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Lambert series of logarithm, the derivative
of Deninger’s function R(z), and a mean
value theorem for ζ ( 1

2 − it) ζ ′ ( 1
2 + it)

Soumyarup Banerjee, Atul Dixit , and Shivajee Gupta

Dedicated to Christopher Deninger on account of his 65th birthday

Abstract. An explicit transformation for the series
∞
∑
n=1

log(n)
eny − 1

, or equivalently,
∞
∑
n=1

d(n) log(n)e−ny

for Re(y) > 0, which takes y to 1/y, is obtained for the first time. This series transforms into
a series containing the derivative of R(z), a function studied by Christopher Deninger while
obtaining an analog of the famous Chowla–Selberg formula for real quadratic fields. In the course
of obtaining the transformation, new important properties of ψ1(z) (the derivative of R(z)) are
needed as is a new representation for the second derivative of the two-variable Mittag-Leffler
function E2,b(z) evaluated at b = 1, all of which may seem quite unexpected at first glance. Our

transformation readily gives the complete asymptotic expansion of
∞
∑
n=1

log(n)
eny − 1

as y → 0 which was

also not known before. An application of the latter is that it gives the asymptotic expansion of

∫
∞

0
ζ ( 1

2
− it) ζ′ ( 1

2
+ it) e−δt dt as δ → 0.

1 Introduction

Eisenstein series are the building blocks of modular forms and thus lie at the heart of
the theory. In the case of the full modular group SL2 (Z), the Eisenstein series of even
integral weight k ≥ 2 are given by

Ek(z) ∶= 1 − 2k
Bk

∞
∑
n=1

nk−1qn

1 − qn ,(1.1)

where q = e2πiz with z ∈ H (the upper-half plane) and Bk are the Bernoulli numbers.
They satisfy the modular transformations

Received by the editors March 13, 2023; revised August 18, 2023; accepted October 2, 2023.
Published online on Cambridge Core October 11, 2023.
Part of this work was done when the first author was a National Postdoctoral Fellow (NPDF) at IIT

Gandhinagar funded by the grant PDF/2021/001224, and later, when he was an INSPIRE faculty at IISER
Kolkata supported by the DST grant DST/INSPIRE/04/2021/002753. The second author’s research is
funded by the Swarnajayanti Fellowship grant SB/SJF/2021-22/08. The third author is supported by CSIR
SPM Fellowship under the grant number SPM-06/1031(0281)/2018-EMR-I. All of the authors sincerely
thank the respective funding agencies for their support.

AMS subject classification: 11M06, 11N37.
Keywords: Lambert series, Deninger’s function, mean value theorems, asymptotic expansions.

https://doi.org/10.4153/S0008414X23000597 Published online by Cambridge University Press

http://dx.doi.org/10.4153/S0008414X23000597
https://orcid.org/0000-0002-9090-2213
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.4153/S0008414X23000597&domain=pdf
https://doi.org/10.4153/S0008414X23000597
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Ek(z + 1) = Ek(z) (k ≥ 2),

Ek (
−1
z
) = zk Ek(z) (k > 2), E2 (

−1
z
) = z2E2(z) + 6z

πi
.(1.2)

The series on the right-hand side of (1.1) is an example of what is known as a Lambert
series whose general form is

∞
∑
n=1

a(n)qn

1 − qn =
∞
∑
n=1

a(n)
eny − 1

=
∞
∑
n=1
(1 ∗ a)(n)e−ny ,(1.3)

where q = e−y with Re(y) > 0, and a(n) is an arithmetic function with (1 ∗ a)(n) =
∑d ∣n a(d) as the Dirichlet convolution.

