus, the following is a natural
problem.

Problem 1.2. Characterize the objects Y for which dimH∗(Y ) = |χH∗(Y )|.

Equivalently, the problem is to classify all objects whose homology is supported in gradings
of the same parity. Even for singular homology of manifolds, this appears to be a hard question,
although some basic facts can be easily established: for oriented two-dimensional manifolds, for
example, the identity dimH∗(Y ) = |χH∗(Y )| characterizes the two-sphere. For unoriented two-
dimensional manifolds, the situation already becomes more subtle, because the answer depends on
the field of coefficients. For n odd, the Euler characteristic of any n-dimensional closed manifold
vanishes, so there are no solutions to this identity. A naïve guess for even integers n ≥ 4 would
be that solutions should admit a handle decomposition with no i-handles for odd i. But such a
characterization seems to be difficult to establish even for closed, simply connected four-manifolds;
see [Kir95, Problem 4.18].

In the context of Ozsváth and Szabó’s Heegaard Floer homology ĤF for closed oriented three-
manifolds, solutions to dim ĤF(Y ) = |χ ĤF(Y )| are known under the name L-spaces ; see § 7.5 for
a detailed discussion of this definition. In this context, Problem 1.2 relates to the question

What is an L-space?

(see [OS05a, Question 11]), which continues to drive research. Ozsváth and Szabó proved that
L-spaces cannot carry taut foliations [OS04a] (see also [Bow16, KR17]). At present, the conditions
Y not being an L-space, π1(Y ) being left-orderable, and Y admitting a taut foliation are known
to be equivalent for all graph manifolds [BC17, Ras17, HRRW20]. The equivalence of these three
conditions is conjectured in general; see [BGW13] or [Dun20] for further discussion.
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Turning now to link homology theories: the reduced Khovanov homology K̃h(L;k) of an
�-component link L in S3 categorifies the Jones polynomial VL(t), in the sense that

χgrK̃h(L;k) :=
∑

(−1)ht
1
2
q dim K̃hh,q(L;k) = VL(t),

where h denotes the homological grading, q the quantum grading, and k is some field. By setting
t = 1, we see that the ungraded Euler characteristic with respect to the homological grading is
equal to VL(1) = 2�−1. Problem 1.2 in this setting was recently solved by Xie and Zhang [XZ18],
who showed that the identity dim K̃h(L;k) = |χhK̃h(L;k)| = 2�−1 characterizes so-called forests
of unknots (at least if k = F). Similarly, the knot Floer homology ĤFK(L;k) categorifies the
Alexander polynomial ΔL(t):

χgr ĤFK(L;k) :=
∑

(−1)ht
1
2
A dim ĤFK h,A(L;k) = ΔL(t) · (t1/2 − t−1/2)�−1,

where h denotes the homological grading (often called the Maslov grading) and A denotes
the Alexander grading (or, more precisely, twice the Alexander grading from [OS04b]). The
ungraded Euler characteristic with respect to the homological grading is equal to 0 if � > 1 and
ΔL(1) = 1 if � = 1. Thus, in the first case, there are no solutions to the identity dim ĤFK(L;k) =
|χh ĤFK(L;k)|; in the second case, Problem 1.2 reduces to the question about unknot detection
for ĤFK, which was settled by Ozsváth and Szabó [OS04a].

Since both K̃h and ĤFK are bigraded homology theories, one is not restricted to taking Euler
characteristics with respect to the homological grading. Another choice is the δ-grading, which
is defined by δ = 1

2q − h and δ = 1
2A− h, respectively. This corresponds to setting t = −1 in the

polynomial invariants:

χδK̃h(L;k) :=
∑

(−1)h+ 1
2
q dim K̃hh,q(L;k) = VL(−1)

χδ ĤFK(L;k) :=
∑

(−1)h+ 1
2
A dim ĤFK h,A(L;k) = ±2�−1 · ΔL(−1).

This choice seems to be particularly natural, since

|VL(−1)| = |ΔL(−1)| = det(L),

where det(L) is the determinant of L, a classical link invariant. It leads us to consider the
following.

Definition 1.3. Given a link homology theory H∗, an A-link is a link L satisfying

dimH∗(L) = |χδ H∗(L)|.
In the following, H∗ will be either K̃h or ĤFK with coefficients in some field k. Again, there

is a dependence on the homology theory H∗ as well as on k, and we will be adding the relevant
modifiers where needed. Problem 1.2 relates to the question

What is an A-link?

By this question we are interested in knowing if this property can be described (geometrically or
topologically) without reference to a link homology theory. Clearly, every thin link is an A-link.
For H∗ = ĤFK, the converse is false, as the family of twisted Whitehead doubles of the trefoil
knot that Hedden and Ording consider in [HO08] illustrates; see Example 7.15. For H∗ = K̃h, we
expect that all A-links are thin. This is closely related to the question of full support.
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Definition 1.4. We say that a link homology theory H∗ has full support if for all links L and
all δ-gradings i < j < k,

(Hi(L) �= 0 and Hk(L) �= 0) ⇒ Hj(L) �= 0.

Proposition 1.5. Given a link homology theory H∗ with full support, a link is thin if and only
if it is an A-link.

Proof. A link L is an A-link if and only if H∗(L) is supported in gradings of the same parity.
Assuming H∗ has full support, the latter is equivalent to H∗(L) being supported in a single
grading, i.e. L being thin. �

To the best of the authors’ knowledge, there is no known example of a link violating full
support for Khovanov homology: indeed, that this invariant has full support appears to be a
folklore conjecture.

Our shift in perspective from thin links to A-links is primarily motivated by the observation
that the latter are better behaved with respect to tangle decompositions along Conway spheres,
which is the focus of this article. Another reason is the interplay between L-spaces and A-links
in the context of two-fold branched covers: there is a spectral sequence due to Ozsváth and
Szabó relating the reduced Khovanov homology of a link and the Heegaard Floer homology of
the mirror of the two-fold branched cover of the link [OS05b]. In particular, given an A-link, the
associated two-fold branched cover is an L-space. However, the converse is not true: the Poincaré
homology sphere is an L-space that may be obtained as the two-fold branched cover of the torus
knot 10124, which is not an A-knot. Nonetheless, there is a sense in which A-link branch sets
might be characterized by sufficiently large L-space surgeries on strongly invertible knots; see the
discussion in § 7, as well as [Wat17, Conjecture 30] and [Wat11] for related examples.

Thin links and Conway spheres
For simplicity, we now restrict to coefficients in the field of two elements F. We focus on charac-
terizing thin links and A-links from the perspective of Conway spheres. This is motivated, in part,
by results characterizing L-spaces in the presence of an essential torus. Given a three-manifold
with torus boundary M and a parametrization of ∂M by a meridian μ and a longitude λ, the
space of L-space fillings of M is defined by

L(M) := {p/q ∈ QP1 |M(p/q) is an L-space},
where M(p/q) is the closed three-manifold obtained by Dehn filling along the slope pμ+ qλ ∈
H1(∂M). Rasmussen and Rasmussen showed [RR17, Proposition 1.3 and Theorem 1.6] the
following.

Theorem 1.6. For any three-manifold with torus boundary M , L(M) is either empty, a single
point, a closed interval or QP1 minus a single point.

Denote the interior of L(M) by L̊(M). Hanselman, Rasmussen, and the second author
established the following result [HRW24, Theorem 13].

Theorem 1.7 (L-space gluing theorem). Let Y = M0 ∪h M1 be a three-manifold where the
Mi are boundary incompressible manifolds and h : ∂M1 → ∂M0 is an orientation-reversing
homeomorphism between the torus boundaries. Then Y is an L-space if and only if

L̊(M0) ∪ h(L̊(M1)) = QP1 .

A similar result holds without the assumption that Mi be boundary incompressible; see
Remark 7.16.
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Figure 1. Two isotopic Conway tangle decompositions defining the link T1 ∪ T2. The tangle T2

is the result of rotating T2 around the vertical axis. By rotating the entire link on the right-hand
side around the vertical axis, we can see that T1 ∪ T2 = T2 ∪ T1.

A Conway tangle is a proper embedding of two intervals and a finite (possibly empty) set
of circles into a closed 3-dimensional ball. We consider Conway tangles up to isotopy fixing the
boundary sphere pointwise. Given a Conway tangle T and a δ-graded link homology theory, we
make analogous definitions:

A(T ) := {p/q ∈ QP1 | T (p/q) is an A-link},
Θ(T ) := {p/q ∈ QP1 | T (p/q) is thin}.

Here T (p/q) is the p/q-rational filling of T , that is, the link obtained by closing the tangle T with
a −p/q-rational tangle, using the tangle gluing convention shown in Figure 1. We call these the
A-link filling space and the thin filling space of the tangle T , respectively. Strictly speaking, we
should decorate each of these with the homology theory in question; we use subscripts to do so
where needed. Often, however, the four spaces AKh(T ), AHF(T ), ΘHF(T ), and ΘKh(T ) coincide.
Moreover, the central statements in this paper hold in both the Khovanov and Heegaard Floer
setting. Therefore, we do not specify the homology theory in the remainder of this introduction.

Theorem 1.8 (Characterization of A-link filling spaces). For any Conway tangle T , A(T ) is
either empty, a single point or an interval in QP1.

Theorem 1.9 (Characterization of thin filling spaces). For any Conway tangle T , Θ(T ) is either
empty, a single point, two distinct points, or an interval in QP1.

Theorems 1.8 and 1.9 illustrate the difference between A-links and thin links. However,
whereas Heegaard Floer A-links need not be Heegaard Floer thin, see Example 7.15, we do
not know any tangle for which Θ(T ) consists of two distinct points, neither in Heegaard Floer
nor Khovanov theory. If such a tangle exists in Khovanov homology, then the rational fillings
of this tangle include Khovanov A-links that are not Khovanov thin. In particular, this would
establish that Khovanov homology does not have full support. Despite the (potential) existence
of such pathological examples, we know that thin and A-link filling spaces coincide generically in
the following sense.

Proposition 1.10. If Θ(T ) is an interval, then Θ(T ) = A(T ).

In contrast with L(M), when A(T ) or Θ(T ) is an interval with two distinct boundary points
the interval need not necessarily be closed. This suggests that analogues of the L-space gluing
theorem have to be slightly more subtle. The proofs of all results in this paper rely on the
homological invariants HFT(T ) and K̃h(T ), which are generalizations of Heegaard Floer and
Khovanov homology of links to Conway tangles [KWZ19, Zib19, Zib20, Zib23b]; these invariants
are reviewed in §§ 3 and 5, respectively. Given two Conway tangles T1 and T2, let Γ1 denote the
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Heegaard Floer/Khovanov tangle invariant of T ∗
1 , the mirror of T1, and let Γ2 be the corresponding

invariant of T2. The link T1 ∪ T2 is obtained by identifying the two tangles according to the
prescription in Figure 1.

Definition 1.11. For a subset of slopes X ∈ QP 1, define its mirror as Xm = {−s | s ∈ X}.
Theorem 1.12 (A-link gluing theorem). The link T1 ∪ T2 is an A-link if and only if:

(1) Am(T1) ∪ A(T2) = QP1; and
(2) certain conditions indexed by ∂Am(T1) ∩ ∂A(T2) hold for Γ1 and Γ2.

Condition (2) is easy to describe, once the relevant tangle invariants have been reviewed. Note
that this condition is vacuously satisfied if ∂Am(T1) ∩ ∂A(T2) = ∅, which is true generically. This
allows us to obtain the following.

Corollary 1.13. Let Å(Ti) denote the interior of A(Ti) for i = 1, 2. Then

Åm(T1) ∪ Å(T2) = QP1 =⇒ T1 ∪ T2 is an A-link

There is also an analogue of the A-link gluing theorem for thinness. However, due to the
characterization results of A-link versus thin filling spaces, this analogue requires an additional
hypothesis about the tangle invariants HFT(T ) and K̃h(T ). For this, we introduce the notion of
Heegaard Floer/Khovanov exceptionality for tangles (Definitions 4.24 and 6.11). Heegaard Floer
exceptional tangles do exist, see Example 7.15. We conjecture that Khovanov exceptional tangles
do not exist. That such a conjecture is reasonable is supported by the following.

Proposition 1.14. If a Khovanov exceptional tangle exists, then there exists a link whose
Khovanov homology is supported in precisely two non-adjacent δ-gradings.

Once more, the question of full support is brought to the foreground.

Theorem 1.15 (Thin gluing theorem). Suppose at most one of T1 and T2 is exceptional. Then
T1 ∪ T2 is thin if and only if:

(1) Θm(T1) ∪ Θ(T2) = QP1; and
(2) certain conditions indexed by ∂Θm(T1) ∩ ∂Θ(T2) hold for Γ1 and Γ2.

Corollary 1.16. Let Θ̊(Ti) denote the interior of Θ(Ti) for i = 1, 2. Then

Θ̊m(T1) ∪ Θ̊(T2) = QP1 =⇒ T1 ∪ T2 is thin.

Corollary 1.13 and Corollary 1.16 provide the condition one checks in practice. Some examples
are discussed in § 7.

How to read this paper
The similarities between Heegaard Floer and Khovanov homology, highlighted by the main results
of this paper, extend to the arguments that go into the proofs of these results. In fact, the
arguments are so similar that they can be presented without reference to either link homology
theory. This is done in § 2, which requires no specialized knowledge. We then show that both the
Heegaard Floer invariant HFT(T ) (§§ 3 and 4) and the Khovanov invariant Kh(T ) (§§ 5 and 6) fit
into this general framework. Section 7 discusses examples and applications of our main results,
focussing primarily on thinness in Khovanov homology.

The sections of this paper need not be read in order, and depending on the interests of the
reader certain sections can be skimmed or even skipped. A flow chart of dependencies is given in
Figure 2. For instance, having read this introduction, the reader may wish to turn immediately
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Figure 2. The paper’s sections and their dependencies. Dashed arrows indicate dependencies
that need only statements of results and not the machinery that arise in the proofs, so that the
sections in each column may be read in isolation.

Figure 3. The thin interval relative to an increasing sequence of slopes (s1, s2, s3, . . . , sn).

to the Examples in § 7 in order to get a sense of what one observes in nature. Section 2 is entirely
combinatorial and makes no reference to any link homology theory. Sections 3 and 4 focus on knot
Floer homology whereas §§ 5 and 6 focus on Khovanov homology following a similar structure:
in both cases, we review the relevant tangle invariant in the first section and establish our new
results in the second.

2. Abstracting the main argument

This section lays the combinatorial foundation on which the main results of this paper rely.
Towards characterizing thin links and A-links without reference to a given homology theory, we
find it compelling that, relative to tangle decompositions, thinness is amenable to the elementary
combinatorial abstraction described in the following.

2.1 Combinatorics of slopes and lines
The space of slopes QP1 ⊂ RP1 ∼= S1, endowed with the subspace topology, carries a natural
cyclic order: given a finite set of slopes {s1, . . . , sn} for some n ≥ 3, we write

s1 ≤ s2 ≤ · · · ≤ sn ≤ s1

if the loop [0, 1] � t → s1 · e2πit ∈ S1 ⊂ C based at s1 meets sl not before sk if k < l; in short, we
choose the counter-clockwise order, as illustrated in Figure 3. We call a tuple (s1, . . . , sn) that
satisfies this condition increasing. Note that sn �= s1 for any such tuple, unless s1 = s2 = · · · = sn.
If the order is opposite, the tuple is called a decreasing tuple. For pairs of distinct slopes the interval
notation (s1, s2) denotes the set of slopes s for which (s1, s, s2) is increasing. As usual, square
and round brackets are used to indicate the inclusion and exclusion of the interval boundaries.
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Let C = QP1 ×G× {0, 1} where G is either Z or Z/2. When it is necessary to make the
distinction between the choice of G, we will write C = CG . Elements c ∈ C will be called lines;
one might represent them geometrically as slopes together with decorations in G× {0, 1}. (We
choose the terminology line for distinction with curve, which will have a slightly different meaning
in subsequent sections.) Given a triple c ∈ C, denote the first component, the slope of c, by s(c);
denote the second component, the grading of c, by g(c); the third component is denoted by ε(c).
A line c is rational if ε(c) = 0 and special if ε(c) = 1. Note that G acts on the set C, and we write

n · c = n · (s, g, ε) = (s, g + n, ε) for any n ∈ G.

Let g : C2 → G be a function satisfying the following identities for all c, c′, c′′ ∈ C:

g(c, c′) + g(c′, c) =

{
0 if s(c) = s(c′)
−1 otherwise;

(symmetry)

g(c, c′) + g(c′, c′′) = g(c, c′′) if (s(c), s(c′), s(c′′)) is increasing; (transitivity)

g(n · c, n′ · c′) = g(c, c′) + n′ − n. (linearity)

A finite non-empty collection of lines C = {c1, . . . , cn} ⊂ C is called a line set. We call C
s-rational if ε(c) = 0 for all {c ∈ C | s(c) = s}, and s-special if ε(c) = 1 for all {c ∈ C | s(c) = s}.

It is often useful to consider the underlying slopes realized by a given line set C in the
projection C → QP1. For this purpose, we define the set of supporting slopes as

SC := {s(c) | c ∈ C} ⊂ QP1 .

We call a line set C trivial if all its lines are special and concentrated in a single slope; in other
words, if SC = {s} for some slope s ∈ QP1, and C is s-special. Otherwise, we call C non-trivial.

Note that the quotient homomorphism Z → Z/2 induces a canonical map CZ → CZ/2, which
allows us to relate lines and line sets with respect to the two choices of G. Specifically, the image
of a line set C ⊂ CZ under this map is a multi-set; after removing any duplicate elements, we
obtain a line set in CZ/2, which, by abuse of notation, we also denote by C.

Remark 2.1. In §§ 4 and 6, we construct the function g with the desired properties in the Heegaard
Floer and the Khovanov setting, respectively. However, it is not hard to see that such a function
exists and that it is essentially unique. For this, it is useful to think of CZ in terms of a covering
space of QP1. More precisely, we can identify C0 := QP1 ×Z × {0} ⊆ CZ with the pullback of
the universal cover p : R → RP1 along the inclusion QP1 ↪→ RP1. This is done as follows: to
define a map η : C0 → R, fix some c∗ ∈ C0 as a basepoint and define η(c∗) to be some point
x∗ ∈ p−1(s(c∗)). For each s ∈ QP1 �{s(c∗)}, there is some element cs ∈ C0 of slope s such that
g(c∗, cs) = 0. Let γs be an injective path from s(c∗) to s which goes in counter-clockwise direction.
Define η(cs) as the endpoint of the lift of γs starting at x∗. Then extend η equivariantly using
the action of G = Z on C0 and the action by deck transformations on R, where +1 corresponds
to a counter-clockwise loop based at c∗. Under this identification of C0 with a subspace of R, the
function g is simply the floor function of the signed distance:

g(c, c′) = �η(c′) − η(c)� for any c, c′ ∈ C0 .

By taking the product with {0, 1}, one can easily extend this construction to C. For CZ/2, a
similar interpretation is possible: we simply replace the universal cover of RP1 by the connected
two-fold cover.
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Although the expression for the function g in Remark 2.1 is very concise, we do not make any
further use of this perspective. Instead, we only use the properties of the function g, in particular
the symmetry and transitivity property.

Definition 2.2. Given s ∈ QP1, a line set C is called s-consistent if g(c, c′) = 0 for all c, c′ ∈ C
with s(c) = s = s(c′).

Note that if C contains a unique line c for which s(c) = s (or, indeed, if s /∈ SC), then it is
s-consistent. Thus, in particular, this is a condition that is relevant when multiple lines project
to the same slope. In fact, if C is s-consistent there are at most two lines of slope s in C, since
C ⊂ C. We relax this point of view and allow multi-sets when discussing curves in the Heegaard
Floer and Khovanov settings in later sections.

Definition 2.3. We call a pair (C,D) of line sets thin, or, more precisely, G-thin, if there exists
some constant n ∈ G such that for all (c, d) ∈ C ×D,{

(ε(c), ε(d)) ∈ {(0, 1), (1, 0)} if s(c) = s(d),
g(c, d) = n otherwise.

Note that if (C,D) is thin, then so is (D,C). For any line set C, we define

ΘG(C) = {s ∈ QP1 | ((s, 0, 0), C) is thin}.
We write Θ in place of ΘG when the statements are true for both G = Z and G = Z/2 or

when this group is clear from the context.

Lemma 2.4. Given a line set C, s(c) �∈ Θ(C) for every rational c ∈ C.

Proof. This is an immediate consequence of the definitions. �
Lemma 2.5. Given a line set C, suppose s0 ∈ Θ(C). Then C is s-consistent for all slopes s ∈
QP1 �{s0}.
Proof. Let us write c0 = (s0, 0, 0). Since s0 ∈ Θ(C), g(c0, c) = g(c0, c′) for any lines c, c′ ∈ C of
slopes different from s0. In particular, this holds for lines c, c′ of the same slope s �= s0. In this
case, the triple (c0, c, c′) is increasing, so by (transitivity) of the function g, g(c, c′) = 0. �

When SC is a singleton, there are four cases that arise for the set Θ(C) depending on
consistency and the values of ε. These are recorded in the following lemma.

Lemma 2.6. Given a line set C, suppose SC = {s} for some s ∈ QP1. Then

Θ(C) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{s} if C is not s-consistent and s-special,
QP1 if C is s-consistent and s-special,
∅ if C is not s-consistent and not s-special,
QP1 �{s} if C is s-consistent and not s-special.

Proof. Suppose C is not s-consistent so that there exist c, c′ ∈ C such that g(c, c′) �= 0. Now
consider some ‘test’ slope s0 �= s and let c0 = (s0, 0, 0). The triple (c0, c, c′) is increasing,
so by (transitivity) g(c0, c) �= g(c0, c′). Thus, s0 /∈ Θ(C) and Θ(C) ⊆ {s}. Similarly, if C is
s-consistent, (transitivity) implies QP1 �{s} ⊆ Θ(T ). Finally, appealing to Lemma 2.4, s ∈ Θ(C)
if and only if all lines c ∈ C are special. �

More generally, for a generic line set C the set Θ(C) is an interval in QP1, whenever it is
non-empty. This behaviour can be characterized precisely as follows.
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Lemma 2.7. Given a line set C = {c1, . . . , cn} write si = s(ci) and suppose (s1, . . . , sn) is
increasing with s1 �= sn; see Figure 3. Then the following conditions are equivalent:

(1) there exists some s ∈ Θ(C) with s ∈ (sn, s1);
(2) g(ci, cj) = 0 for all i < j;
(3) (sn, s1) ⊆ Θ(C) ⊆ [sn, s1];
(4) (sn, s1) ⊆ Θ(C).

Proof. The implications (3) ⇒ (4) ⇒ (1) are obvious. Moreover, the implication (1) ⇒ (2) follows
from (transitivity) of the function g, as in the proof of Lemma 2.5. Thus, it suffices to show
(2) ⇒ (3). If part (2) holds, then, by (transitivity), g((s′, 0, 0), ci) is constant for all s′ ∈ (sn, s1),
so (sn, s1) ⊆ Θ(C). Moreover, since s1 and sn differ

g(cn, c1) = −1 − g(c1, cn) = −1

by (symmetry) of the function g. Then, for any s′ ∈ (s1, sn),

g((s′, 0, 0), c1) = g((s′, 0, 0), cn) + g(cn, c1) = g((s′, 0, 0), cn) − 1

and, hence, Θ(C) ∩ (s1, sn) = ∅. This establishes part (3). �
Taken together, Lemmas 2.6 and 2.7 capture nearly all of the behaviour that is possible.

Lemma 2.8. With the same notation as in Lemma 2.7, suppose | SC | > 2 and Θ(C) ⊆ SC . Then
Θ(C) ⊆ {si} for some i.

Proof. Suppose there exist two distinct slopes s, s′ ∈ Θ(C). Then by Lemma 2.5, C is t-consistent
for all t ∈ SC . Since | SC | > 2, we may assume that, after potentially reindexing the lines,
the slopes s1 = s, si = s′, and sn are pairwise distinct, that (s1, . . . , sn) is increasing, and
that si−1 �= si. Let j be minimal such that sj �= s. Then, g(ck, c�) = 0 for all j ≤ k < � ≤ n,
since s ∈ Θ(C). In particular, g(cj , cn) = 0. Since also si ∈ Θ(C), we get, in addition, that
g(cn, ck) = 0 for all 1 ≤ k < i. This contradicts (symmetry) of the function g unless i = j.
However, if i = j, then (s, s′) ⊂ Θ(C) by the direction (2) ⇒ (4) of Lemma 2.7, contradicting
our initial assumption about Θ(C). �

Therefore, continuing with our observation preceding Lemma 2.8, the only additional case
that needs special attention is | SC | = 2. We can now collect all of the forgoing into a clean
statement:

Theorem 2.9 (Characterization of G-thin filling spaces). Let C be a non-trivial line set. Then
Θ(C) is either empty, a single point, two distinct points, or an interval in QP1. For ΘZ/2(C), the
third case does not arise.

Observation 2.10. We have ∂Θ(C) ⊆ SC for any line set C by Lemmas 2.6 and 2.7. Moreover, if
C is non-trivial, SC is disjoint from the interior of Θ(C).

Proof of Theorem 2.9. If | SC | = 1, both statements follow from Lemma 2.6. Thus, we can assume
in the following that | SC | ≥ 2. Let us also assume that Θ(C) contains some slope s. If s �∈ SC then
Θ(C) is an interval by Lemma 2.7. If Θ(C) ⊆ SC and | SC | > 2, the set Θ(C) contains at most one
slope by Lemma 2.8. This concludes the proof of the first statement. Suppose |ΘZ/2(C)| = 2, say
ΘZ/2(C) = {s, s′} for some distinct s, s′ ∈ QP1. By Lemma 2.8, SC = {s, s′}. By Lemma 2.5, C is
s- and s′-consistent. Then, modulo 2, either g(c, c′) = 0 or g(c′, c) = 0 for any two lines c, c′ ∈ C
with s(c) = s and s(c′) = s′. Thus, condition (2) of Lemma 2.7 is met, and thus ΘZ/2(C) is a
(closed) interval, contradicting our initial assumption. �
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In the generic situation, the difference between G = Z and G = Z/2 vanishes.

Proposition 2.11. If ΘZ(C) is an interval, ΘZ(C) = ΘZ/2(C).

Proof. If | SC | = 1, this follows from the observation that a line set is s-consistent with respect
to G = Z/2 if it is s-consistent with respect to G = Z. If | SC | ≥ 2 and ΘZ(C) is an interval then
by Lemma 2.7, ΘZ/2(C) is an interval with the same endpoints. Moreover, whether an endpoint
is contained in ΘG(C) is independent of G. �

2.2 Characterizing thin pairs of line sets
We now turn to a characterization of thinness. Before stating the main theorem of this subsection,
we discuss a certain exceptional class of line sets which requires special care, but which in the
Heegaard Floer and Khovanov settings is ultimately a pathology that we have not observed in
practice.

Definition 2.12. We call a line set C exceptional if SC = {s, s′} for distinct slopes s, s′ ∈ QP1,
C is s- and s′-consistent, but there are lines c, c′ ∈ C with s(c) = s and s(c′) = s′ such that neither
g(c, c′) nor g(c′, c) are equal to 0.

Note that if G = Z/2, there do not exist exceptional line sets. In particular, we have the
following result.

Proposition 2.13. If ΘZ(C) = {s, s′} with s �= s′, then SC = {s, s′} and ΘZ/2(C) = [s, s′] or
[s′, s].

Proof. If | SC | = 1, |ΘZ(C)| �= 2 by Lemma 2.6. For the case | SC | ≥ 2, the statement follows
from the same arguments as the proof of the second statement of Theorem 2.9. �
Theorem 2.14 G-thin gluing theorem. Let (C,D) be a pair of non-trivial line sets. Suppose not
both C and D are exceptional. Then (C,D) is thin if and only if:

(1) Θ(C) ∪ Θ(D) = QP1; and
(2) for all s ∈ ∂Θ(C) ∩ ∂Θ(D), at least one of C and D is s-rational.

We first prove a technical lemma that will simplify the proof of Theorem 2.14.

Lemma 2.15. Let (C,D) be a pair of non-trivial line sets. Suppose Θ(C) ∪ Θ(D) = QP1. Then
SC ∩SD = ∂Θ(C) ∩ ∂Θ(D).

Proof. The inclusion ⊇ follows from the first part of Observation 2.10. For the inclusion ⊆, we
distinguish four cases, depending on the size of | SC | and | SD |. If | SC | = 1 = | SD |, either
SC ∩SD = ∅, so there is nothing to show, or SC = {s} = SD for some slope s, in which case
Θ(C) ∪ Θ(D) = QP1 �{s} � QP1 by Lemma 2.6 and the non-triviality of C and D. Suppose
| SC | > 1 and | SD | = 1, say SD = {s}. If D is not s-consistent, the hypothesis is not satisfied by
the non-triviality of D, Lemma 2.6, and Theorem 2.9. If D is s-consistent, Θ(D) = QP1 �{s} by
Lemma 2.6, so in particular s ∈ ∂Θ(D) = SD. Moreover, the hypothesis implies that s ∈ Θ(C).
If s �∈ SC , there is nothing to show, whereas if s ∈ SC , then also s ∈ ∂Θ(C) by Lemma 2.7. If
| SC | = 1 and | SD | > 1, we repeat the argument with the roles of C and D reversed. Thus, it
remains to consider the case that | SC |, | SD | > 1. Combining Lemma 2.7 with the hypothesis
shows that Θ(C) and Θ(D) are two intervals. The claim now follows from the second part of
Observation 2.10. �
Proof of Theorem 2.14. We start with a reformulation of condition (2) on the right-hand side
of the asserted equivalence. Suppose for a moment that condition (1) in Theorem 2.14 holds.
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Then by non-triviality of C andD and Lemma 2.15, ∂Θ(C) ∩ ∂Θ(D) = SC ∩SD. Suppose further
that C is s-rational for some slope s. Then s �∈ Θ(C) by Lemma 2.4. Therefore, s ∈ Θ(D) and so
by the same lemma, D is s-special. Similarly, if D is s-rational, we can apply the same argument
with reversed roles of C and D. It therefore suffices to show that (C,D) is thin if and only if:

(1) Θ(C) ∪ Θ(D) = QP1; and
(2′) for all s ∈ SC ∩SD, C is s-rational and D is s-special or vice versa.

Clearly, (C,D) being thin implies condition (2′). Thus, let us assume from now on that C and
D satisfy condition (2′). Write C = {c1, . . . , cm} and D = {d1, . . . , dn} for some m,n ≥ 1,
and let si = s(ci) for i = 1, . . . ,m and tj = s(dj) for j = 1, . . . , n. We order the components
of C and D such that both (s1, . . . , sm) and (t1, . . . , tn) are increasing tuples. The proof proceeds
in four cases indexed by | SC ∩SD |.
Case 0: SC ∩SD = ∅. In this case (C,D) is thin if and only if there exists some M ∈ G such
that g(c, d) = M for all (c, d) ∈ C ×D. By (transitivity), this is the case if and only if after some
cyclic permutation of the indices

(s1, . . . , sm, t1, . . . , tn)

is an increasing tuple such that g(ci, cj) = 0 and g(di, dj) = 0 for all i < j. (Otherwise, if SC

and SD intertwine, in the sense that there exist i, j, k, � such that (si, tj , sk, t�) is increas-
ing, (transitivity) implies M = g(ci, d�) = g(ci, dj) + g(dj , ck) + g(ck, d�) = M + (−1 −M) +M ,
which is false.) By Lemmas 2.6 and 2.7, the latter condition is equivalent to Θ(C) and Θ(D)
being two overlapping intervals.

Case 1: SC ∩SD = {s}. (a) Suppose SC = SD = {s}. Then, because neither C nor D are trivial,
C and D each contain at least one rational line of slope s. Thus, (C,D) is not thin. Moreover, s
is neither in Θ(C) nor in Θ(D), so property (1) does not hold either.

(b) Suppose SC = {s} and SD � {s}. If C is not s-consistent, condition (1) is false. This
is because in this case, Θ(C) = ∅ by Lemma 2.6 and non-triviality of C, and Θ(D) �= QP1 by
Lemma 2.7. On the other hand, C not being s-consistent, in conjunction with (transitivity),
implies that (C,D) is not thin, so the equivalence holds in this case. Suppose now that C is
s-consistent. Then Θ(C) = QP1 �{s} by non-triviality of C and Lemma 2.6. Therefore, condi-
tion (1) is equivalent to s ∈ Θ(D). Now observe that since C is non-trivial, it is not s-special.
Since we are assuming that condition (2′) holds, this implies that C is s-rational and D is
s-special. In particular, C consists of a single rational line. Thus, by (linearity), (C,D) is thin
if and only if ((s, 0, 0), D) is thin, i.e. s ∈ Θ(D).

(c) Suppose SC � {s} and SD = {s}. This is the same as Case 1(b) with reversed roles of C
and D.

(d) Suppose | SC |, | SD | > 1. Let us reindex the lines such that sm �= s1 = s = tn �= t1, and
(s1, . . . , sm) and (t1, . . . , tn) are increasing. After potentially interchanging C and D, we may
assume without loss of generality that (s, sk, t�) is increasing for some k, � such that sk �=
s �= t�. By (transitivity), (C,D) is thin if and only if (i) (s, sm, t1) is an increasing tuple, and
(ii) g(si, sj) = 0 and g(ti, tj) = 0 for i < j, or equivalently, (ii′) (s, t1) ⊆ Θ(D), and (sm, s)
⊆ Θ(C), by Lemma 2.7. Conditions (ii′) and (2′) imply that s ∈ Θ(D) or s ∈ Θ(C). Together with
condition (i), part (1) follows. Conversely, suppose conditions (1) and (2′) hold. Since by
Lemma 2.7, Θ(C) and Θ(D) are contained in the closures of open intervals disjoint from any
supporting slopes of C and D, respectively, condition (1) implies (i) and (ii′).

1478

https://doi.org/10.1112/S0010437X24007152 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007152


Thin links and Conway spheres

Case 2: SC ∩SD = {s, t}. (a) Suppose | SC | = 2 = | SD |. Suppose further that C is not
s-consistent. Then Θ(C) = ∅ and, hence, Θ(C) ∪ Θ(D) �= QP1. Indeed, (C,D) is not thin in
this case. Similarly, one can show that the theorem holds whenever C or D are not s- and
t-consistent. Thus, now let us assume that C and D are s- and t-consistent. By the assumptions
that we have already made, we can write C = {c, c′} and D = {d, d′} where s(c) = s(d) = s and
s(c′) = s(d′) = t. Then, by Lemma 2.7,

(s, t) ⊆ Θ(C) ⇔ g(c′, c) = 0 (t, s) ⊆ Θ(D) ⇔ g(d, d′) = 0,

(t, s) ⊆ Θ(C) ⇔ g(c, c′) = 0 (s, t) ⊆ Θ(D) ⇔ g(d′, d) = 0.

Now, (C,D) being thin is equivalent to g(c, d′) = g(c′, d). By (transitivity) g(c, d′) = g(c, d) +
g(d, d′) and g(c′, d) = g(c′, c) + g(c, d), and so the condition g(c, d′) = g(c′, d) is equivalent to
g(c′, c) = g(d, d′). By (symmetry) of g, this is equivalent to g(c, c′) = g(d′, d). The latter two
conditions, in conjunction with the four equivalences above, are equivalent to the condition
Θ(C) ∪ Θ(D) ⊇ QP1 �{s, t}, since we are assuming that not both C and D are exceptional.
This is equivalent to condition (1) since by condition (2′), either C or D is s-special and either
C or D is t-special.

(b) Suppose | SC | > 2. After potentially interchanging t and s, we may assume without loss
of generality that (s, sk, t) is increasing for some k such that s �= sk �= t. As in Case 1(c), let us
reindex the lines such that sm �= s1 = s = tn �= t1, and (s1, . . . , sm) and (t1, . . . , tn) are increasing.
Then, by (transitivity), (C,D) is thin if and only if sm = t = t1 and g(si, sj) = 0 and g(ti, tj) = 0
for all i < j. This, in turn, is equivalent to Θ(C) ∪ Θ(D) ⊇ QP1 �{s, t}. Now conclude as in
Case 2(a).

(c) Suppose | SD | > 2. This is the same as Case 2(b) with reversed roles of C and D.

Case 3: | SC ∩SD | > 2. Say s, s′, s′′ ∈ SC ∩SD are pairwise distinct slopes such that (s, s′, s′′) is
an increasing triple. Then there exist lines c, c′, c′′ ∈ C and d, d′, d′′ ∈ D such that s = s(c) = s(d),
s′ = s(c′) = s(d′), and s′′ = s(c′′) = s(d′′). We claim that in this case (C,D) is not thin. Suppose
(C,D) were thin. Then g(c, d′) = g(c, d′′), so g(d′, d′′) = 0. Cyclically permuting the variables
gives g(d′′, d) = g(d, d′) = 0. Applying (transitivity) and (symmetry) of the function g, this leads
to a contradiction. Now observe that Θ(C) ∪ Θ(D) �= QP1 according to Lemma 2.7. �

Given any line set C, let Θ̊(C) denote the interior of Θ(C).

Corollary 2.16. Let (C,D) be a pair of non-trivial line sets for which Θ̊(C) ∪ Θ̊(D) = QP1.
Then (C,D) is thin.

Proof. If Θ̊(C) ∪ Θ̊(D) = QP1, then Θ(C) ∪ Θ(D) = QP1 and ∂Θ(C) ∩ ∂Θ(D) = ∅. Thus, under
the assumption that not both C and D are exceptional, the corollary follows from Theorem 2.14.
However, we may drop this assumption, because the only case in the proof of Theorem 2.14 in
which we use it is Case 2(a), which supposes | SC ∩SD | = 2. Here, however, SC ∩SD = ∅ by
Lemma 2.15. �

This highlights what turns out to be the generic behaviour, in practice, and gives rise to a
quick certification of thinness. As the proof of Theorem 2.14 indicates, the main work is in treating
the behaviour at the boundaries of the relevant intervals. Indeed, the converse of Corollary 2.16
is not true as the following example illustrates.
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Figure 4. An illustration of Example 2.17 for the case Δc = 0 = Δd.

Example 2.17. Let C = {c, c�} and D = {d, d�} where c and d are rational, c� and d� are special,
s(c) = 0 = s(d�), and s(c�) = ∞ = s(d). Let Δc = g(c, c�) and Δd = g(d, d�). Then,

Θ(C) =

⎧⎪⎨⎪⎩
[∞, 0) if Δc = 0,
(0,∞] if Δc = −1,
{∞} otherwise,

and Θ(D) =

⎧⎪⎨⎪⎩
[0,∞) if Δd = 0,
(∞, 0] if Δd = −1,
{0} otherwise.