For Re(s) > 1, the Riemann zeta function is defined by ζ(s) = ∑∞
n=1 n−s . Ramanujan

[9, pp. 275–276], [52, pp. 319–320, Formula (28)], [53, p. 173, Chapter 14, Entry
21(i)] derived a beautiful transformation involving the Lambert series associated
with a(n) = n−2m−1 , m ∈ Z/{0}, and the odd zeta value ζ(2m + 1), namely, for
Re(α), Re(β) > 0 with αβ = π2,

α−m { 1
2

ζ(2m + 1) +
∞
∑
n=1

n−2m−1

e2αn − 1
} = (−β)−m { 1

2
ζ(2m + 1) +

∞
∑
n=1

n−2m−1

e2βn − 1
}

− 22m
m+1
∑
j=0

(−1) jB2 jB2m+2−2 j

(2 j)!(2m + 2 − 2 j)!
αm+1− j β j .(1.4)

Along with the transformations of the Eisenstein series in (1.2), this formula also
encapsulates the transformations of the corresponding Eichler integrals of the Eisen-
stein series as well as the transformation property of the Dedekind eta-function. The
literature on this topic is vast with many generalizations and analogs for other L-
functions, for example, [4, 6, 7, 12, 20–24, 32, 41, 42, 44]. See also the recent survey
article [10].

Recently, Kesarwani, Kumar, and the second author [23, Theorem 2.4] obtained
a new generalization of (1.4), namely, for Re(y) > 0 and any complex a such that
Re(a) > −1,

∞
∑
n=1

σa(n)e−ny + 1
2
⎛
⎝
(2π

y
)

1+a

cosec(πa
2
) + 1

⎞
⎠

ζ(−a) − 1
y

ζ(1 − a)

= 2π
y sin ( πa

2 )

∞
∑
n=1

σa(n)
⎛
⎝
(2πn)−a

Γ(1 − a) 1F2 (1; 1 − a
2

, 1 − a
2

; 4π4n2

y2 ) − (2π
y
)

a

cosh(4π2n
y

)
⎞
⎠

,

(1.5)

where 1F2(a; b, c; z) is the generalized hypergeometric function

1F2(a; b, c; z) ∶=
∞
∑
n=0

(a)n

(b)n(c)n

zn

n!
,

where z ∈ C and (a)n = a(a + 1) . . . (a + n − 1). They [23, Theorem 2.5] also analyti-
cally continued this result to Re(a) > −2m − 3, m ∈ N ∪ {0}, and in this way, they were
able to get as corollaries not only Ramanujan’s formula (1.4) and the transformation
formula for the Dedekind eta-function but also new transformations when a is an even
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Lambert series of logarithm, and a mean value theorem 3

integer. Moreover, they showed [23, Equation (2.19)] that letting a → 0 in (1.5) gives
the following transformation of Wigert [63, p. 203, Equation (A)]:

∞
∑
n=1

1
eny − 1

= 1
4
+ γ − log(y)

y
+ 2

y

∞
∑
n=1

{log(2πn
y
) − 1

2
(ψ (2πin

y
) + ψ (−2πin

y
))} ,

(1.6)

where ψ(z) ∶= Γ′(z)/Γ(z) is the logarithmic derivative of the gamma function com-
monly known as the digamma function. Wigert [63, p. 203] called this transformation
“la formule importante” (an important formula). Indeed, it is important, for, if we
let y → 0 in any angle ∣ arg(y)∣ ≤ λ, where λ < π/2, it gives the complete asymptotic
expansion upon using (3.13), that is,

∞
∑
n=1

d(n)e−ny ∼ 1
4
+ (γ − log(y))

y
−

∞
∑
n=1

B2
2n y2n−1

(2n)(2n)!
,(1.7)

where γ is Euler’s constant, which, in turn, readily implies [59, p. 163, Theorem 7.15]
∞
∑
n=1

d(n)e−ny = 1
4
+ γ − log y

y
−

N−1
∑
n=0

B2
2n+2

(2n + 2)(2n + 2)!
y2n+1 + O(∣y∣2N).(1.8)

The study of the moments

Mk(T) ∶= ∫
T

0
∣ζ ( 1

2
+ it)∣ 2k dt(1.9)

is of fundamental importance in the theory of the Riemann zeta function. It is con-
jectured that Mk(T) ∼ Ck T logk2

(T) as T →∞ for positive constants Ck although
for k = 1 and 2, this has been proved by Hardy and Littlewood [33] and Ingham [35],
respectively. Such results are known as mean value theorems for the zeta function.
The importance of the study of moments lies, for example, in the fact that the
estimate Mk(T) = Ok ,ε(T 1+ε) for every natural number k is equivalent to the Lindelöf
hypothesis [57] (see also [34]).