See Figure 4 for an illustration of one of those cases. Clearly, the hypothesis of Corollary 2.16 is
not satisfied for any values of Δc and Δd. Moreover,

g(c, d) − g(c�, d�) = Δc + g(c�, d) − (g(c�, d) + Δd) = Δc − Δd,

so (C,D) is thin if and only if Δc = Δd. If Δc ∈ {0,−1} or Δd ∈ {0,−1}, we can verify this
independently using Theorem 2.14. Otherwise, both line sets are exceptional.

3. The tangle invariant HFT

We review some properties of the immersed curve invariant HFT of Conway tangles due to the
third author [Zib20]; see also [Zib19, Zib23b].

3.1 The definition of HFT
Given a Conway tangle T in a three-ball B3, the invariant HFT(T ) takes the form of a multicurve
on a four-punctured sphere S2

4 , which can be naturally identified with the boundary of B3 minus
the four tangle ends ∂T . Here, a multicurve is a collection of immersed curves with local systems.
To make this precise: an immersed curve in S2

4 is an immersion of S1, considered up to homotopy,
that defines a primitive element of π1(S2

4), and each of these curves is decorated with a local
system, i.e. an invertible matrix over F considered up to matrix similarity. Local systems can
be viewed as vector bundles up to isomorphism, where either F is equipped with the discrete
topology or the bundle is equipped with a flat connection. We always drop local systems from
our notation when they are trivial, i.e. if they are equal to the unique one-dimensional local
system. Immersed curves carry a δ-grading (described in § 4) and multiple parallel immersed
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Figure 5. A simple non-rational tangle and its Heegaard Floer tangle invariant.

curves in the same δ-grading are set to be equivalent to a single curve with a local system that is
the direct sum of the individual local systems. We always assume that parallel immersed curves
are bundled up this way. Finally, a multicurve is a collection of δ-graded immersed curves.

With this terminology in place, we can sketch the construction of HFT(T ). It is defined in
two steps; for details, see [Zib20].

First, one fixes a particular auxiliary parametrization of ∂B3 � ∂T by four embedded arcs
connecting the tangle ends. For example, the four gray dotted arcs in Figure 5(a) define such
a parametrization for the (2,−3)-pretzel tangle. A tangle with such a parametrization can be
encoded in a Heegaard diagram (Σ,α,β), where Σ is some surface with marked points. From this,
one defines a relatively δ-graded curved1 chain complex CFT∂(T ) over a certain fixed F-algebra
A∂ as the multi-pointed Heegaard Floer theory of the triple (Σ,α,β) (see [Zib20, Section 2.3]),
similar to Ozsváth and Szabó’s link Floer homology [OS08]. One can show that the relatively
δ-graded chain homotopy type of CFT∂(T ) is an invariant of the tangle T with the chosen
parametrization [Zib20, Theorem 2.17].

The second step uses a classification result, which states that the chain homotopy classes
of δ-graded curved chain complexes over A∂ are in one-to-one correspondence with free homo-
topy classes of δ-graded immersed multicurves on the four-punctured sphere S2

4 (see [Zib20,
Theorem 0.4]). This correspondence uses a fixed parametrization of S2

4 by four arcs, and we gen-
erally assume that the multicurves intersect this parametrization minimally. Roughly speaking,
the intersection points of arcs with a multicurve correspond to generators of the according curved
chain complexes and paths between those intersection points correspond to the differentials. Now,
HFT(T ) is defined as the collection of relatively δ-graded immersed curves on S2

4 corresponding
to the curved complex CFT∂(T ). In this definition the parametrization of S2

4 (needed for multi-
curves) is identified with the parametrization of ∂B3 � ∂T (needed for CFT∂(T )), and one can
show that this identification is natural. Namely, if a tangle T ′ is obtained from T by adding twists
to the tangle ends, the complex CFT∂(T ′) determines a new set of immersed curves HFT(T ′),
which agrees with that obtained by twisting the immersed curves HFT(T ) accordingly [Zib23b,
Theorem 0.2].

Theorem 3.1. For all τ ∈ Mod(S2
4), HFT(τ(T )) = τ(HFT(T )). In other words, the invariant

HFT commutes with the action of the mapping class group of the four-punctured sphere.

1 The terminology ‘curved’ probably goes back to Positselski [Pos93].
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Example 3.2. Figure 5(b) shows the four-punctured sphere S2
4 , drawn as the plane plus a point at

infinity minus the four punctures labeled 1, 2, 3, and 4, together with the standard parametriza-
tion that identifies S2

4 with ∂B3 � ∂T . The dashed curve along with the two immersed curves
winding around the punctures form the invariant HFT(P2,−3) for the (2,−3)-pretzel tangle [Zib20,
Example 2.26].

Definition 3.3. A (parametrized) tangle is called rational if it is obtained from the trivial
tangle by adding twists to the tangle ends.

The name rational tangle originated with Conway, who showed that these tangles are in
one-to-one correspondence with fractions p/q ∈ QP1 (see [Con70]). We denote the rational tan-
gle corresponding to a slope p/q ∈ QP1 by Qp/q. The invariant HFT(Qp/q) consists of a single
embedded curve which is the boundary of a disk embedded into B3 that separates the two tangle
strands of Qp/q (see [Zib20, Example 2.25]). The local system on this curve is one-dimensional.
It is known that HFT detects rational tangles, as follows.

Theorem 3.4 [Zib20, Theorem 6.2]. A tangle T is rational if and only if HFT(T ) consists of a
single embedded component carrying the unique one-dimensional local system.

3.2 A gluing theorem for HFT
The invariant HFT(T ) can be also defined via Zarev’s bordered sutured Heegaard Floer the-
ory [Zar09]. In this alternate construction, the curved chain complex CFT∂(T ) is replaced by an
a posteriori equivalent algebraic object, namely the bordered sutured type D structure associ-
ated with the tangle complement, which is equipped with a certain bordered sutured structure;
see [Zib23b, Section 5]. This perspective gives rise to the following gluing result which relates
the invariant HFT to link Floer homology ĤFL via Lagrangian Floer homology HF. We always
assume that tangles are glued as in Figure 1, and when such a decomposition exists, we write
L = T1 ∪ T2 for a link L consisting of tangles T1 and T2. The mirror image of the link L is
expressed as L∗; this notation extends to tangles so that diagrammatically the mirror of Ti,
expressed T ∗

i , is obtained by interchanging over- and under-crossings. Thus, L∗ = T ∗
1 ∪ T ∗

2 . (Note
that the mirror T ∗ of a tangle is expressed as mT in other papers.) Let V be a two-dimensional
vector space supported in a single relative δ-grading.

Theorem 3.5 [Zib20, Theorem 5.9]. If L = T1 ∪ T2, then

ĤFK(L) ⊗ V ∼= HF(HFT(T ∗
1 ),HFT(T2))

if the four open components of the tangles become identified to the same component and

ĤFK(L) ∼= HF(HFT(T ∗
1 ),HFT(T2))

otherwise.

In this theorem, the knot Floer homology ĤFK(L) should be understood as a δ-graded theory.
A similar gluing theorem holds in the bigraded setting and also for link Floer homology, using a
multivariate Alexander grading on the tangle invariants.

The Lagrangian Floer homology HF(γ, γ′) of two immersed curves with local systems γ and
γ′ is a vector space generated by intersection points between the two curves [HRW24, Section 4]
(see also [Kot19, KWZ19]). More precisely, one first arranges that the components are transverse
and do not cobound immersed annuli; then, HF(γ, γ′) is the homology of the following chain
complex: for each intersection point between γ and γ′, there are n · n′ corresponding generators
of the underlying chain module, where n and n′ are the dimensions of the local systems of γ and
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γ′, respectively. The differential is defined by counting certain bigons between these intersection
points. As a consequence, the dimension of HF(γ, γ′) is equal to the minimal intersection number
between the two curves times the dimensions of their local systems, provided that the curves
are not parallel. If the curves are parallel, the dimension of HF(γ, γ′) may be greater than the
minimal geometric intersection number for certain choices of local systems; for details, see [Zib20,
Sections 4.5 and 4.6, in particular Theorem 4.45]. For a more explicit example, suppose γ and
γ′ are parallel embedded curves of the same slope equipped with local systems of dimensions n
and n′, respectively. Then, dim HF(γ, γ′) can realize any even number between 0 and 2(n · n′),
depending on the local systems, even though the minimal geometric intersection number between
these curves is zero. Throughout, we always assume that γ and γ′ intersect minimally without
cobounding immersed annuli.

Definition 3.6. For a curve γ in S2
4 , its mirror m(γ) is the image under the involution of S2

4

that fixes the punctures and arcs and interchanges the gray and white faces from Figure 5(b).

In other words, the mirror is obtained by reflection in a plane containing the four punctures
and the parametrizing arcs. This operation is important in relating HFT(T ∗

1 ) to HFT(T1) (see
[Zib20, Definition 5.3 and Proposition 5.4]).

Lemma 3.7. For any Conway tangle T , HFT(T ∗) = m(HFT(T )).

For example, because rational tangles satisfy Q∗
s = Q−s we have that HFT(Q−s) =

m(HFT(Qs)).

3.3 The geography problem for HFT
Often, it is useful to lift immersed curves to a covering space of S2

4 , namely the plane R2 minus
the integer lattice Z2. We may regard R2 as the universal cover of the torus, and the torus as the
two-fold cover of the sphere S2 branched at four marked points; then the integer lattice Z2 is the
preimage of the branch set. This covering space is illustrated in Figure 5(c), where the standard
parametrization of S2

4 has been lifted to R2 � Z2 and the front face and its preimage under the
covering map are shaded gray. This picture also includes the lifts of the curves in HFT(P2,−3):
The lift of the embedded (dashed) curve is a straight line of slope 1/2, whereas the lifts of the
two non-embedded components of HFT(P2,−3) look more complicated. Remarkably, however, this
example shows almost all the complexity of the immersed curves that can appear as components
of HFT(T ) for Conway tangles T .

To understand the geography of components of HFT(T ) for general tangles T , observe
that the linear action on the covering space R2 � Z2 by SL(2,Z) corresponds to Dehn twist-
ing in S2

4 or, equivalently, adding twists to the tangle ends; for specific conventions see [Zib23b,
Observation 3.2].

Definition 3.8. We call a curve in S2
4 rational if its lift to R2 � Z2 is a straight line of slope

p/q. We denote such a curve by r(p/q) if it has a trivial local system, and rX(p/q) if it has a
local system X.

We call a curve in S2
4 special if, after some twisting, it is equal to the curve sn(0; i, j)

whose lift to R2 � Z2 is shown in Figure 6. The lift of any special curve can be isotoped into an
arbitrarily small neighborhood of a straight line of some rational slope p/q ∈ QP1 going through
some punctures i and j, in which case we denote this curve by sn(p/q; i, j).

The term rational is chosen because for rational tangles HFT(Qp/q) = r(p/q). One can then
show the following [Zib23b, Theorem 0.5].
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Figure 6. The lift of the curve sn(0; i, j), where n ∈ N and (i, j) = (4, 1) or (2, 3).

Theorem 3.9. For a Conway tangle T the underlying curve of each component of HFT(T ) is
either rational or special. Moreover, if it is special, its local system is equal to an identity matrix.

For example, we can now write HFT(P2,−3) as the union of the rational curve r(1/2) and the
two special components s1(0; 4, 1) and s1(0; 2, 3). Whether rational components with non-trivial
local systems appear in HFT is currently not known. Special components for n > 1 show up
in the invariants of two-stranded pretzel tangles with more twists [Zib20, Theorem 6.9]. Special
components always come in pairs according to the following result, which is a simplified version
of [Zib23b, Theorem 0.10].

Theorem 3.10 Conjugation symmetry. Let (i, j, k, l) be some permutation of (1, 2, 3, 4) and
let p/q ∈ QP1. Then, for any Conway tangle T , the numbers of components sn(p/q; i, j) and
sn(p/q; k, l) in HFT(T ) in any given δ-grading agree.

There are also restrictions on rational components. The following is [Zib20, Observation 6.1].

Lemma 3.11. Each rational component of HFT(T ) separates the four punctures into two pairs,
which agrees with how the two open components of T connect the tangle ends.

In analogy with § 2, given some slope s ∈ QP1, we call a multicurve s-rational if it does
not contain any special components of slope s, and s-special if it does not contain any rational
components of slope s.

4. Heegaard Floer thin fillings

We now turn our attention to gradings. Following [Zib20, Definitions 4.28 and 5.1], the δ-grading
of an immersed multicurve Γ is a function

δ : G(Γ) −→ 1
2Z,

where G(Γ) is the set of intersection points between the four parametrizing arcs in S2
4 and Γ,

assuming that this intersection is minimal. The function δ is subject to the following compatibility
condition: suppose x, x′ ∈ G(Γ) are two intersection points such that there is a path ψ on Γ which
connects x to x′ without meeting any parametrizing arc (except at the endpoints). We distinguish
three cases, which are illustrated in Figure 7: a path can turn left (a), can go straight across (b),
or can turn right (c). Then

δ(x′) − δ(x) =

⎧⎪⎨⎪⎩
1
2 if the path ψ turns left,
0 if the path ψ goes straight across,
−1

2 if the path ψ turns right.

Given a Conway tangle T , the generators of the underlying module of the invariant CFT∂(T )
are in one-to-one correspondence with elements of G(HFT(T )). Moreover, these generators are
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Figure 7. Basic regions illustrating the definition of the δ-grading on a single curve.

Figure 8. Lifts versus infinite connected lifts, used for studying curves via the planar cover. In
this section we mainly use infinite connected lifts; in § 7 we use lifts nearly exclusively, but for
illustration purposes the infinite connected lift is sometimes depicted as well. Note that with this
nomenclature, the preimage of a curve in the cover may be called the infinite non-connected lift.

homogeneous with respect to the δ-grading, so the relative δ-grading on CFT∂(T ) determines
the relative δ-grading on the corresponding multicurve HFT(T ).

Like link Floer homology, the invariant HFT comes with a relative bigrading. In this paper we
are not concerned with the Alexander grading; our focus is exclusively on the δ-grading. However,
we note that the treatment of the grading that follows runs along similar lines to that of [LMZ22]
used to study the Alexander grading.

4.1 The δ-grading of curves in the covering space
We now develop tools that enable us to better understand the δ-grading in terms of the covering
space R2 � Z2 of the four-punctured sphere S2

4 . In § 4.3, this allows us to reduce to the situation
of § 2 and to apply the theorems from that section to HFT.

Definition 4.1. Recall that given a map γ : S1 → S2
4 , its lift to R2 � Z2 is a map γ̃ : [0, 1] →

R2 � Z2 such that the diagram in Figure 8(a) commutes. Given a map γ : S1 → S2
4 , its

infinite connected lift to R2 � Z2 is a map γ̄ : R → R2 � Z2 such that the diagram in
Figure 8(b) commutes.

For notation, in this section any symbol decorated with a tilde ‘∼’ on top denotes the lift to
R2 � Z2; likewise, an overbar ‘–’ denotes the infinite connected lift. Infinite connected lifts are
sometimes referred to as ‘lifts’ for simplicity, where the difference is clear from the context. In the
following, we treat all points in the integer lattice as marked points (as opposed to punctures).
Denote by P the union of the integer lattice points with the preimage of the parametrization
of S2

4 .
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Definition 4.2. Suppose Γ = {γ̄1, . . . , γ̄n} is a set of curves in R2 � Z2 avoiding the integer
lattice points such that P ∪ Γ = P ∪ γ̄1 ∪ · · · ∪ γ̄n is a planar graph whose vertices have all valence
four. P ∪ Γ divides the plane into polygons, which we call regions. A domain is a formal linear
combination of regions. In other words, a domain is an element of H2(R2, P ∪ Γ).

Let us fix a metric on the plane such that P ∪ Γ is geodesic and the angles at the vertices of
P are π/2. We then define the Euler measure e(D) of a domain D to be 1/2π times the integral
over D of the curvature of the metric.

The figures in this section follow the same conventions as in [Zib20]: we use the right-hand
rule to determine the orientation of domains and the normal vector fields of S2

4 and R2 � Z2 are
pointing into the page. Thus, the boundary of a region of multiplicity +1 is oriented clockwise.

Note that the Euler measure is additive in the sense that e(D +D′) = e(D) + e(D′) for any
two domains D and D′. In practice, one computes the Euler measure of a domain D using the
following formula, which follows from the Gauss–Bonnet theorem:

e(D) = χ(D) − 1
4{acute corners of D} + 1

4{obtuse corners of D}.
Definition 4.3. Given an absolutely δ-graded curve γ, consider two intersection points x̃ and
x̃′ of the lift γ̄ with the integer lattice graph P . A connecting domain from x̃ to x̃′ is a domain
ϕ ∈ H2(R2, P ∪ γ̄) with the property

∂(∂ϕ ∩ γ̄) = x̃− x̃′.

Remark 4.4. For readers familiar with Heegaard Floer homology, it can be helpful to think of the
curve γ̄ as playing the role of a β-curve and P playing the role of an α-curve.

Lemma 4.5. For any connecting domain ϕ as in Definition 4.3,

δ(x′) − δ(x) = 2e(ϕ).

Proof. For the domains consisting of just the single regions shown in Figure 7, the lemma follows
directly from the definition of the δ-grading: the Euler measure of ϕ in these three cases is 1

4 ,
0, and −1

4 , respectively. Now let us consider a general connecting domain ϕ from x̃ to x̃′. By
hypothesis, ∂ϕ ∩ γ̄ is a one-chain connecting x̃ to x̃′. Let us first assume that this one-chain
corresponds to a path from x̃ to x̃′. That is, either there are no cycles in the one-chain or, in the
case x̃ = x̃′, this path is the only cycle. In this case the path can be written as the intersection of γ̄
with the boundary of a connecting domain ψ, which is a sum of finitely many of the basic regions
in Figure 7 that we have just considered. The difference ϕ− ψ is a domain whose boundary lies
entirely in P , so it consists entirely of square regions and, hence, the Euler measure vanishes.

Finally, suppose the one-chain ∂ϕ ∩ γ̄ connecting x̃ to x̃′ also has cycles. Each of them is the
boundary of some domain, and we claim that its Euler measure vanishes. To see this, we can
apply the previous argument with x̃ = x̃′ being some intersection point of this cycle with P the
connecting path being the whole cycle. �
Definition 4.6. Let • be an intersection point between two absolutely δ-graded curves γ and γ′.
Consider the lifts γ̄ and γ̄′ of these two curves, such that they intersect at a lift •̃ of the intersection
point •. A connecting domain for •̃ from γ̄ to γ̄′ is a domain ϕ ∈ H2(R2, P ∪ γ̄ ∪ γ̄′) with the
property

∂(∂ϕ ∩ γ̄) = x̃− •̃ and ∂(∂ϕ ∩ γ̄′) = •̃ − ỹ for some x̃ ∈ γ̄ ∩ P and ỹ ∈ γ̄′ ∩ P.
Intersection points between bigraded curves can be endowed with a δ-grading [Zib20,

Definition 4.40], and this can be easily calculated according to the following result.
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Figure 9. Basic connecting domains satisfying the formula δ(• : γ → γ′) = δ(y) − δ(x) + 1
2 −

2e(ϕ).

Lemma 4.7. With notation as in Definition 4.6, the δ-grading of • satisfies

δ(• : γ → γ′) = δ(y) − δ(x) + 1
2 − 2e(ϕ).

Observation 4.8. The domain −ϕ is a connecting domain for the same intersection point •, but
regarded as a generator of HF(γ′, γ). Its δ-grading is equal to 1 minus the original δ-grading:

δ(• : γ → γ′) = 1 − δ(• : γ′ → γ).

Proof of Lemma 4.7. First consider the simplest case in which the domain ϕ consists of a single
region of multiplicity 1. Up to rotation, there are only four cases, as shown in Figure 9. The lemma
then follows directly from [Zib20, Definition 4.40], since in each of those cases, the intersection
point corresponds to some algebra element a ∈ A∂ and its δ-grading δ(a) is equal to 1

2 − 2e(ϕ)
(see [Zib20, Definitions 2.10 and 4.5]).

Now consider a general connecting domain ϕ. Then near •̃, ϕ looks like one of the basic
connecting domains ψ that we have just considered (up to adding multiples of square regions).
Suppose ψ connects x̃′ ∈ γ̄ ∩ P to ỹ′ ∈ γ̄′ ∩ P . Then, as we have just verified,

δ(• : γ → γ′) = δ(y′) − δ(x′) + 1
2 − 2e(ψ).

Let ψx and ψy be connecting domains from x̃ to x̃′ and from ỹ′ to ỹ, respectively. Then, by
Lemma 4.5,

δ(x′) − δ(x) = 2e(ψx) and δ(y) − δ(y′) = 2e(ψy).

Combining all three relations, we see that

δ(• : γ → γ′) = δ(y) − δ(x) + 1
2 − 2e(ψx + ψ + ψy).

By construction, ψx + ψ + ψy − ϕ is a sum of square regions and domains bounding closed
components of γ̄ and γ̄′, so e(ψx + ψ + ψy) = e(ϕ). �

Definition 4.9. Suppose γ̄i is an infinite connected lift to R2 � Z2 of some absolutely δ-graded
curve γi in S2

4 for i = 1, . . . , n, and let xi ∈ HF(γi, γi+1) be an intersection point between γi

and γi+1, where we take indices modulo n. A symmetric domain for the tuples (γ̄i)i=1,...,n and
(x̃i)i=1,...,n is a domain ϕ satisfying

∂(∂ϕ ∩ γ̄i) = x̃i−1 − x̃i,

where, again, indices are taken modulo n.
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Figure 10. A bigon illustrating Example 4.13; compare with Figure 15 and [Zib20, Figure 31].

Proposition 4.10. For any connecting domain ϕ as in Definition 4.9,
n∑

i=1

δ(xi) =
n

2
− 2e(ϕ).

Proof. For each i = 1, . . . , n, choose some intersection point ỹi of γ̄i with P . Then we can write
ϕ as a sum of n connecting domains ϕi for x̃i from ỹi to ỹi+1. By Lemma 4.7,

δ(xi) = δ(yi+1) − δ(yi) + 1
2 − 2e(ϕi)

for i = 1, . . . , n. Taking the sum over all n equations, we obtain the desired identity. �

Definition 4.11. Given two intersection points x, y ∈ HF(γ, γ′) between two curves γ and γ′,
a domain (or asymmetric domain) from x̃ to ỹ is a domain ϕ ∈ H2(R2, γ̄ ∪ γ̄′) with the property

∂(∂ϕ ∩ γ̄) = ỹ − x̃.

Corollary 4.12. For any domain ϕ as in Definition 4.11,

δ(y) − δ(x) = 2e(ϕ).

Proof. Let us set n = 2, γ1 = γ, γ2 = γ′, and x1 = x ∈ HF(γ1, γ2). In addition, let x2 be the
intersection point y ∈ HF(γ1, γ2), but regarded as an intersection point in HF(γ2, γ1). Then ϕ
can be interpreted as a symmetric domain from x̃1 to x̃2. By Proposition 4.10, this implies that
δ(x1) + δ(x2) = 1 − 2e(ϕ). By Observation 4.8, δ(x2) = 1 − δ(y). These two identities combined
prove the claim. �

Example 4.13. If ϕ is a bigon of multiplicity 1 as in Figure 10, Corollary 4.12 implies that
δ(y) − δ(x) = 2e(ϕ) = 1; see also [Zib20, Lemma 4.41].

4.2 Linear curves
Definition 4.14. An immersed curve γ in S2

4 is called linear if there exists some p/q ∈ QP1

such that for every open neighborhood U of p/q in QP1 there exists a curve γU homotopic to γ
with the property that all the slopes γ̃′U (t) of the lift γ̃U are contained in U . If there exists such
a number p/q ∈ QP1, it is unique, and we call it the slope of γ.

If Γ is a collection of linear curves, we denote the set of their slopes by SΓ. We also say that
a collection of curves Γ is supported on a slope if it contains a curve of that slope.

By Theorem 3.9, the invariant HFT(T ) of any Conway tangle T consists of rational and
special curves, which are linear. Thus, for the remainder of this section we restrict our attention
to linear curves.

The slope of the mirror of a linear curve γ (see Definition 3.6) is equal to the mirror of the
slope of γ (see Definition 1.11). Thus, by Lemma 3.7, mirroring operation commutes with taking
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the curve invariant HFT(−) and its slopes:

SHFT(T ∗) = Sm(HFT(T )) = Sm
HFT(T ) .

Definition/Lemma 4.15. Let γ be a linear curve of slope s ∈ QP1. Then unless s = 0, the
images of all intersection points of γ̄ with the horizontal lines of P have the same δ-grading
δ− := δ−(γ), and unless s = ∞, the images of all intersection points of γ̄ with the vertical lines
of P have the same δ-grading δ| := δ|(γ). Moreover,

δ| =

{
δ− − 1

2 if 0 < s <∞,

δ− + 1
2 if ∞ < s < 0.

Proof. If s �= 0, any two horizontal intersection points are connected via a rectangular domain,
and so are any two vertical intersection points in the case s �= ∞. This proves the first two
statements. For the third, suppose first that 0 < s <∞. Then we can connect any vertical inter-
section point to a horizontal intersection point by a triangular connecting domain of multiplicity
+1. The Euler measure is equal +1

4 for any such pair of intersection points, so δ− − δ| = 1
2 by

Lemma 4.5. For ∞ < s < 0, the argument is the same except that the order of the intersection
points is reversed; so in this case δ| − δ− = 1

2 . �

Definition 4.16. Given two linear curves γ and γ′ of the same slope s ∈ QP1, we define

δ(γ, γ′) =

{
δ−(γ′) − δ−(γ) if s �= 0,
δ|(γ′) − δ|(γ) if s �= ∞.

This is well-defined by Lemma 4.15. The two curves are said to have the same δ-grading if
δ(γ, γ′) = 0.

Definition/Lemma 4.17. Given two linear curves γ and γ′ of different slopes s, s′ ∈ QP1, the
Lagrangian intersection theory HF(γ, γ′) is supported in a single δ-grading, which is equal to

δ(γ, γ′) :=

{
δ−(γ′) − δ|(γ) + 1

2 if s ∈ (∞, s′) for s′ ∈ (0,∞], or s ∈ (s′,∞) for s′ ∈ [∞, 0),
δ|(γ′) − δ−(γ) + 1

2 if s ∈ (s′, 0) for s′ ∈ [0,∞), or s ∈ (0, s′) for s′ ∈ (∞, 0],

using the convention that (∞,∞) := QP1 �{∞} and (0, 0) := QP1 �{0}.
Proof. Fix an intersection point of γ̄ and γ̄′. In the first case, we can find a rectangular con-
necting domain for this intersection point between γ̄ and γ̄′ of multiplicity ±1 which starts at a
vertical intersection point of γ̄ and ends at a horizontal intersection point of γ̄′; see Figures 11(a)
and 11(b) for an illustration. We then use the formula from Lemma 4.7. We can argue simi-
larly in the second case, which is illustrated in Figures 11(c) and 11(d). One can easily check
that any (s, s′) ∈ QP1 ×QP1 with s �= s′ belongs to at least one of these two cases. Finally, the
formula for the δ-grading is obviously independent of the particular intersection point that we
considered. �

Corollary 4.18 (Symmetry of δ). For any two linear curves γ and γ′,

δ(γ, γ′) + δ(γ′, γ) =

{
0 if s(γ) = s(γ′),
1 if s(γ) �= s(γ′).

Proof. This follows immediately from Observation 4.8 and Definition 4.16. �
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Figure 11. Some illustrations for the proofs of Lemma 4.17 (a–d) and Theorem 4.19 (e).

In the proof of Theorem 4.27, we relate the grading function g from § 2 to the negative of δ.
This explains the difference in sign between the symmetry of δ compared with the (symmetry)
of g. Similarly, whereas the transitivity of g holds for increasing triples of slopes, we establish
transitivity of δ in terms of decreasing triples.

Theorem 4.19 (Transitivity of δ). For any triple (γ, γ′, γ′′) of linear curves in S2
4 such that

(s(γ), s(γ′), s(γ′′)) is decreasing,

δ(γ, γ′) + δ(γ′, γ′′) = δ(γ, γ′′).

Proof. If s(γ) = s(γ′) or s(γ′) = s(γ′′), or both, this follows from Definition 4.16 and Lemma 4.17.
Thus, let us suppose the curves have pairwise different slopes. Let us consider some infinite
connected lifts γ̄, γ̄′, and γ̄′′ of γ, γ′, and γ′′, respectively. These lifts intersect in three points
Ã ∈ γ̄ ∩ γ̄′, B̃ ∈ γ̄′ ∩ γ̄′′, and C̃ ∈ γ̄′′ ∩ γ̄. Consider a connecting domain ϕ for Ã starting at some
point x̃ ∈ γ̄ ∩ P and ending at some point ỹ ∈ γ̄′ ∩ P . Then choose a connecting domain ϕ′ for
B̃ which starts at ỹ and ends at some point z̃ ∈ γ̄′′ ∩ P . Since the slopes of these curves form a
decreasing triple, the triangle ΔÃB̃C̃ has multiplicity −1 when the vertices are ordered counter-
clockwise, as illustrated in Figure 11(e); therefore, e(ΔÃB̃C̃) = −1

4 . Thus, ϕ+ ϕ′ + ΔÃB̃C̃ is a
connecting domain for C̃. Hence,

δ(γ, γ′) + δ(γ′, γ′′) =
(
δ(y) − δ(x) − 2e(ϕ) + 1

2

)
+

(
δ(z) − δ(y) − 2e(ϕ′) + 1

2

)
= δ(z) − δ(x) − 2e(ϕ+ ϕ′ + ΔÃB̃C̃) + 1

2 = δ(γ, γ′′). �
Lemma 4.20. Given two curves with local systems γ and γ′ in S2

4 that share the same slope
s ∈ QP1, the vector space HF(γ, γ′) is either zero or it is supported in two consecutive δ-gradings,
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namely δ(γ, γ′) and δ(γ, γ′) + 1. Moreover, if γ is rational and γ′ is special, or vice versa, then
HF(γ, γ′) = 0. Finally, for two rational curves with trivial local systems HF(r(s), r(s)) �= 0, as
well as for special curves HF(sn(s; i, j), sm(s; i, j)) �= 0 (given any n,m > 0 and pair (i, j) of
tangle ends compatible with the slope s).

Proof. Let us consider each combination of rational and special curves separately. Clearly, the
Lagrangian Floer homology of a special and a rational curve vanishes. To compute the Lagrangian
Floer homology of two rational curves with local systems of the same slope, we can apply [Zib20,
Theorem 4.45] to verify the first statement in this case. If the two local systems are trivial, then
their Lagrangian Floer homology does not vanish by [Zib20, Lemma 4.51]. Now let us turn to
the final case that γ and γ′ are special. Then, if they wrap around different tangle ends, their
Lagrangian Floer homology vanishes. Thus, let us consider γ = sn(s; i, j) and γ′ = sm(s; i, j).
To justify the support of HF(γ, γ′) for n �= m, we can argue as follows. Let us consider a straight
line of slope s through two integer lattice points ĩ and j̃ corresponding to the tangle ends i and
j, respectively. After some homotopy, we may assume that γ and γ′ are contained in a small
neighborhood of the embedded arc that is the image of this straight line in S2

4 . Moreover, we may
assume that the slopes of any lifts of γ and γ′ are contained in (s− ε, s+ ε) for some small ε > 0.
Now given some intersection point • ∈ HF(γ, γ′), choose lifts γ̄ and γ̄′ that intersect transversely
in some lift •̃ of •. Let t and t′ be the slopes of γ̄ and γ̄′ at •̃, respectively. Then

δ(•) =

{
δ(γ, γ′) if s− ε < t′ < t < s+ ε,

δ(γ, γ′) + 1 if s− ε < t < t′ < s+ ε,

which can be seen by applying Lemma 4.7 to thin triangular domains enclosed on two sides by γ̄
and γ̄′ and on the third side by either only the vertical or only the horizontal arcs in P (see also
Figure 9(a)). �

There exist local systems X and Y for which HF(rX(s), rY (s)) = 0. For example, take X
to be a permutation matrix of order n and let Y be the companion matrix of the polynomial
f(x) = xn + x+ 1. Then ker(f(X)) = ker(X) = 0, so by [Zib20, Theorem 4.45 and Lemma 4.51],
dim HF(rX(s), rY (s)) = 2 · dim ker(f(X)) = 0. However, we still have some control over local
systems.

Definition 4.21. We say two local systems X and Y are complementary, if HF(rX(s), rY (s))
vanishes, where s is some slope. We call a local system inhibited if it is complementary to the
(trivial) one-dimensional local system. Similarly, we call a rational curve inhibited if its local
system is inhibited. We call a collection of curves Γ s-inhibited if any rational component of slope
s is inhibited.

Lemma 4.22. If X and Y are complementary local systems, then at least one of X and Y is
inhibited.

Proof. We show the contrapositive: if HF(rX(s), r(s)) and HF(rY (s), r(s)) are non-zero, then so
is HF(rX(s), rY (s)). Let us first verify this in the case that X and Y are companion matrices Xf

and Xg of two polynomials f, g ∈ F[x], respectively. By [Zib20, Theorem 4.45 and Lemma 4.51],
HF(rXf

(s), rXg(s)) is zero if and only if the matrix f(Xg) is invertible. Similarly HF(rXf
(s), r(s))

is zero if and only if f(1) is invertible, i.e. equal to 1; the same is true of course for g. Thus, we
need to show that f(1) = 0 = g(1) implies that f(Xg) is not invertible. This follows from two
observations. First, note that det(Xg + 1) = g(1) = 0, because g is the characteristic polynomial
of Xg, so (Xg + 1) is not invertible. Second, f(1) = 0 implies that there exists some polynomial
f̃ ∈ F[x] such that f(x) = (x+ 1)f̃(x). Thus, if (Xg + 1) is not invertible, then neither is f(Xg).
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In the general case, rX and rY are equivalent to disjoint unions of rational curves rXi and
rYj , respectively, whose local systems are all companion matrices. Suppose there exist i, j such
that Xi and Yj are not inhibited. Then, by the above, Xi and Yj are not complementary, so X
and Y are not complementary. �

Remark 4.23. We would like to show that no rational component of HFT(T ) is inhibited for any
Conway tangle T . However, the only known restriction is that after combining the local systems of
all parallel rational components, the new local system should be conjugate to its inverse [Zib23b,
Theorem 0.10]. There are many such local systems: for example, for any invertible matrix X, the
diagonal block matrix Y with blocks X and X−1 is conjugate to its inverse. If we choose X to
be inhibited, then so is Y .

Definition 4.24. We say a multicurve Γ is exceptional if SΓ = {s, s′} for two distinct slopes
s, s′ ∈ QP1 and there exists a constant c �= 0, 1 such that δ(γ, γ′) = c for all components γ, γ′ ∈ Γ
in slopes s, s′, respectively. We say that a tangle T is Heegaard Floer exceptional if HFT(T ) is
exceptional.

A tangle that is Heegaard Floer exceptional is described in Example 7.15.

4.3 Heegaard Floer thin fillings
In this subsection, G is either Z or Z/2. Define

CHF := {HFT(T ) | Conway tangles T}.
In the following, we make implicit use of the following properties that the curves in CHF are known
to satisfy: each multicurve Γ ∈ CHF consists of linear components only (Theorem 3.9). Moreover,
special components come in conjugate pairs of curves that are supported in identical δ-gradings
(Theorem 3.10). Finally, HF(Γ1,Γ2) �= 0 for each Γ1,Γ2 ∈ CHF, because of Theorem 3.5 and the
fact that knot Floer homology does not vanish. In particular, if SΓ = {s} for some Γ ∈ CHF, then
Γ contains some rational component whose local system is not inhibited. Let Cwb

HF ⊆ CHF be the
subset of well-behaved multicurves defined by

Cwb
HF := {Γ ∈ CHF | Γ does not contain any inhibited rational component}.

Given two multicurves Γ and Γ′ and a slope s ∈ SΓ ∩SΓ′ , the following two local conditions
will be relevant.

Condition (R) At least one of Γ and Γ′ is s-rational, i.e. it only contains rational components of
slope s.

Condition (R�) The local systems of any two rational components of Γ and Γ′ of slope s are
complementary.

These are the local conditions for Heegaard Floer theory mentioned in Theorems 1.12 and 1.15.
Note that (R�) is vacuously satisfied if any two rational components of Γ and Γ′ have different
slopes. For instance, this is true if Γ = m(HFT(T1)), Γ′ = HFT(T2), and T1 ∪ T2 is a knot, see
Lemma 3.11.

Definition 4.25. A δ-graded vector space is Z-thin if it is thin and Z/2-thin if it is supported
in at most one δ-grading modulo 2. In particular, the 0-dimensional vector space is G-thin for
both G = Z and G = Z/2. Given a relatively δ-graded multicurve Γ, define the space of G-thin
rational fillings of Γ by

ΘG(Γ) := {s ∈ QP1 | HF(r(s),Γ) is G-thin}.
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Suppose T is a Conway tangle in a three-ball. Then, by Theorem 3.5, writing

ΘHF(T ) = ΘZ(HFT(T )) and AHF(T ) = ΘZ/2(HFT(T ))

recovers the definitions of ΘHF(T ) and AHF(T ) from the introduction.

Remark 4.26. Since by Lemma 3.7 the tangle invariant HFT behaves in a natural way under
mirroring, ΘHF(T ∗) = Θm

HF(T ) and AHF(T ∗) = Am
HF(T ) for any Conway tangle T .

The following is the main technical result which links § 2 to the present discussion about HFT,
by relating elements of CHF to line sets in § 2. Recall that a line set is simply a finite collection
of elements of C = QP1 ×G× {0, 1}. We write Pfinite(C) for the set of all line sets.

Theorem 4.27. There exist maps g : C2 → G and Φ: CHF → Pfinite(C), where g satisfies
(symmetry), (transitivity), and (linearity) as in § 2, and such that for any Γ ∈ CHF the following
hold:

(i) SΓ = SΦ(Γ);
(ii) ΘG(Γ) = ΘG(Φ(Γ));
(iii) Φ(Γ) is non-trivial;
(iv) Φ(Γ) is exceptional if and only if Γ is exceptional.

Moreover, if Γ,Γ′ ∈ Cwb
HF:

(v) for any slope s ∈ QP1, Γ is s-rational if and only if Φ(Γ) is s-rational;
(vi) HF(Γ,Γ′) is G-thin if and only if the pair (Φ(Γ),Φ(Γ′)) is G-thin.

Proof. Given c ∈ C, let γ(c) be an absolutely δ-graded linear curve of slope s(c) such that
δ−(γ(c)) = g(c) if s(c) �= 0 and δ|(γ(c)) = g(c) − 1

2 if s(c) = 0. (Whether this curve is rational
or special has no bearing on what follows.) Now define g : C2 → G by setting for each c, c′ ∈ C

g(c, c′) := −δ(γ(c′), γ(c)).
(Note that the order of c and c′ is reversed.) Then, by Corollary 4.18, (symmetry) of g holds, and
by Theorem 4.19, so does (transitivity) of g. Moreover, (linearity) of g follows from the definition.