Another set of mean value theorems which plays an important role in the theory
is the one concerning the asymptotic behavior of the smoothly weighted moments,
namely,

∫
∞

0
∣ζ ( 1

2
+ it)∣ 2k e−δt dt(1.10)

as δ → 0. The relation between the two types of moments in (1.9) and (1.10) is given by
a result [59, p. 159] which states that if f (t) ≥ 0 for all t and for a given positive m,

∫
∞

0
f (t)e−δt dt ∼ 1

δ
logm ( 1

δ
)

as δ → 0, then

∫
T

0
f (t) dt ∼ T logm(T)

as T →∞. For an excellent survey on the moments, we refer the reader to [38].
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4 S. Banerjee, A. Dixit, and S. Gupta

The asymptotic expansion of ∑∞
n=1 d(n)e−ny as y → 0 in (1.8) allows us to obtain

the asymptotic estimate for the smoothly weighted second moment, namely, as δ → 0,
for every natural number N, we have [59, p. 164, Theorem 7.15(A)]

∫
∞

0
∣ζ ( 1

2
+ it)∣ 2e−δt dt = γ − log(2πδ)

2 sin(δ/2) +
N
∑
n=0

cn δn + O(δN+1),(1.11)

where the cn are constants and the constant implied by the big-O depends on N.
A simple proof of (1.11) was given by Atkinson [3]. In fact, (1.7) gives the complete
asymptotic expansion for this moment.

The primary goal of this paper is to give a nontrivial application of (1.5). Note that
the complex variable a in (1.5) enables differentiation of (1.5) with respect to a, which
is not possible in (1.4) or other such known results. Indeed, it is an easy affair to check
that differentiating the series on the left-hand side of (1.5) with respect to a and then

letting a = 0 gives
∞
∑
n=1

log(n)
eny − 1

, which, in view of (1.3), satisfies

∞
∑
n=1

log(n)
eny − 1

=
∞
∑
n=1

log (∏
d ∣n

d)e−ny = 1
2

∞
∑
n=1

d(n) log(n)e−ny .

Here, in the last step, we used an elementary result∏d ∣n d = nd(n)/2 (see, for example,
[2, Exercise 10, p. 47]).

What is surprising though is, differentiating the right-hand side of (1.5) with respect
to a and then letting a = 0 leads to an explicit and interesting series involving a well-
known special function. This special function deserves a separate mention and hence
after its brief introduction here, the literature on it is discussed in detail in Section 3.

In a beautiful paper [17], Deninger comprehensively studied the function R ∶ R+ →
R uniquely defined by the difference equation

R(x + 1) − R(x) = log2(x) (R(1) = −ζ′′(0)),

and with the requirement that R be convex in some interval (A,∞), A > 0.
The function R(x) is an analog of log(Γ(x)) in view of the fact that the latter

satisfies the difference equation f (x + 1) − f (x) = log(x) with the initial condition
f (1) = 0. As noted in [17, Remark 2.4], R can be analytically continued to

D ∶= C/{x ∈ R∣ x ≤ 0}.

The special function which appears in our main theorem, that is, in Theorem 1.1, is
ψ1(z), which is essentially the derivative of Deninger’s function R(z) (see (3.5)). For
z ∈ D, it is given by

ψ1(z) = −γ1 −
log(z)

z
−

∞
∑
n=1

( log(n + z)
n + z

− log(n)
n

) ,(1.12)

where γ1 is the first Stieltjes constant.
We are now ready to state the main result of our paper which transforms the

Lambert series of logarithm into an infinite series consisting of ψ1(z).
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Lambert series of logarithm, and a mean value theorem 5

Theorem 1.1 Let ψ1(z) be given in (1.12). Then, for Re(y) > 0,
∞
∑
n=1

log(n)
eny − 1

= − 1
4

log(2π) + 1
2y

log2(y) − γ2

2y
+ π2

12y

− 2
y
(γ + log(y))

∞
∑
n=1

{log(2πn
y
) − 1

2
(ψ (2πin

y
) + ψ (−2πin

y
))}

+ 1
y

∞
∑
n=1

{ψ1 (
2πin

y
) + ψ1 (−

2πin
y

) − 1
2
(log2 (2πin

y
) + log2 (−2πin

y
)) + y

4n
} .(1.13)

Equivalently,

y
∞
∑
n=1

γ + log(ny)
eny − 1

− 1
4

y log(y) + y ( 1
4

log(2π) − γ
4
) + 1

2
log2(y) − γ2

2
− π2

12

=
∞
∑
n=1

{ψ1 (
2πin

y
) + ψ1 (−

2πin
y

) − 1
2
(log2 (2πin

y
) + log2 (−2πin

y
)) + y

4n
} .

(1.14)

Remark 1.1 That the series
∞
∑
n=1

{ψ1 (
2πin

y
) + ψ1 (−

2πin
y

) − 1
2
(log2 (2πin

y
) + log2 (−2πin

y
)) + y

4n
}

converges absolutely is clear from (5.13).
The exact transformation in (1.13) is an analog of Wigert’s result (1.6). This is evident

from the fact that
log ( 2πn

y ) − 1
2 (ψ ( 2πin

y ) + ψ (− 2πin
y )) = − 1

2 {ψ ( 2πin
y ) + ψ (− 2πin

y ) − (log( 2πin
y ) + log(−2πin

y ))} ,

which should be compared with the summand of the second series on the right-hand
side of (1.13).

Thus, (1.13) allows us to transform ∑∞
n=1 d(n) log(n)e−ny into series having a con-

stant times 1/y in the arguments of the functions in their summands. This “modular”
behavior has an instant application: it gives the complete asymptotic expansion of
∑∞

n=1 d(n) log(n)e−ny as y → 0, which is given in the following result.

Theorem 1.2 Let A denote the Glaisher–Kinkelin constant defined by [27, 28, 43] and
[61, p. 461, Equation (A.7)]

log(A) ∶= lim
n→∞

{
n
∑
k=1

k log(k) − (n2

2
+ n

2
+ 1

12
) log(n) + n2

4
} .

As y → 0 in ∣ arg(y)∣ < π/2,
∞
∑
n=1

log(n)
eny − 1

∼ 1
2y

log2(y) + 1
y
(π2

12
− γ2

2
) − 1

4
log(2π) + y

12
(log A− 1

12
)

+
∞
∑
k=2

B2k y2k−1

k

⎧⎪⎪⎨⎪⎪⎩

B2k

2(2k)!
⎛
⎝

γ −
2k−1
∑
j=1

1
j
+ log(2π)

⎞
⎠
+ (−1)k ζ′(2k)

(2π)2k

⎫⎪⎪⎬⎪⎪⎭
.(1.15)

As seen earlier, Wigert’s result (1.8) is useful in getting the asymptotic estimate for
the smoothly weighted second moment of the zeta function on the critical line given
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6 S. Banerjee, A. Dixit, and S. Gupta

in (1.11). It is now natural to ask whether our result in Theorem 1.2 has an application
in the theory of moments. Indeed, (1.15) implies the following result.
Theorem 1.3 As δ → 0, ∣ arg(δ)∣ < π/2,

∫
∞

0
ζ ( 1

2
− it) ζ′ ( 1

2
+ it) e−δt dt = − 1

4 sin ( δ
2 )

(log2(2πδ) + π2

6
− γ2) +

2m−2
∑
k=0

(dk + d′k log(δ))δk

+ O (δ2m−1 log(δ)) ,(1.16)

where dk and d′
k are effectively computable constants and the constant implied by the

big-O depends on m.
In fact, one can obtain the complete asymptotic expansion of the left-hand side of

(1.16) using (1.15).
Mean value theorems involving the derivatives of the Riemann zeta function have

been well-studied. For example, Ingham [35] (see also Gonek [29, Equation (2)]1)
showed that

∫
T

0
ζ(μ) ( 1

2
+ it) ζ(ν) ( 1

2
− it) dt ∼ (−1)μ+ν T

μ + ν + 1
logμ+ν+1(T)

as T →∞, where μ, ν ∈ N ∪ {0} (see also [60, p. 102]). In particular, for μ = 1 and ν = 0,
we have

∫
T

0
ζ ( 1

2
− it) ζ′ ( 1

2
+ it) dt ∼ −T

2
log2(T)

as T →∞.
The proof of Theorem 1.1 is quite involved and first requires establishing several new

results that may seem quite unexpected at first glance. These results are important in
themselves and may have applications in other areas. Hence, this paper is organized
as follows.