Before we define the map Φ, let us lift the δ-grading of each multicurve Γ = HFT(T ) ∈ CHF

to an absolute δ-grading such that δ−(γ) ∈ Z and δ|(γ) ∈ Z + 1
2 for each component γ of Γ.

For rational tangles T = Qs, this is clearly possible. To see that this is possible for arbitrary
Conway tangles T , we choose a slope s �∈ SΓ. Then HF(r(s),Γ) computes the (potentially once
stabilized) knot Floer homology of Q−s ∪ T , which, up to an overall grading shift, is supported
in integer δ-gradings. By our choice of slope s, r(s) intersects each component of Γ non-trivially,
so using Lemma 4.17, we can get an absolute lift with the desired properties. Which lift we pick
is ultimately irrelevant, but it will change the definition of the map Φ.

Now, we are ready to define the map Φ. Given some absolutely δ-graded rational or special
curve γ of slope s, let c = c(γ) ∈ C be the line defined by s(c) = s, g(c) = δ−(γ) if s �= 0 and
δ|(γ) + 1

2 if s(c) = 0, and ε(c) = 1 if γ is special or rational with inhibited local system and
ε(c) = 0 otherwise. Then, given some Γ = {γi}i ∈ CHF, define Φ(Γ) as the set corresponding to
the multiset {c(γi)}i.

Clearly, properties (i)–(iv) hold by construction. Moreover, the only rational components that
Φ sends to special lines are those with inhibited local systems, so property (v) follows. Suppose
Γ,Γ′ ∈ Cwb

HF. Then by Lemma 4.22, these multicurves do not contain any rational components
that are complementary to each other. Thus, if γ ∈ Γ and γ′ ∈ Γ′ are two components of the
same slope, HF(γ, γ′) is G-thin if and only if (c(γ), c(γ′)) is G-thin by Lemma 4.20. Together
with Lemma 4.17, this proves property (vi). �
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We now establish the results concerning Heegaard Floer theory from the introduction. We
restate these here for clarity. If we ignore the technical issue of inhibited curves and restrict to
well-behaved multicurves, Theorems 1.12 and 1.15, specialized to the Heegaard Floer setting,
follow immediately from the results of § 2 and Theorem 4.27. The proof in the general case
requires a more careful analysis of the arguments from § 2.

Theorem 4.28 (Characterization of Heegaard Floer G-thin filling spaces; Theorems 1.8 and 1.9).
For any Conway tangle T , AHF(T ) is either empty, a single point or an interval in QP1.
Furthermore, ΘHF(T ) is either empty, a single point, two distinct points or an interval in QP1.

Proof. This follows from Theorem 2.9 and parts (ii) and (iii) of Theorem 4.27. �
Proposition 4.29 (Proposition 1.10). If ΘHF(T ) is an interval, ΘHF(T ) = AHF(T ).

Proof. This follows from Theorem 4.27(ii) in conjunction with Proposition 2.11. �
In the following, let T1 and T2 be two Conway tangles and write Γ1 := m(HFT(T1)) as well

as Γ2 := HFT(T2).

Theorem 4.30 (A-link gluing theorem; Theorem 1.12). The link T1 ∪ T2 is a Heegaard Floer
A-link if and only if:

(1) Am
HF(T1) ∪ AHF(T2) = QP1; and

(2) for every slope s ∈ ∂Am
HF(T1) ∩ ∂AHF(T2), Γ1 and Γ2 satisfy (R) and (R�).

Theorem 4.31 (Thin gluing theorem; Theorem 1.15). Suppose at least one of T1 and T2 is not
Heegaard Floer exceptional. Then T1 ∪ T2 is Heegaard Floer thin if and only if:

(1) Θm
HF(T1) ∪ ΘHF(T2) = QP1; and

(2) for every slope s ∈ ∂Θm
HF(T1) ∩ ∂ΘHF(T2), Γ1 and Γ2 satisfy (R) and (R�).

The assumption in Theorem 4.31 that T1 and T2 not be both exceptional is meaningful; see
Example 7.15.

Remark 4.32. The property (R�) can be dropped from Theorems 4.30 and 4.31 if we restrict
to well-behaved curves. Indeed, if T1 ∪ T2 is Heegaard Floer G-thin, then, clearly, Γ1 and Γ2

satisfy (R�) for any slope s ∈ QP1. Conversely, suppose Γ1 and Γ2 are well-behaved. If ΘG(Γ1) ∪
ΘG(Γ2) = QP1, then for any slope s ∈ QP1, at least one of Γ1 and Γ2 does not contain any
rational component of slope s, so Γ1 and Γ2 vacuously satisfy (R�) for all s ∈ QP1.

Proofs of Theorems 4.30 and 4.31 for well-behaved multicurves. Suppose Γ1,Γ2 ∈ Cwb
HF. Let Ci =

Φ(Γi) for i = 1, 2. By the previous remark, we may ignore property (R�) for this proof. By
Theorem 3.5, T1 ∪ T2 is an A-link if and only if HF(Γ1,Γ2) is Z/2-thin. By Theorem 4.27(vi),
the latter is equivalent to (C1, C2) being Z/2-thin. Note that since G = Z/2, neither C1 nor C2

are exceptional. Therefore, by Theorems 2.14 and 4.27(ii), (iii), and (v), this is equivalent to
ΘZ/2(Γ1) ∪ ΘZ/2(Γ2) = QP1 and for all s ∈ ∂ΘZ/2(Γ1) ∩ ∂ΘZ/2(Γ2), at least one of Γ1 and Γ2 is
s-rational. This is equivalent to the right-hand side of Theorem 4.30.

The proof of Theorem 4.31 is analogous to the above, noting that at most one of C1 and C2

are exceptional by Theorem 4.27(iv) and the additional hypothesis in Theorem 4.31. �
Corollary 4.33 (Corollaries 1.13 and 1.16). For any Conway tangles T1 and T2,

Åm
HF(T1) ∪ ÅHF(T2) = QP1 ⇒ L is a Heegaard Floer A-link; and

Θ̊m
HF(T1) ∪ Θ̊HF(T2) = QP1 ⇒ L is Heegaard Floer thin.
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Proof of Corollary 4.33 for well-behaved multicurves. Suppose that Γ1,Γ2 ∈ Cwb
HF. Let Ci = Φ(Γi)

for i = 1, 2 as before. By Theorem 4.27(iii), C1 and C2 are non-trivial. By Theorem 4.27(ii), the
hypotheses imply that Θ̊G(C1) ∪ Θ̊G(C2) = QP1, and so by Corollary 2.16, the pair (C1, C2) is
G-thin. Thus, by Theorem 4.27(vi), HF(Γ1,Γ2) is G-thin. Now conclude with Theorem 3.5. �

Before proving Theorems 4.30 and 4.31 and Corollary 4.33 in general, let us translate
Lemma 2.15 into the present setting.

Lemma 4.34. For any Γ,Γ′ ∈ CHF, ΘG(Γ) ∪ ΘG(Γ′) = QP1 implies ∂Θ(Γ) ∩ ∂Θ(Γ′) = SΓ ∩SΓ′ .

Proof. Let C = Φ(Γ) and C ′ = Φ(Γ′). By Theorem 4.27(iii), C and C ′ are non-trivial.
By Theorem 4.27(ii), Θ(C) ∪ Θ(C ′) = QP1 and ∂ΘG(Γ) ∩ ∂ΘG(Γ′) = ∂Θ(C) ∩ ∂Θ(C ′). By
Lemma 2.15, the latter is equal to SC ∩SC′ which by Theorem 4.27(i) equals SΓ ∩SΓ′ . �
Proof of Theorems 4.30 and 4.31 for general multicurves in CHF. By Lemma 4.34, ∂ΘG(Γ1) ∩
∂ΘG(Γ2) = SΓ1 ∩SΓ2 provided conditions (1) in Theorems 4.30 and 4.31 hold. Moreover, Γ1

and Γ2 satisfy (R) and (R�) for some slope s if and only if HF(γ1, γ2) = 0 for all γ1 ∈ Γ1 and
γ2 ∈ Γ2 of slope s by Lemma 4.20. Thus, by Theorem 3.5, it suffices to show that HF(Γ1,Γ2) is
G-thin if and only if:

(1) ΘG(Γ1) ∪ ΘG(Γ2) = QP1; and
(2′) for every slope s ∈ SΓ1 ∩SΓ2 , HF(γ1, γ2) = 0 for all γ1 ∈ Γ1 and γ2 ∈ Γ2 of slope s.

We now go through the same case-by-case analysis depending on SΓ1 and SΓ2 as in the proof of
Theorem 2.14. Here Γ1 will play the role of C and Γ2 will play the role of D. Clearly, if HF(Γ1,Γ2)
is G-thin, then condition (2′) holds. Thus, let us assume this condition from now on. It plays the
same role as condition (2′) in the proof of Theorem 2.14.

Case 0: SΓ1 ∩SΓ2 = ∅. The original proof goes through unchanged.

Case 1: SΓ1 ∩SΓ2 = {s}. (a) The case SΓ1 = SΓ2 = {s} goes through unchanged, because both
curves contain some non-inhibited rational component.

(b) Suppose SΓ1 = {s} and SΓ2 � {s}. The argument from the original proof can be adapted
as follows: if Γ1 contains curves of different δ-gradings, the statements on either side of the asserted
equivalence are wrong. If all components of Γ1 have the same δ-grading, ΘG(Γ1) = QP1 �{s}, so
condition (1) is equivalent to s ∈ ΘG(Γ2). Since Γ1 is non-trivial, it contains some non-inhibited
rational component of slope s. By Lemma 4.22 and assumption (2′), Γ2 is s-inhibited. Thus,
s ∈ ΘG(Γ2) is equivalent to δ(r(s), γ) ∈ G being constant for all components γ ∈ Γ2 of slope
different from s. Still assuming condition (2′) holds, this is equivalent to HF(Γ1,Γ2) being thin.

(c) Suppose SΓ1 � {s} and SΓ2 = {s}. This is the same as Case 1(b) with reversed roles of
Γ1 and Γ2.

(d) Suppose | SΓi | > 1 for i = 1, 2. The proof in this case goes through unchanged, noting
that condition (2′) implies that if (s, t1) ⊆ ΘG(Γ2) and (sm, s) ⊆ ΘG(Γ1), then also s ∈ ΘG(Γ1) ∪
ΘG(Γ2), since at least one of Γ1 and Γ2 is s-inhibited.

Case 2: SΓ1 ∩SΓ2 = {s, t}. (a) Suppose that | SΓi | = 2 for i = 1, 2. Most of the proof in this case
goes through unchanged. It only remains to see that ΘG(Γ1) ∪ ΘG(Γ2) ⊇ QP1 �{s, t} implies
that also s, t ∈ ΘG(Γ1) ∪ ΘG(Γ2), under the assumption that condition (2′) holds. Indeed, the
inclusion implies that ΘG(Γ1) and ΘG(Γ2) are intervals with endpoints equal to s and t. Now
suppose for contradiction that s �∈ ΘG(Γ1) ∪ ΘG(Γ2). Then there exist non-inhibited rational
components γ1 ∈ Γ1 and γ2 ∈ Γ2 of slope s. However, this violates condition (2′) according to
Lemma 4.22. The same argument works if we replace s by t.
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(b) Suppose | SΓ1 | > 2. The original argument goes through unchanged, using the same
observation as in Case 2(a).

(c) Suppose | SΓ2 | > 2. Same as Case 2(b) with reversed roles of Γ1 and Γ2.

Case 3: | SΓ1 ∩SΓ2 | > 2. This case goes through unchanged. �

Proof of Corollary 4.33 for general multicurves in CHF. As in the proof of Corollary 2.16,
observe that the assumption in Theorem 4.31 about Γ1 and Γ2 not both being exceptional is
only used in Case 2(a). Thus, the same arguments as in the proof of Corollary 2.16 apply. �

5. The tangle invariant K̃h

In this section, we review some properties of the immersed curve invariant K̃h of Conway tangles
from [KWZ19]. We work exclusively over the field F of two elements, with remarks about other
coefficient systems when appropriate.

5.1 The definition of K̃h
Let T be an oriented pointed Conway tangle, that is a Conway tangle T in the three-ball B3

with a choice of distinguished tangle end, which we usually mark by ∗. With such a tangle, we
associate an invariant K̃h(T ), which takes the form of a collection of immersed curves with local
systems on the boundary of B3 minus the four tangle ends. Like HFT(T ), these immersed curves
with local systems are defined in two steps, which we sketch below.

First, one fixes a diagram DT of the pointed tangle T . Bar-Natan associates with such a dia-
gram a bigraded chain complex [[DT ]]/l over a certain cobordism category Cob/l , whose objects
are crossingless tangle diagrams [BN05]. This complex is a tangle invariant up to bigraded chain
homotopy, and thus is frequently denoted by [[T ]]/l. Thanks to a process Bar-Natan calls deloop-
ing [KWZ19, Observation 4.18], any chain complex over Cob/l can be written as a chain complex

over the full subcategory EndCob/l
( ⊕ ) of Cob/l generated by the crossingless tangles with-

out closed components. This subcategory is isomorphic to the following quiver algebra [KWZ19,
Theorem 1.1].

(1)

The objects and correspond to • and ◦, respectively. We denote the idempotent constant
paths on • and ◦ by ι• and ι◦, respectively. We will sometimes abuse notation by using S for
either ◦S• or •S◦ and using D for either ◦D◦ or •D•. In addition, the subscript � ∈ {◦, •} on the
left or right of an algebra element a will always indicate that multiplying by ι� from the left or
right, respectively, preserves the element a. This allows shorthand notation such as S◦ = •S◦ and
S3• = ◦S• · •S◦ · ◦S•. The algebra B carries a bigrading: The quantum grading q and the delta
grading δ are determined by

gr(D•) = gr(D◦) = q−2δ−1 and gr(S•) = gr(S◦) = q−1δ−1/2.

Differentials of bigraded chain complexes over B are defined to preserve quantum grading and
decrease δ-grading by 1. The isomorphism EndCob/l

( ⊕ ) ∼= B allows us to translate the
delooped chain complex [[DT ]]/l into a bigraded chain complex Д(DT ) over B (see [KWZ19,
Definition 1.2]). (Chain complexes over ordinary algebras have also appeared in the literature
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Figure 12. The geometric interpretation of some chain complexes over the algebra B illustrating
the classification theorem in the second part of the construction of B̃N(T ) and K̃h(T ).

under the name of type D structures [LOT15, Definition 2.2.23], and we therefore use the two
terms interchangeably; see [KWZ19, Proposition 2.13] for more on the equivalence of these
objects.) By construction, the bigraded chain homotopy type of Д(DT ) is an invariant of the
tangle T , and thus we sometimes write Д(T ) for Д(DT ). Moreover, using the central element

H := D + S2 = D• +D◦ + S◦S• + S•S◦ ∈ B,
we define a bigraded chain complex Д1(DT ) as the mapping cone

Д1(DT ) := [q−1δ1/2 Д(DT ) H·id−−−→ q1δ1/2 Д(DT )],

where H · id(x) = x⊗H for every generator x in Д(DT ). The bigraded chain homotopy type of
Д1(DT ) is also a tangle invariant, and we write Д1(T ) for Д1(DT ).

The second step in the definition of K̃h(T ) relies on a classification result, similar to that
used in the definition of HFT(T ). This classification result says that the chain homotopy classes
of bigraded chain complexes over B are in one-to-one correspondence with free homotopy classes
of bigraded immersed multicurves with local systems on the four-punctured sphere S2

4,∗, where
the latter has one special puncture distinguished by ∗ (see [KWZ19, Theorem 1.5]). In contrast
to the HFT(T ) setting, here ‘immersed curves’ also include non-compact curves, that is non-
null-homotopic immersions of intervals into the four-punctured sphere, with ends on the three
non-special punctures of S2

4,∗; see [KWZ19, Definition 1.4]. As in the HFT(T ) setting, the cor-
respondence between chain complexes and immersed multicurves uses a parametrization of S2

4,∗.
This time, the parametrization is given by the two dotted arcs shown in Figure 13(c). We generally
assume that the multicurves intersect these arcs minimally. Then, roughly speaking, the intersec-
tion points correspond to generators of the according chain complexes and paths between those
intersection points correspond to the differentials. This is illustrated in Figure 12, cf. [KWZ19,
Example 1.6].

Finally, the multicurve invariant K̃h(T ) is defined as the collection of bigraded immersed
curves on S2

4,∗ that corresponds to Д1(T ). Similarly, the type D structure Д(T ) corresponds
to a multicurve that we denote by B̃N(T ). Examples are shown in Figure 12. Whereas K̃h(T )
only consists of compact curves, i.e. immersed circles, B̃N(T ) also contains 2|T | non-compact
components, where |T | is the number of closed components of T .
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Figure 13. The Khovanov and Bar-Natan invariant of the pretzel tangle from Figure 5.

Remark 5.1 (Coefficients). In general, the construction of the tangle invariants Д(T ) and Д1(T )
can be done over Z. The classification result works over arbitrary fields, and hence so does the
construction of the immersed curve invariants. However, in this paper, B̃N(T ) and K̃h(T ) always
denote the curves over F, unless stated otherwise.

One can identify S2
4,∗ with ∂B3 � ∂T using the parametrization of the latter shown in

Figure 13(a). This identification is natural in the same sense as for HFT(T ), see Theorem 3.1,
provided we work over F (see [KWZ19, Theorem 1.13]). We expect the same to hold over arbitrary
fields.

Theorem 5.2. For all τ ∈ Mod(S2
4), K̃h(τ(T )) = τ(K̃h(T )) and B̃N(τ(T )) = τ(B̃N(T )).

Remark 5.3. When working over F, the distinguished tangle end ∗ only plays a role in the second
step of the construction of B̃N(T ) and K̃h(T ). If one works away from characteristic 2, it also
plays a subtle role in the first step: In this case, there are four different isomorphisms between
EndCob/l

( ⊕ ) and B, which only differ by the signs on the basic morphisms D• and D◦.
Each of these isomorphisms corresponds to a choice of distinguished tangle end; see [KWZ19,
Theorem 4.21, Observation 4.24] for details.

Example 5.4. We usually draw the four-punctured sphere S2
4,∗ as the plane plus a point at infinity

minus the four punctures and indicate its standard parametrization that identifies S2
4,∗ with

∂B3 � ∂T by two dotted arcs as in Figures 13(b) and 13(c). The solid and dashed curves in these
figures show B̃N(P2,−3) and K̃h(P2,−3), respectively, where P2,−3 is the (2,−3)-pretzel tangle
from Figure 13(a), cf. [KWZ19, Example 6.7]. All components of these curves carry the (unique)
one-dimensional local system over F.
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Example 5.5. For any slope s ∈ QP1, B̃N(Qs) consists of a single arc which is obtained by pushing
the tangle strand that does not end on the distinguished tangle end ∗ onto S2

4,∗. Here K̃h(Qs)
is equal to a figure-eight curve that lies in a small neighborhood of B̃N(Qs) and encloses the
two tangle ends on either side, see [KWZ19, Example 6.6]. The local system on this curve is
one-dimensional. We expect that over arbitrary fields, the underlying curve for K̃h(Qs) is the
same as over F, and that the local systems on these curves are equal to (−1).

In particular, K̃h(Qs) is not embedded, unlike HFT(Qs). In fact, we have the following
[KWZ19, Proposition 6.18], over any field.

Proposition 5.6. For any pointed Conway tangle T , no component of K̃h(T ) is embedded.

Like HFT, the tangle invariants in Khovanov theory detect rational tangles.

Theorem 5.7. A tangle T is rational if and only if K̃h(T ) consists of a single figure-eight curve
carrying the unique one-dimensional local system.

Proof. This follows from essentially the same arguments as [Zib20, Theorem 6.2]. More generally,
any tangle invariant detects rational tangles, as long as the tangle invariant satisfies a gluing
theorem to a link invariant that detects the two-component unlink. The gluing theorem for K̃h
is Theorem 5.8. The requisite detection result was proven by Hedden and Ni [HN10], based on
Kronheimer and Mrowka’s unknot detection of Khovanov homology [KM11]. �

5.2 A gluing theorem for K̃h
Denote the two-dimensional vector space supported in δ-grading +1

2 and quantum gradings ±1
by

V := δ1/2q1F ⊕ δ1/2q−1F.

Theorem 5.8 [KWZ19, Theorem 1.9]. Let L = T1 ∪ T2 be the result of gluing two oriented
pointed Conway tangles as in Figure 1 such that the orientations match. Let T ∗

1 be the mirror
image of T1 with the orientation of all components reversed. Then

K̃h(L) ⊗ V ∼= HF(K̃h(T ∗
1 ), K̃h(T2)),

K̃h(L) ∼= HF(K̃h(T ∗
1 ), B̃N(T2))

as relatively bigraded F-vector spaces.

One can easily compute K̃h(T ∗
1 ) from K̃h(T1) (see [KWZ19, Proposition 7.1]). For this, let m

denote the mirror operation, i.e. the involution of the four-punctured sphere that fixes the four
punctures pointwise, fixes the parametrizing arcs setwise, and interchanges the front and back,
as in § 3.

Lemma 5.9. For any pointed Conway tangle T , K̃h(T ∗) = m(K̃h(T )) up to an appropriate
bigrading shift.

Remark 5.10. Shumakovitch showed that over F the unreduced Khovanov homology of a link
splits into two copies of reduced Khovanov homology, whose δ-gradings differ by one [Shu14].
Theorem 5.8 does not compute the unreduced Khovanov homology; instead we have that the
δ-gradings of the two copies of reduced Khovanov homology are identical. To obtain unreduced
Khovanov homology, one can use yet another immersed curve invariant, namely Kh(T ), which
we introduced in [KWZ19] and which satisfies analogous gluing theorems.
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5.3 The geography problem for K̃h
Just as for HFT, it is often useful to consider the multicurves K̃h and B̃N in the covering space
R2 � Z2 of the (now pointed) four-punctured sphere S2

4,∗. This covering space is illustrated in
Figures 13(d) and 13(e), where the parametrization of S2

4,∗ has been lifted to R2 � Z2 and the two
non-adjacent faces and their preimages under the covering map are shaded gray. The two figures
also include the lifts of the components of B̃N(P2,−3) and K̃h(P2,−3), respectively. Note that for
K̃h(P2,−3), the lift of each component can be isotoped into an arbitrarily small neighborhood of
a straight line of some rational slope p/q ∈ QP1 going through some punctures. In fact, this is
true in general for the invariant K̃h(T ).

To make this statement precise, let us consider the following two classes of curves. For n ∈ N,
let rn(0) and s2n(0) be the immersed curves in S2

4,∗ that admit lifts to the curves r̃n(0) and s̃2n(0),
respectively, in Figure 14(d); curves for n = 1, 2, 3 are illustrated in Figures 14(a)–14(c). We refer
to the subscripts n, respectively 2n, as the lengths of those curves. For every slope p/q ∈ QP1,
we respectively define the curves rn(p/q) and s2n(p/q) as the images of rn(0) and s2n(0) under
the action of the matrix [

q r
p s

]
, qs− pr = 1,

considered as an element the mapping class group Mod(S2
4,∗) ∼= PSL(2,Z) consisting of mapping

classes fixing the special puncture ∗. (This transformation maps straight lines of slope 0 to
straight lines of slope p/q. The isomorphism Mod(S2

4,∗) ∼= PSL(2,Z) is induced by the two-fold
cover T2 → S2

4,∗ and the isomorphism Mod(T2) ∼= SL(2,Z).) The local systems on all these curves
are defined to be trivial.

Definition 5.11. We call the curves rn(p/q) rational and the curves s2n(p/q) special. As in
the Heegaard Floer setting, given some slope s ∈ QP1, we call a multicurve s-rational if it does
not contain any special component of slope s, and s-special if it does not contain any rational
component of slope s.

Example 5.12. For all slopes p/q ∈ QP1, K̃h(Qp/q) = r1(p/q). Moreover, K̃h(P2,−3) from
Figure 13(e) consists of a rational curve of slope 1/2 and a special curve of slope 0.

The following classification result, which is [KWZ21b, Theorem 1.2], establishes a similar
dichotomy between rational and special components of K̃h(T ) as Theorem 3.9 does for HFT(T ).

Theorem 5.13. Each component of the invariant K̃h(T ) is either rational or special.

The components of the invariant B̃N(T ) can be much more intricate than components of
K̃h(T ), as the curve B̃N(P2,−3) from Figure 13(d) illustrates. Even compact components can be
more complicated, see for example [KWZ21b, Figure 15]. However, the proof of Theorem 5.13
still gives some restrictions for B̃N(T ), too: For instance, the curve B̃N(P2,−3) ‘wraps’ around
the upper right tangle end, which is a non-special tangle end; in general, this kind of wrapping
cannot occur around the special tangle end ∗ (see [KWZ21b, Theorem 3.9]).

6. Khovanov thin fillings

6.1 The δ-grading of curves in the covering space for K̃h and B̃N
The parametrization of the four-punctured sphere that we use for the definition of the invariants
B̃N and K̃h is different from the one used for HFT: There are only two parametrizing arcs instead
of four and one puncture is treated different from the other three. This also has consequences for
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Figure 14. The curves rn(0) and s2n(0) (a–c) and their lifts to R2 � Z2 (d).

how we think of the covering space R2 � Z2 of the four-punctured sphere. In this covering space,
we think of the special puncture in terms of marked squares and of the non-special punctures as
marked points. The arcs end at the vertices of the squares, as is drawn in Figure 13(d).

To stay consistent with the conventions in [KWZ19], the normal vector field of all surfaces
determined by the right-hand rule points out of the page. Thus, the boundary of a region of
multiplicity 1 in the plane is oriented counter-clockwise. This is opposite to the conventions used
in § 4; in particular, this results in the appearance of minus signs.

Lemma 6.1. For any connecting domain ϕ from x to x′ (see Definition 4.3),

δ(x′) − δ(x) = −2e(ϕ).

Lemma 6.2. With notation as in Definition 4.6, the δ-grading of • is equal to

δ(y) − δ(x) − 1
2 + 2e(ϕ).

Proposition 6.3. For any tuple (xi)i=1,...,n of intersection points, a domain ϕ as in Definition 4.9
satisfies

n∑
i=1

δ(xi) = 2e(ϕ) − n

2
.

Corollary 6.4. For any domain ϕ from x to y (see Definition 4.11),

δ(y) − δ(x) = −2e(ϕ).

Example 6.5. If ϕ is a bigon of multiplicity 1 as in Figure 15, Corollary 6.4 implies that δ(y) −
δ(x) = −2e(ϕ) = −1; see also [KWZ19, Lemma 5.21].
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Figure 15. A bigon illustrating Example 6.5; compare with Figure 10 and [KWZ19, Figure 17].

Figure 16. Some basic curve segments (a) and their pairings (b) that illustrate the proofs of
Lemmas 6.1 and 6.2.

Proofs of results 6.1–6.4. The proofs of the two lemmas are very similar to those of Lemmas 4.5
and 4.7, respectively, since we were careful not to assume linearity of the curves in those proofs.
Note that the square punctures can always be filled in if necessary, since they contribute 0 to the
Euler measure.

For the first lemma, first consider the basic curve segments ψi, i = 1, 2, 3, . . ., that are confined
to a single face. In the case of an S-face, this is illustrated in Figure 16(a); for the D-faces, only
the curve segments ψi for even i are relevant. If ∂ψ̃i = x̃′i − x̃i, then for each integer i, there is
a unique connecting domain ϕi from x̃i to x̃′i avoiding the puncture of the face. The number of
convex corners is equal to i+ 2, so e(ϕi) = 1

2 − i/4. Moreover, ψi corresponds to a component
of the differential labeled by some algebra element ai, which is equal to Si for S-faces and equal
to Di/2 for D-faces. Thus, in both cases δ(ai) = −i/2. Following the conventions from [KWZ19],
the δ-grading decreases along the differential by 1, so

δ(x′i) − δ(xi) = −1 − δ(ai) = −1 +
i

2
= −2e(ϕi).

The argument for general domains is identical to that for HFT.
Similarly, for Lemma 6.2, once we know the identity for regions confined to a single rectangle,

the general case follows as in the proof of Lemma 4.7, using Lemma 6.1 in place of Lemma 4.5.
Thus, let us consider those basic domains, which in the case of an S-face are illustrated in
Figure 16(b). The differential corresponding to an intersection point can be easily read off by
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considering the two generators x̃ and ỹ on the first and second curve, respectively, that are
connected by a path that turns right at the intersection point. The retraction of this path to the
boundary of the face determines the label of the corresponding differential, namely Si or Di/2,
where i is the number of corners. Thus, the grading of the intersection point is

δ(y) − δ(x) − i

2
.

The connecting domain is a disc with i+ 3 convex corners and multiplicity +1, so its Euler
measure is equal to (1 − i)/4.

Finally, the proofs of Proposition 6.3 and Corollary 6.4 are identical to the proofs of
Proposition 4.10 and Corollary 4.12, respectively, except that we use Lemma 6.2 in place of
Lemma 4.7. �

6.2 Linear curves
Restricting to linear curves (Definition 4.14), we obtain results very similar to those in § 4.2.

Definition/Lemma 6.6. Let γ be a linear curve of slope s ∈ QP1. Then unless s = 0, all inter-
section points with the horizontal lines of P have the same δ-grading δ− := δ−(γ), and unless
s = ∞, all intersection points with the vertical lines of P have the same δ-grading δ| := δ|(γ).
Moreover,

δ| =

{
δ− − 1

2 if 0 < s <∞,

δ− + 1
2 if ∞ < s < 0.

Definition/Lemma 6.7. Given two linear curves γ and γ′ of different slopes s, s′ ∈ QP1, the
Lagrangian intersection theory HF(γ, γ′) is supported in a single δ-grading, which is equal to

δ(γ, γ′) :=

{
δ−(γ′) − δ|(γ) − 1

2 if s ∈ (∞, s′) for s′ ∈ (0,∞], or s ∈ (s′,∞) for s′ ∈ [∞, 0),
δ|(γ′) − δ−(γ) − 1

2 if s ∈ (s′, 0) for s′ ∈ [0,∞), or s ∈ (0, s′) for s′ ∈ (∞, 0].

Corollary 6.8. For any two linear curves γ and γ′,

δ(γ, γ′) + δ(γ′, γ) =

{
0 if (γ) = s(γ′),
−1 if s(γ) �= s(γ′).

Theorem 6.9. For any increasing triple (γ, γ′, γ′′) of linear curves,

δ(γ, γ′) + δ(γ′, γ′′) = δ(γ, γ′′).

Proof of results 6.6–6.9. The proof of Lemma 6.6 is identical to the proof of Lemma 4.15, except
that the multiplicities of the triangles change sign and we use Lemma 6.1 in place of Lemma 4.5.
Similarly, Lemma 6.7 follows from the same arguments as Lemma 4.17 using Lemma 6.2 in place
of Lemma 4.7; note the opposite signs of the summands 1

2 . Corollary 6.8 follows immediately from
Lemma 6.2, similar to Corollary 4.18. For Theorem 6.9, we can adapt the proof of Theorem 4.19
as follows. First, note that the triple (γ′′, γ′, γ) is decreasing, so let us swap the roles of γ′′ and
γ in the proof of Theorem 4.19. Then the domains ϕ and ϕ′ only contain regions of multiplicity
−1 and e(ΔÃB̃C̃) = +1

4 . Using Lemma 6.2 in place of Lemma 4.7, this implies that

δ(γ′′, γ′) + δ(γ′, γ) = (δ(y) − δ(x) − 1
2 + 2e(ϕ)) + (δ(z) − δ(y) − 1

2 + 2e(ϕ′))

= δ(z) − δ(x) − 3
2 + 2e(ϕ+ ϕ′ + ΔÃB̃C̃) = δ(γ′′, γ) − 1.

We add 2 on both sides, apply Corollary 6.8, multiply both sides by −1, and obtain

δ(γ′, γ′′) + δ(γ, γ′) = δ(γ, γ′′). �

1503

https://doi.org/10.1112/S0010437X24007152 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007152


A. Kotelskiy, L. Watson and C. Zibrowius

Lemma 6.10. Suppose γ and γ′ are two linear curves with local systems in S2
4,∗ that share the

same slope s ∈ QP1. Then, if γ is rational and γ′ is special (or vice versa), the vector space
HF(γ, γ′) is zero. Otherwise, HF(γ, γ′) is non-zero and supported in two consecutive δ-gradings,
namely δ(γ, γ′) and δ(γ, γ′) − 1.

Proof. Clearly, the Lagrangian Floer homology of a special and a rational curve vanishes.
Moreover, any two curves of the same slope that are either both rational or both special intersect
non-trivially, so HF(γ, γ′) does not vanish. The support of this vector space can be computed in
the same way as in the proof of Lemma 4.20 for the case of two special curves. �
Definition 6.11. In analogy to Definition 4.24, we say that a tangle T is Khovanov exceptional
if the multicurve Kh(T ) is exceptional.

Conjecture 6.12. There exists no link L for which K̃h(L) is supported in precisely two non-
adjacent δ-gradings.

Proposition 6.13 (Proposition 1.14). If there exists a Khovanov exceptional tangle, then
Conjecture 6.12 is false.

Proof. Suppose there exists a Khovanov exceptional tangle T . Let us write Γ = K̃h(T ) and SΓ =
{s, s′}. By assumption, T is exceptional, so either |δ(γ, γ′)| > 1 or |δ(γ′, γ)| > 1 for all components
γ, γ′ ∈ Γ with s(γ) = s and s(γ′) = s′. Without loss of generality, let us assume the former. Then,
if we pick a slope t �= s such that (t, s, s′) is increasing, δ(r(t), γ′) = δ(r(t), γ) + δ(γ, γ′) for all pairs
(γ, γ′) as above. Since Γ is assumed to be s- and s′-consistent, HF(r(t),Γ) is supported in precisely
two non-adjacent δ-gradings. Thus, by Theorem 5.8, the link Q−t ∪ T is a counterexample to
Conjecture 6.12. �

6.3 Khovanov thin fillings
In this subsection, G is either Z or Z/2. Define

CKh := {K̃h(T ; F) |T is a Conway tangle}.
In the following, we make implicit use of the following properties that CKh is known to satisfy:
each multicurve Γ ∈ CKh consists of linear components only (Theorem 5.13); and HF(Γ1,Γ2) �= 0
for each Γ1,Γ2 ∈ CKh, because of Theorem 5.8 and the fact that reduced Khovanov homology
does not vanish.

Given two multicurves Γ and Γ′ and a slope s ∈ SΓ ∩SΓ′ , the following condition will be
relevant.

Condition (R) At least one of Γ and Γ′ is s-rational, i.e. it only contains rational components of
slope s.

This is the condition for reduced Khovanov theory mentioned in Theorems 1.12 and 1.15.

Definition 6.14. Given a relatively δ-graded multicurve Γ, let

ΘG(Γ) := {s ∈ QP1 | HF(r(s),Γ) is G-thin}
be the spaces of G-thin rational fillings of Γ. If T is a Conway tangle in a three-ball, writing

ΘKh(T ) = ΘZ(K̃h(T )) and AKh(T ) = ΘZ/2(K̃h(T ))

recovers the definition from the introduction, which follows from Theorem 5.8.

Remark 6.15. Since by Lemma 5.9 the tangle invariant K̃h behaves in a natural way under
mirroring, ΘKh(T ∗) = Θm

Kh(T ) and AKh(T ∗) = Am
Kh(T ) for any Conway tangle T .
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The following result plays the same role for K̃h(T ) as Theorem 4.27 does for HFT(T ). Again,
we denote the set of all line sets in the sense of § 2 by Pfinite(C).

Theorem 6.16. There exist a map Φ: CKh → Pfinite(C) and a map g : C2 → G satisfying
(symmetry), (transitivity), and (linearity) properties as in § 2 such that for any Γ,Γ′ ∈ CKh,
the following hold:

(i) SΓ = SΦ(Γ);
(ii) ΘG(Γ) = ΘG(Φ(Γ));
(iii) Φ(Γ) is non-trivial;
(iv) Φ(Γ) is exceptional if Γ is exceptional;
(v) for any slope s ∈ QP1, Γ is s-rational if and only if Φ(Γ) is s-rational;
(vi) HF(Γ,Γ′) is G-thin if and only if the pair (Φ(Γ),Φ(Γ′)) is G-thin.

Proof. Analogously to the proof of Theorem 4.27, given c ∈ C, let γ(c) be an absolutely δ-graded
linear curve of slope s(c) such that δ−(γ(c)) = g(c) if s(c) �= 0 and δ|(γ(c)) = g(c) + 1

2 if s(c) = 0.
Then define g : C2 → G by setting for each c, c′ ∈ C

g(c, c′) := δ(γ(c), γ(c′)).

By Corollary 6.8, (symmetry) of g holds, and by Theorem 6.9, so does (transitivity) of g. Moreover,
(linearity) of g follows from the definition.

We can lift the δ-grading of all curves in CKh to an absolute δ-grading such that for each
component γ of any element in CKh we have δ−(γ) ∈ Z, δ|(γ) ∈ Z + 1

2 . To see that this is possible,
we can apply the same arguments as in the proof of Theorem 4.27, now using Lemma 6.7 in place
of Lemma 4.17 and the fact that reduced Khovanov homology is supported in integer δ-gradings
up to an overall shift, like knot Floer homology.

Now, given some absolutely δ-graded rational or special curve γ of slope s, let c = c(γ) ∈ C be
the line defined by s(c) = s, ε(c) = 0 if γ is rational and 1 if γ is special, and g(c) = δ−(γ) if s �= 0
and δ|(γ) − 1

2 if s(c) = 0. Then, given some Γ = {γi}i ∈ CKh, define C(Γ) as the set corresponding
to the multiset {c(γi)}i.

Properties (i)–(v) follow immediately from the definition of the map Φ. The property (vi)
follows from Lemmas 6.7 and 6.10. �

We can now show those parts of all theorems from the introduction concerning reduced
Khovanov homology. Again, we are restating them here for clarity.

Theorem 6.17 (Characterization of Khovanov G-thin filling spaces; Theorems 1.8 and 1.9). For
any Conway tangle T , AKh(T ) is either empty, a single point or an interval in QP1. Furthermore,
ΘKh(T ) is either empty, a single point, two distinct points or an interval in QP1.

Proof. This follows from Theorems 2.9 and 6.16(ii) and (iii). �
Proposition 6.18 (Proposition 1.10). If ΘKh(T ) is an interval, ΘKh(T ) = AKh(T ).

Proof. This follows from Theorem 6.16(ii) in conjunction with Proposition 2.11. �

In the following, let T1 and T2 be two Conway tangles and write Γ1 := m(K̃h(T1)) and Γ2 :=
K̃h(T2).

Theorem 6.19 (A-link gluing theorem; Theorem 1.12). Let T1 and T2 be two Conway tangles.
Then T1 ∪ T2 is a Khovanov A-link if and only if:

(1) Am
Kh(T1) ∪ AKh(T2) = QP1; and

(2) for every slope s ∈ ∂Am
Kh(T1) ∩ ∂AKh(T2), the multicurves Γ1 and Γ2 satisfy (R).
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Proof of Theorem 6.19. By Theorem 5.8, T1 ∪ T2 is a A-link if and only if HF(Γ1,Γ2) is
Z/2-thin. By Theorem 6.16(vi), the latter is equivalent to (C1, C2) = Φ(Γ1,Γ2) being Z/2-thin.
By Theorem 2.14, this is equivalent to ΘZ/2(C1) ∪ ΘZ/2(C2) = QP1 and for all s ∈ ∂Am

Kh(T1) ∩
∂AKh(T2), at least one of C1 and C2 is s-rational. By Theorem 6.16(v), the latter is equiva-
lent to Γ1 and Γ2 satisfying (R) for all s ∈ ∂Am

Kh(T1) ∩ ∂AKh(T2). Now use Theorem 6.16(ii) to
conclude. �

Theorem 6.20 (Thin gluing theorem; Theorem 1.15). Suppose T1 and T2 are two Conway tangle
and at least one of them is not Khovanov exceptional. Then T1 ∪ T2 is Khovanov thin if and
only if:

(1) Θm
Kh(T1) ∪ ΘKh(T2) = QP1; and

(2) for every slope s ∈ ∂Θm
Kh(T1) ∩ ∂ΘKh(T2), the multicurves Γ1 and Γ2 satisfy (R).

Proof. The proof is identical to that of Theorem 6.19, noting that the additional condition about
exceptional multicurves is now needed when applying Theorem 2.14. �

Unlike the Heegaard Floer setting, we do not know whether the exceptionality assumption in
Theorem 4.31 is required, since Khovanov exceptional tangles have not been observed.

Corollary 6.21 (Corollaries 1.13 and 1.16). For any Conway tangles T1 and T2,

Åm
Kh(T1) ∪ ÅKh(T2) = QP1 ⇒ L is a Khovanov A-link; and

Θ̊m
Kh(T1) ∪ Θ̊Kh(T2) = QP1 ⇒ L is Khovanov thin.

Proof. Let Ci = Φ(Γi) for i = 1, 2. By Theorem 6.16(ii), Åm
Kh(T1) ∪ ÅKh(T2) = QP1 implies that

Θ̊Z/2(C1) ∪ Θ̊Z/2(C2) = QP1. By Corollary 2.16, (C1, C2) is Z/2-thin, so by Theorem 6.16(vi),
this implies that HF(Γ1,Γ2) is Z/2-thin. Now conclude with Theorem 5.8.

The second part follows from the same line of reasoning. �

7. Examples

In order to place the theorems in this paper in context, we conclude with a collection of examples.
Of note is the fact that the behaviour one encounters in practice is relatively tame, by comparison
with the delicate casework seen in the proofs. In particular, if one chooses to focus on the invariants
that are encountered in nature, for instance in the examples computed in [KWZ22], most of the
forgoing material simplifies considerably. We attempt to highlight this here, and with the reader
who has skipped directly to this section from the introduction in mind, our aim is to present this
material in a vaguely self-contained way.

For simplicity, we focus on Khovanov homology throughout this section; the analogous state-
ments hold for link Floer homology as well. In fact, for many examples, the notions of thinness
are independent of the homology theory and the field of coefficients. Using the programs [GM20]
and [Sza20], we checked that through 14-crossing knots the invariants K̃h(K; F2), K̃h(K; Q),
ĤFK(K; F2), and ĤFK(K; F3) are either simultaneously thin or simultaneously not thin.
However, Shumakovitch gave the following cautionary example [Shu21]; we thank Lukas Lewark
for pointing it out to us.

Example 7.1. The Khovanov homology of the knot 16n
197566 in the knotscape knot table [HT21]

is thin when computed with rational coefficients, but not over F2. Shumakovitch used unreduced
Khovanov homology, but this statement is also true for reduced Khovanov homology; see the
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Figure 17. The Khovanov invariant of a tangle as curves lifted to the cover R2 � Z2. Note that
the tangles P2,−3 and P−2,−3 are related by adding a half-twist at the lower endpoints and a
flype; this is reflected in the plane shear taking one invariant to the other. As expected, both
special and rational components (in the sense of Definition 5.11) appear.

example K_16n197566 in [KWZ21a]. Interestingly, knot Floer homology is thin over F; we checked
this using Szabó’s program [Sza20]. We expand on these calculations in Example 7.14.

Despite this example, the following question remains open.

Question 7.2. Does the notion of thinness agree for Khovanov and Heegaard Floer theories when
working with coefficients in Q?

It is convenient to describe the Khovanov invariants of tangles in the planar cover R2 � Z2 of
the tangle boundary minus the tangle endpoints. One reason for this is the somewhat surprising
fact, stated in Theorem 5.13, that for any Conway tangle T , all of the components are linear.
This is illustrated in Figure 17, which revisits Example 5.4. This particular (2,−3)-pretzel tangle
serves as a running example through this section. Note that Theorem 5.2 says that K̃h commutes
with the action of the mapping class group; this group is generated by a pair of plane shears on
R2 � Z2. As a result, the bottom braid move relating the pretzel tangles P2,−3 and P−2,−3 lifts to
a linear transformation of the planar cover. For the class of tangles admitting an unknot closure,
there is a sense in which the behaviour one sees is not more complicated than that observed in
this single example; see [KWZ22] for more. This is an ungraded statement, however: the grading
information is subtle and important.

7.1 Rational tangles and two-bridge knots: conventions
We begin by providing a cheat sheet of sorts in order to fix our conventions. The left-hand trefoil,
expressed as the closure of the three-crossing rational tangle Q3 by the trivial tangle Q0, is shown
in Figure 18. With this example we mean to highlight that there is a strong interplay between
the Khovanov and Bar-Natan invariants of a given tangle.

Indeed, although we have been working almost exclusively with K̃h(T1 ∪ T2) ⊗ V to this point
(see § 5.2), recall that K̃h(T1 ∪ T2) can also be recovered by considering HF(K̃h(T ∗

1 ), B̃N(T2)).
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Figure 18. A decomposition of the trefoil knot into the three-crossing rational tangleQ3 and the
trivial tangle Q0 (top right) and the corresponding computation of the reduced Khovanov homol-
ogy of the trefoil knot in terms of Lagrangian Floer homology in the covering space (left): K̃h(Q0 ∪
Q3) ⊗ V ∼= HF(K̃h(Q∗

0), K̃h(Q3)) = F6 and K̃h(Q∗
0 ∪Q3) ∼= HF(K̃h(Q∗

0), B̃N(Q3)) = F3. A short-
hand for this calculation is depicted on the bottom-right.

To compute the Floer homology in the planar cover, it is sufficient to consider the preimage of one
multicurve, the lift of the other multicurve, and then count intersections after pulling tight. This
strategy is used on the left of Figure 18: the preimage of K̃h(Q0) are the lines of slope 0, and the
lift of the invariant K̃h(Q3) is the line of slope 3 missing the punctures, twice longer than
the other line of slope 3 shown. The latter line, which passes through punctures, coincides with
the lift of the Bar-Natan invariant B̃N(Q3). The fact that the trefoil is thin is well known; through
the lens of our results, this is the fact that a line of slope 3 in the plane intersects a line of slope
0 once.

More generally, a central observation in this work is that the invariant of a rational tangle
corresponds to/is controlled by a line of the appropriate rational slope. Although this has come up
repeatedly already, we review this basic fact here in order to make some conventions concrete and
transparent; see Figure 19. Rational fillings of the trivial tangle Q0 are non-split two-bridge links,
with the exception of the slope 0 rational filling, which is the two-component unlink. This unlink
is not an A-link. However, non-split two-bridge links are alternating and, hence, thin by [Lee05,
Theorem 3.12], see also [MO08, Theorem 1]. Thus, we know that Θ(Q0) = A(Q0) = QP1 �{0}.

We now consider this in more detail, making the choice to vary the rational tangle and to fix
the particular closure: the numerator closure Q0 as in Figure 19. Given a positive, reduced rational
number p/q ≥ 1, there is a unique non-split two-bridge link associated with it. To construct it,
one chooses an odd-length positive continued fraction expansion

p/q = [a0, a1, . . . , an] = an +
1

an−1 +
1

· · · + 1
a0

,

where ai > 0 and n > 0 is even. Since [a0, . . . , an] = [1, a0 − 1, . . . , an] for a0 �= 1, such a continued
fraction expansion always exists. With this choice in hand, Figure 19 illustrates some examples
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Figure 19. Some closures of rational tangles associated with odd-length positive continued
fractions, together with their Khovanov homology groups calculated via intersection in the plane
according to the shorthand explained in Figure 18. Note that [3] = 3/1 is the left-hand trefoil
whereas [1, 1, 1] = 3/2 is the right-hand trefoil. We recover the Khovanov homology for the Hopf
link (dimension 2), both trefoils (dimension 3), and the figure-eight knot (dimension 5). In general,
the alternating three-braid β = σ−a0

2 σa1
1 σ

−a2
2 σa3

1 · · ·σ−an

2 , inserted into the tangle as indicated on
the right, gives rise to the two-bridge link associated with the odd-length continued fraction
[a0, a1, . . . , an].

of two-bridge knots obtained as the numerator closures of rational tangles. Each rational number
is associated with a slope in the plane, and the intersection of the corresponding line with the
preimage of K̃h(Q0) in the plane calculates the Khovanov homology of the associated two-bridge
knot. We have shown the slopes 3/2 < 2 < 5/2 < 3 in the plane to illustrate these thin fillings.
The fact that the numerator p calculates the determinant and the dimension of the reduced
Khovanov homology is a helpful check for these examples. It can be instructive to consider the
base-length 1 parallelograms determined by the Khovanov invariants in each case; the added
twists dictated by the continued fraction correspond in a natural way to the plane shears moving
between any two parallelograms. Moreover, with the above conventions in place, the area of the
parallelogram agrees with the determinant of the link.

7.2 An aside on alternating fillings
In these first examples, thinness was deduced from the stronger statement that all tangle fillings
in question were alternating. In general, we can say a little more. For terminology, we say a
tangle diagram is alternating if the crossings alternate between under and over crossings as one
travels along the tangle, regardless of where one starts. We call a tangle diagram connected if the
underlying planar graph is connected.

Proposition 7.3. For any tangle T admitting a connected alternating diagram, the space of
thin fillings (relative to a choice of alternating tangle diagram) contains either [∞, 0] or [0,∞].
Moreover, these thin fillings are in fact alternating fillings.

It is interesting to compare Proposition 7.3 to a result of Bar-Natan and Burgos-Soto
[BNBS14, Theorem 1]. When restricted to Conway tangles, their result says that the vertical
(horizontal) intersection points of K̃h(T ) have the same δ-grading δ| (δ−), and that δ| and δ−
differ by ±1

2 . The fact that both δ| and δ− are constant implies that K̃h(T ) neither contains
any special component of slope 0 nor any special component of slope ∞. Indeed, observe that
special components of slope 0 contain two pairs of generators whose δ-gradings are equal to δ| − 1

2

and δ| + 1
2 , respectively. Similarly, any special component of slope ∞ contains four generators
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whose δ-gradings are equal to δ− − 1
2 and δ− + 1

2 . In fact, K̃h(T ) does not contain any rational
component of slope 0 or ∞ either, since 0,∞ ∈ ΘKh(T ). This implies the following strengthening
of Proposition 7.3:

Corollary 7.4. For any tangle T admitting a connected alternating diagram, ΘKh(T ) contains
an open interval containing both ∞ and 0.

For HFT, a similar result seems plausible. In fact, the corresponding statement about the
horizontal and vertical δ-grading also holds for HFT(T ), which follows from the generalised clock
theorem [Zib15]. However, HFT may contain rational components of slope 0 or ∞ that carry
inhibited local systems, see Definition 4.21 and Remark 4.23.

Proof of Proposition 7.3. Consider a connected alternating diagram D of the tangle T . The two
closures of D representing the links T (0) and T (∞) are alternating diagrams and, since they are
non-split, the links T (0) and T (∞) are non-split [Lic97, Theorem 4.2]. Similarly, either the +1- or
−1-closure of D is an alternating diagram, so at least one of T (+1) and T (−1) is an alternating
non-split link. Any alternating non-split link has thin Khovanov homology. So Θ(T ) contains 0,
∞ and either +1 or −1. By Theorem 1.9, it is therefore an interval containing either [0,∞] or
[∞, 0].

One can now check directly that T (s) is alternating either for all positive or for all negative
s ∈ QP1. Indeed, without loss of generality, suppose that T (+1) is alternating. Then according to
our conventions T (n) is an alternating diagram for all n ≥ 0. More generally, we simply observe
that choosing an odd-length continued fraction representing a positive rational number s (compare
Figure 19), the closure T (s) is an alternating diagram. �

One can easily check the proposition on the class of two-bridge links, for example, by starting
from a rational tangle diagram with one crossing.

7.3 A more instructive example
Perhaps the simplest non-rational tangle without closed components is the (2,−3)-pretzel tangle
P2,−3. The Khovanov invariant associated with this tangle is given in Figure 17 and revisited in
Figure 20. It consists of a special component (the curve of slope ∞) and a rational component
(the curve of slope −2).

To compute the spaces of thin and A-link fillings of this tangle, observe that the 0-rational
filling P2,−3(0) is a connected sum of the trefoil knot and the Hopf link. Thus, this filling is
thin and an A-link. (Alternatively, this follows from the fact that the horizontal δ-gradings δ− of
the two components of K̃h(P2,−3) agree; see Table 1.) Having found one thin filling whose slope
does not agree with one of the supporting slopes of K̃h(P2,−3), we now know that ΘKh(P2,−3)
and AKh(P2,−3) are intervals containing 0 with endpoints −2 and ∞ and we know that those
intervals agree by Proposition 1.10. Since there is a rational component of K̃h(P2,−3) of slope −2,
the endpoint −2 is not contained in this interval; for the opposite reason, ∞ is contained in the
interval. In summary, ΘKh(P2,−3) = AKh(P2,−3) = (−2,∞]; see Figure 20. As a check, one might
consider the knot P2,−3(−3): This pretzel knot is the knot 819 in the Rolfsen knot table, which
is the first non-thin knot encountered in enumerated examples.

The Heegaard Floer invariant HFT(P2,−3) consists of a single rational component (with trivial
local system) of slope −2 and a conjugate pair of special components of slope ∞; see Table 1.
Repeating the same arguments as above, we see that ΘHF(P2,−3) = AHF(P2,−3) = (−2,∞].

We can now revisit the observations made about alternating fillings in this setting: as indi-
cated in Figure 20, there is a sequence of three alternating tangle fillings given by −1, 0, and +1.
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Figure 20. The invariant for P2,−3 illustrating that ΘKh(P2,−3) = AKh(P2,−3) = (−2,∞]. The
fillings −1, 0, and +1 have been indicated, each of which is an alternating link. Note that, after
an appropriate isotopy fixing the tangle boundary setwise on each of the links in the shaded
boxes, the closures we have identified are realized as closures of alternating tangles. As a result,
[−1, 1] ⊂ (−2,∞] gives a subset of alternating fillings according to Proposition 7.3.

Thus, a transformation of the plane taking either of {1, 0} or {−1, 0} to {∞, 0} (compare
with Figure 17) together with an application of Proposition 7.3 gives two infinite collections
of alternating fillings. Expressed in the framing shown, there is a subset of alternating fillings
[−1, 1] ⊂ (−2,∞] = Θ(P2,−3). More generally, we remark that the subset [−1,∞] ⊂ (−2,∞] gives
rise to an infinite family of quasi-alternating fillings (this is established in [Wat11]). Of course,
adding a single positive twist to the top of the (2,−3)-pretzel tangle yields the (−2,−3)-pretzel
tangle P−2,−3. The invariant K̃h(P−2,−3) is obtained from a plane shear as shown in Figure 17,
so that Θ(P−2,−3) = (2, 1] ⊂ QP1.

7.4 Bar-Natan curves
In the context of Khovanov invariants, thinness can also be defined in terms of Bar-Natan homol-
ogy, a generalization of Khovanov homology taking the form of a bigraded k[H]-module. Recall
that for a (pointed) link L with |L| components, we have that B̃N(L) ∼= k[H]2

|L|−1 ⊕H-torsion. If
L is a knot, the quantum grading of the term k[H] ⊂ B̃N(K) agrees with Rasmussen’s s-invariant
over k. In this subsection we make some general observations that hold over any field k.

Definition 7.5. We call a δ-graded k[H]-module M thin if the H-torsion part of M and a
homogeneous generating set of the free part of M are supported in a single δ-grading.

It suffices to focus on reduced Khovanov homology, according to the following observation.

Proposition 7.6. For any pointed link L and field k, B̃N(L;k) is thin if and only if K̃h(L;k)
is thin.
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Table 1. Some prime Conway tangles T , their invariants K̃h(T ) and HFT(T ), and their spaces
of thin rational fillings. The polynomial expressions in δ− are the Poincaré polynomials that
indicate how often the respective curves appear in which gradings in the invariants. In all
examples ΘHF(T ) = ΘKh(T ). For HFT, an entry s4(∞) represents a conjugate pair of spe-
cial curves s1(∞; 1, 2) and s1(∞; 3, 4) in identical δ-gradings. The computations for K̃h were
made using the program [Zib21]; for the raw data and the tangle orientations used to fix
the absolute δ-grading, see [KWZ21a]. The computations of HFT(Q0) and HFT(P2,−3) can be
found in [Zib20]. Here HFT(P2,−2) and HFT(T41) were computed using the Mathematica pack-
ages [Zib18b] and [Zib18a], respectively. In all cases, the absolute δ-grading on HFT was chosen
such that it matches that on K̃h.

T Q0 P2,−3 P2,−2 T41

K̃h(T ) r1(0) : δ0−
s4(∞) : δ−1

−
r1(−2) : δ−1

−
r1(2) : δ−1/2

−
r1(−2) : δ−1/2

−

s4(∞) : δ3− + δ4−
r1(4) : δ3−

HFT(T ) r(0) : δ0−
s4(∞) : δ−1

−
r(−2) : δ−1

−

s4(∞) : δ−1/2
−

r(2) : δ−1/2
−

r(−2) : δ−1/2
−

s4(∞) : δ3− + δ4−
r(4) : δ3−

Θ(T ) QP1 �{0} (−2,∞] (−2, 2) {∞}

Proof. On the level of chain complexes C̃BN(L;k) determines C̃Kh(L;k) via a mapping cone
formula:

Consequently, K̃h(L;k) is the homology of some map

sending each generator of a free summand to itself times H. Therefore, if B̃N(L;k) is thin, so is
K̃h(L;k).

Conversely, suppose K̃h(L;k) is thin. Recall that K̃h(L;k) can be promoted to a type D
structure K̃h(L;k)k[H] by connecting pairs of generators by differentials labeled by some powers
of H (see [KWZ19, Sections 3.2 and 3.3, in particular Proposition 3.6]). Since K̃h(L;k) is assumed
to be thin, the only possible labels are H. Together with

C̃BN(L;k)k[H] � K̃h(L;k)k[H] � k[H]k[H]k[H]

establishes the result. �
We can extract the following from the final steps of the proof.
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Corollary 7.7. If L is a thin link, then the torsion part of the k[H]-module B̃N(L;k) agrees
with ker(H). In particular, 2 rk(kerH) + 2|L|−1 = det(L).

As a result, it is possible to define A-links in terms of Bar-Natan homology.

Definition 7.8. Let N be the dimension of the torsion part of the k[H]-module B̃N(L;k) as a
k-vector space. Then L is an A-link whenever 2N + 2|L|−1 = det(L).

Of course, assuming full support in the sense of Definition 1.4, we have that (Bar-Natan)
A-links are (Bar-Natan) thin links. One can also check that this definition of A-link agrees with
the definition given in the introduction asking that the total dimension of the reduced Khovanov
homology agree with the determinant of the link.

The reduced Bar-Natan homology B̃N(T ) of a Conway tangle T satisfies a gluing theorem
similar to that for K̃h (see [KWZ19, Theorem 7.2]):

B̃N(T1 ∪ T2) ∼= HF(B̃N(T ∗
1 ), B̃N(T2)).

Here, the right-hand side denotes the wrapped Lagrangian Floer homology of the two tangle
invariants. As Example 5.4 illustrates, and as we reiterate here, the components of the multicurve
B̃N(T ) need not be linear. If the multicurve consists of just a single component, this allows us to
compute the space of thin fillings very easily from the space of tangent slopes.

We illustrate how this is done in the example of the curve B̃N(P2,−3) for the (2,−3)-pretzel
tangle P2,−3 from Figure 13. A lift γ̃ of this curve to R2 � Z2 is redrawn in Figure 21. Consider
the family of ‘ε-peg-board representatives’ γ̃ε of γ̃, i.e. representatives of the homotopy class of γ̃
which have minimal length among all representatives of distance ε ∈ (0, 1/2) to all punctures in
R2 � Z2 except the two punctures at the ends of γ̃. Following [HRW24], the intuition behind this
definition is to think of the punctures of R2 � Z2 as pegs of radii ε and to imagine pulling the
curve γ̃ ‘tight’, like a rubber band. If τε denotes the set of rational tangent slopes of the curve γ̃ε,
then the interior of AKh(P2,−3) is equal to the complement of

⋂
ε∈(0,1/2) τε. Here, the obstruction

to being an A-link is the existence of bigons near the points where the limit curve of γ̃ε as ε→ 0
(the ‘singular peg-board representative’) changes its slope; this is illustrated in Figure 22.

This bears a strong resemblance to how the space of L-space fillings L(M) of a three-
manifold M with torus boundary is characterized via the immersed curve invariant ĤF(M) due to
Hanselman, Rasmussen, and the second author. There, it is shown that the interior of L(M)
is equal to the complement of the space of rational tangent slopes of the singular peg-board
representative of ĤF(M) (see [HRW24, Theorem 7.17]).

7.5 A-links and L-spaces
Given a link L, let ΣL denote the two-fold branched cover of S3 with branch set L. (Similarly,
we use ΣT to denote the two-fold branched cover of B3 with branch set the tangle arcs of T .)
Owing to the fact that K̃h(L∗) arises as the E2-page of a spectral sequence computing ĤF(ΣL)
(see [OS05b]), one might naturally wonder about the relationship between L-spaces and A-links.
In particular, one expects an interplay between AKh(T ) and L(ΣT ). Before exploring this relation-
ship further, we make some general comments about the definition of L-spaces. In § 1, L-spaces
were introduced as solutions of the identity

dim ĤF(Y ) = χ ĤF(Y ).

Usually, L-spaces are defined in terms of the following two conditions:

(a) being a rational homology sphere, that is b1(Y ) = 0; and
(b) satisfying dim ĤF(Y ) = |H1(Y ; Z)|.
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Figure 21. The reduced Khovanov (left) and Bar-Natan (right) invariants associated with the
cinqfoil, a thin knot, obtained as the closure of the (reframed) (2,−3)-pretzel tangle. Note that the
framing given here is such that the thin filling interval is (0,∞], as determined by the pulled-tight
curve ϑ shown for the Bar-Natan invariant on the right.

Figure 22. The rational filling of γ̃ along the slope of the straight line ϑ is not thin, since the
δ-gradings of the two intersection points that are connected by the shaded bigon differ by 1.

Coefficients are often chosen to be in F; we do the same and suppress F in our notation. We
observe that these two definitions are equivalent. For rational homology spheres we have the
equality χ ĤF(Y ) = |H1(Y ; Z)| and if b1(Y ) > 0 then χ ĤF(Y ) = 0 (see [OS04c]). Thus, it suffices
to show the following.

Proposition 7.9. The Heegaard Floer homology ĤF(Y ) does not vanish for any three-
manifold Y .

We are not aware of a reference for this fact in the literature; Jake Rasmussen suggested the
following argument.

Proof of Proposition 7.9. By the definition of HF∞(Y ) as the homology of ĈF(Y ) ⊗ F[U,U−1]
with higher differentials, there exists a spectral sequence from ĤF(Y ) ⊗ F[U,U−1] to HF∞(Y ).
Therefore, it suffices to show that HF∞(Y ) does not vanish. Lidman computed these groups for all
closed orientable three-manifolds [Lid10, Theorem 1.1]; compare with [OS03b, Conjecture 4.10].
He showed that for any torsion Spinc-structure s, one can write HF∞(Y, s) as the homology of a
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chain complex whose underlying chain module is equal to

Λ∗(H1(Y ; Z)) ⊗ F[U,U−1]

and with differential of the form

Λi(H1(Y ; Z)) ⊗ U j → Λi−3(H1(Y ; Z)) ⊗ U j−1.

(Torsion Spinc-structures always exist: it suffices to recall that isomorphism classes of oriented
plane fields on a closed and oriented three-manifold are determined by elements of H2(Y ; Z),
and choose a plane-field on Y with vanishing Euler class.) In particular, the quotient Q obtained
from HF∞(Y, s) by setting U = 1 is the homology of a chain complex whose underlying chain
module is

Λ∗(H1(Y ; Z)) ⊗ F

and whose differential lowers the grading of the exterior product by 3. The Euler characteristic
of this complex is ∑

i

xi dim(Λi(H1(Y ; Z)) ⊗ F) ∈ R := Z[x]/(x3 = −1).

Note that this value remains invariant under taking homology. Thus, the Euler characteristic of
the quotient Q is equal to the Euler characteristic of Λ∗(H1(Y ; Z)) ⊗ F, which is equal to

(1 + x)a ∈ R,

where a = dim(H1(Y ; Z) ⊗ F). This element is non-zero, which can be seen by embedding R into
the complex plane. Thus, Q is non-zero, and so is HF∞(Y, s). �

In the introduction, we pointed out a close relationship between Khovanov A-links and
L-spaces.

Theorem 7.10. If L is a Khovanov A-link then the two-fold branched cover ΣL is an L-space.

Proof. The Ozsváth–Szabó spectral sequence [OS05b] from K̃h(L∗) to ĤF(ΣL) implies that

dim K̃h(L) = dim K̃h(L∗) ≥ dim ĤF(ΣL) ≥ |H1(ΣL; Z)| = det(L),

so the claim follows from the fact that A-links satisfy dim K̃h(L) = det(L). �
Corollary 7.11. For any Conway tangle T , AKh(T ) ⊆ L(ΣT ).

When L(ΣL) is a closed interval, this inclusion appears to be strict, in general. For instance,
consider the now-familiar example of the pretzel tangle P2,−3. The two-fold branched cover of this
tangle is homeomorphic to the complement of the right-hand trefoil; the Seifert structure on this
knot complement (two Seifert fibred solid tori glued along an essential annulus) is encoded by the
sum of rational tangles generating this pretzel. (This is described in more detail and exploited in
[Wat12], for example.) These observations are collected in Figure 23, together with the Bar-Natan
curve invariant and the curve corresponding to ĤF(M), where M = ΣP2,−3 is the complement of
the right-hand trefoil. The important thing to check, which accounts for our change of framing on
the tangle, is that the 0-filling of P2,−3 coincides with the +6-surgery on the right-hand trefoil.
Let P λ

2,−3 denote the reframed tangle, that is, the tangle P2,−3 with the six additional half-twists,
so that the 0-closure of the tangle is the branch set for 0-surgery on the trefoil. We have shown
that

AKh(P λ
2,−3) = (4,∞] ⊂ [1,∞] = L(ΣP λ

2,−3
).
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Figure 23. Comparing the invariant B̃N(P λ
2,−3) with the invariant ĤF(M), where M is the

complement of the right-hand trefoil. Note that M is homeomorphic to the two-fold branched
cover of P λ

2,−3; the framing is such that the Seifert longitude descends to the arc labeled λ and
the meridian descends to the arc labeled μ.

Figure 24. A tangle Tn whose two-fold branched cover is the exterior of the torus knot T(2,2n+1).
Note that in the case n = 1, we recover the right-hand trefoil. The image of the slope λ+ 4nμ
descends to the arc indicated on the tangle boundary.

This example fits into a simple infinite family, observing that the (2, 2n+ 1) torus knots
(for integers n > 0) have complements that branch double cover an infinite family of tangles.
Denote the former by T(2,2n+1) and the latter by Tn, so that T1 agrees with P2,−3 (appropriately
reframed); see Figure 24. Since the Seifert genus of T(2,2n+1) is n, we compute

AKh(Tn) = (4n,∞] ⊂ [2n− 1,∞] = L(ΣTn) = L(S3 � ν(T(2,2n+1))).
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In particular, the interval of L-space fillings on a given knot (with fixed strong inversion) that
do not branch over a thin link can be made arbitrarily large: it is [2n− 1, 4n], for these examples.
A compelling pattern emerges, and one might reasonably ask about the relationship between the
curves B̃N(T ) and ĤF(ΣT ) in general; see also [HRW22, Section 7] for another point of view.

7.6 Other manifolds admitting a strong inversion
The principle exploited above can be thought of as the Montesinos trick: given a strongly invertible
knot K, there is an involution on the complement M = S3 \K with quotient a tangle T . (This
is the idea behind the enumeration of tangles given in [KWZ22].) This tangle will always have
the property of being cap trivial, that is, the ∞-filling of T is unknotted. For example, we saw in
§ 7.1 that ΣQ0 is the complement of the trivial knot, and each non-zero filling gives a lens space,
which branch double-covers the given two-bridge knot. Thus, as a result, L(ΣQ0) = QP1 �{0}.

We have also seen that the exterior of the right-hand trefoil is the two-fold branched cover of
P2,−3. This same trick applies to any knot admitting a strong inversion. Here is another example:
the exterior of the figure-eight knot is the two-fold branched cover of a tangle which we denote
by T41 . (In fact, there are two strong inversions on this knot, but in this case changing the choice
of one for the other results in the mirror image of the tangle.) The rational filling along slope
∞ results in an unknot, by construction, so this is a thin filling. However, in both the Heegaard
Floer and the Khovanov setting, this is the only A-link filling. This is because both K̃h(T41) and
HFT(T41) contain special components of slope ∞ in adjacent δ-gradings. It is also remarkable
that the two special components of K̃h(T41) correspond to the two conjugate pairs of special
curves in HFT(T41) and the rational components of the invariants have the same slope. On the
Khovanov side, the lack of thin fillings is consistent: the cover ΣT41

is homeomorphic to the
exterior of the figure-eight knot, which has no L-space fillings other than the trivial filling.

Now consider the pretzel tangle P2,−2; it is an instructive exercise to check that ΣP2,−2 is
not the exterior of a knot in S3. Indeed, this example is not cap trivial; the cover ΣP2,−2 is a
Seifert fibred space known as the twisted I-bundle over the Klein bottle. It can be realized as
the complement of a knot in S2 × S1. This manifold belongs to a class of manifolds known as
Heegaard Floer homology solid tori, which enjoy the property that all fillings, other than the
rational longitude filling, are L-spaces. That is, L(ΣP2,−2) = QP1 \{∞}. From the perspective of
tangle invariants this example is quite interesting, because the Heegaard Floer invariant contains
a pair of special components that do not correspond to a special component in K̃h(P2,−2). For the
space of A-link and thin rational fillings, this additional pair of special curves has no consequence;
all spaces are equal to (−2, 2) and can be computed from the tangle invariants K̃h(P2,−2) and
HFT(P2,−2) (following the same strategy as for P2,−3). In particular,

AKh(P2,−2) = (−2, 2) ⊂ QP1 \{∞} = L(ΣP2,−2).

This discussion is summarized in Table 1. In each case, the space of A-link fillings agrees with
the space of thin fillings and, perhaps more surprisingly, the spaces agree in both the Heegaard
Floer and the Khovanov setting.

7.7 Amalgamation: thin knots containing essential Conway spheres
We can now illustrate what is perhaps the main observation of this paper, that is, the fact that
understanding the thin filling slopes for tangles T1 and T2 allows us to determine when the link
T1 ∪ T2 will be thin. This is shown for our main running example in Figure 25.

Proposition 7.12. Unions of (2,−3)-pretzel tangles give links that are thin in Khovanov
homology if and only if they are thin in Heegaard Floer homology.
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Figure 25. A tangle decomposition of a thin knot K along an essential Conway sphere and
its reduced Bar-Natan homology computed from the two tangle invariants. Observe that the
spaces of thin fillings of the two tangles are (−∞, 0] and (0,∞], so their union is indeed QP1,
in accordance with Theorem 1.15. We expect that the dimensions of knot Floer homology and
reduced Khovanov homology in this example are minimal among all knots containing essential
Conway spheres. This will be explored in future work.

Proof. Immediate: the set of thin filling slopes agrees in both cases. �
While this amounts, essentially, to a single example, we remark that Example 7.14 is the only

example we have seen so far in which the spaces of thin fillings do not agree for the two theories,
and even in this example, they may actually agree over Q. Note that one can also check that the
thin links obtained in this way are a strict subset of the L-spaces one obtains by gluing a pair of
trefoil exteriors together.

7.8 Exotica
The examples collected in Table 1 show that the spaces of A-link and thin rational fillings can be
open and half-open intervals. However, they may also be closed intervals, as the tangle Ta from
Table 2 illustrates. The tangle Tb from the same table is obtained by taking a tangle sum of two
copies of the tangle T41 from Table 1 after rotating one of them by π/2. This tangle does not
admit any A-link filling, since its invariants contain special components in adjacent δ-gradings
in two distinct slopes. Thus, the space of A-link fillings of a tangle (as well as, consequently, the
space of thin fillings) can be either empty, a singleton, an open interval, a half-open interval, or
a closed interval. This is in contrast with the space of L-space fillings of a three-manifold with
torus boundary, which can only be empty, a singleton, a closed interval, or QP1 minus a point
[RR17]. In summary, all types of A-link rational filling spaces from Theorem 1.8 arise in actual
examples. We do not know if the same is true for the additional case of precisely two distinct
thin rational fillings in Theorem 1.9.

Conjecture 7.13. There is no tangle T such that ΘHF(T ) or ΘKh(T ) consists of two points.

Example 7.14. From the knot 16n
197566 in Example 7.1, one can easily obtain tangles for which the

spaces of thin fillings depend on the field of coefficients. For instance, Figure 26 shows a tangle
whose rational filling along the slope 5/3 is equal to 16n

197566. The Khovanov invariant K̃h of this
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Table 2. Two more prime Conway tangles T , their invariant K̃h(T ), and the corresponding
space of thin rational fillings. The polynomial expressions in δ− and δ| are the Poincaré poly-
nomials that indicate how often the respective curves appear in which gradings in K̃h(T ). The
computations were made using the program [Zib21]; for the raw data and the tangle orientations
used to fix the absolute δ-grading, see [KWZ21a].

T Ta Tb

K̃h(T )

s4(2) : 2 · δ1|
s4(1) : 6 · δ1|
r1( 1

2 ) : δ1|
s4(0) : 2 · δ1|

s4(∞) : 4 · δ11/2
− + 12 · δ9/2

− + 8 · δ7/2
−

s4(4) : δ3| + δ4|
r1( 15

4 ) : δ3|

ΘKh(T ) [2, 0] ∅

Figure 26. The tangle from Example 7.14 and its 5/3-rational filling, which is the knot from
Example 7.1.

tangle can be summarized as follows, using the same notation as in Tables 1 and 2; see example
T_16n197566 in [KWZ21a]:

over F2 : s4(∞) : 16 · δ2− s8(∞) : δ2− r1(4/3) : δ3/2
|

over F3 : s4(∞) : 16 · δ2− s6(∞) : δ2− r1(2) : δ3/2
| r2(2) : δ3/2

| .

Thus, the space of thin fillings of this tangle is equal to [∞, 4/3) for Khovanov homology over
F2, but [∞, 2) for Khovanov homology over F3. As a result, Shumakovitch’s example is part of
an infinite family of links: pick any closure of this tangle along a slope s ∈ [4/3, 2).

The Heegaard Floer invariant of this tangle is equal to {2 · r(2), r(4), 17 · s4(∞)}, where
2 · s4(∞) represents two conjugate pairs of special curves s1(∞; 1, 2) and s1(∞; 3, 4). All special
curves and the two rational curves all live in the same δ-grading. Moreover, δ(17 · s4(∞), r(4)) =
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Figure 27. The knot Floer homology of the 6-twisted Whitehead double of the right-handed
trefoil knot (shown on the left) does not have full support, and the subtangle (shown on the
right) is Heegaard Floer exceptional.

δ(r(4), 2 · r(2)) = 0. (These computations were done indirectly using [Sza20].) Thus, the space of
thin fillings in Heegaard Floer theory is equal to [∞, 2).

We are grateful to Matt Hedden for pointing out that knot Floer homology does not have
full support; see Figure 27. This example was used by Hedden and Ording to establish that the
Ozsváth–Szabó concordance invariant τ and the Rasmussen invariant s do not agree [HO08]. It
is interesting to study this example in the context of tangles.

Example 7.15. Let T be the subtangle of the thick A-knot illustrated in Figure 27. We computed
the Heegaard Floer invariants of T as

HFT(T ) = {r(−5/2), 2 · s4(∞)} AHF(T ) = (−5/2,∞] ΘHF(T ) = {∞}.
Here, 2 · s4(∞) represents two conjugate pairs of special curves s1(∞; 1, 2) and s1(∞; 3, 4), which
all live in the same δ-grading. Moreover, δ(r(−5/2), 2 · s4(∞)) = 2. These computations were
done indirectly using [Sza20]. Note, in particular, that T is an example of a Heegaard Floer
exceptional tangle (Definition 4.24). Together with Example 2.17, it illustrates that Theorem 4.31
is indeed wrong if we drop the assumption that both tangles not be Heegaard Floer exceptional;
see also [Zib23a, Proof of Theorem 1.8]. Thus, it validates the shift in perspective from thin to
A-links.

In contrast, the Khovanov homology of the knot in Figure 27 is not thin and it has full
support. Moreover, we compute

K̃h(T ; F2) = {r1(3/2), 8 · s4(∞)}, AHF(T ; F2) = ΘHF(T ; F2) = {∞}
K̃h(T ;k) = {r1(−1/2), 2 · s4(∞), 6 · s2(∞)}, AHF(T ;k) = ΘHF(T ;k) = {∞},

where k = Q,F3,F5,F7,F11; see example 3_1 in [KWZ21a]. Here, the special components sit in
three consecutive δ-gradings.

It is interesting that we see three distinct slopes of rational components in this example.
This is related to the fact that rational closures of T not only provide examples for which τ
and Rasmussen’s original invariant s = sQ are distinct, but they also include examples for which
sQ �= sF2 . This phenomenon is explored further in [LZ21, LZ22].

Remark 7.16. As an observation to summarize: In Theorem 1.7, one might ask why the assump-
tion that the two manifolds are boundary incompressible is needed. The answer is that when one
of the Mi is boundary compressible then the condition for L-spaces is L(M0) ∪ h(L(M1)) = QP1;
consider, for instance, Dehn surgery along the figure-eight knot; for more discussion, see [HRW24]
and compare with [HRRW20]. In contrast, because the intervals have a wider range of endpoint
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behaviour in the tangle case, our A-link and thin gluing theorems do not admit cleaner statements
if we assume that the tangles are boundary incompressible (i.e. non-split).
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