We collect frequently used results in the next section. In Section 3, we first prove
Theorem 3.2 which gives an asymptotic expansion of ψ1(z) followed by Theorem
3.3, a Kloosterman-type result for ψ1(z). Theorem 3.4 is the highlight of this section
and is an analog of (2.2) established in [22, Theorem 2.2]. Section 4 is devoted to
obtaining a new representation for the second derivative of the two-variable Mittag-
Leffler function E2,b(z) at b = 1. In Section 5, we prove our main results, that is,
Theorems 1.1–1.3. Finally, we conclude the paper with some remarks and directions
for future research.

2 Preliminaries

Stirling’s formula in a vertical strip α ≤ σ ≤ β, s = σ + it states that [16, p. 224]

∣Γ(s)∣ = (2π)
1
2 ∣t∣σ−

1
2 e−

1
2 π∣t∣ (1 + O ( 1

∣t∣ ))(2.1)

uniformly as ∣t∣ → ∞.

1There is a slight typo in the asymptotic formula on the right-hand side of this equation in that
(−1)μ+ν is missing.
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Lambert series of logarithm, and a mean value theorem 7

We will also need the following result established in [22, Theorem 2.2] which is
valid for Re(w) > 0:

∞
∑
n=1

∫
∞

0

t cos(t)
t2 + n2w2 dt = 1

2
{log( w

2π
) − 1

2
(ψ ( iw

2π
) + ψ (− iw

2π
))} .(2.2)

Watson’s lemma is a very useful result in the asymptotic theory of Laplace integrals

∫
∞

0
e−zt f (t) dt. This result typically holds for ∣ arg(z)∣ < π/2. However, with addi-

tional restrictions on f, Watson’s lemma is known to hold for extended sectors. For the
sake of completeness, we include it here in the form given in [58, p. 14, Theorem 2.2].

Theorem 2.1 Let f be analytic inside a sector D ∶ α < arg(t) < β, where α < 0 and β >
0. For each δ ∈ (0, 1

2 β − 1
2 α), as t → 0 in the sector Dδ ∶ α + δ < arg(t) < β − δ, we have

f (t) ∼ tλ−1
∞
∑
n=0

an tn ,

where Re(λ) > 0. Suppose there exists a real number σ such that f (t) = O (eσ ∣t∣) as
t →∞ in Dδ . Then the integral

Fλ(z) ∶= ∫
∞

0
e−zt f (t) dt(2.3)

or its analytic continuation, has the asymptotic expansion

Fλ(z) ∼
∞
∑
n=0

an
Γ(n + λ)

zn+λ

as ∣z∣ → ∞ in the sector

−β − π
2
+ δ < arg(z) < −α + π

2
− δ.

The many-valued functions tλ−1 and zn+λ have their principal values on the positive real
axis and are defined by continuity elsewhere.

Actually, we will be using an analog of the above theorem where the integrand in
(2.3) has a logarithmic factor.

We next give Dirichlet’s test for uniform convergence of definite integrals [55, p.
261] which will be used in the course of proving Theorem 4.4.

Theorem 2.2 If g(x , y) is continuous on {(x , y)∣c ≤ x , m ≤ y ≤ n} and
∣ ∫

X
c g(x , y) dx∣ < K for all X ≥ c and all y on [m, n], if f (x , y) is a decreasing

function of x for x ≥ c and each fixed y on [m, n], and if f (x , y) tends to zero uniformly
in y as x →∞, then ∫

∞
c f (x , y)g(x , y) dx converges uniformly on m ≤ y ≤ n.

Another result which will be needed in the sequel is the following [55, p. 260].

Theorem 2.3 Let ∂
∂ y h(x , y) and h(x , y) are continuous on [c,∞) × [m, n], if

∫
∞

c h(x , y) dx converges for at least one y0 in [m, n], and if ∫
∞

c
∂

∂ y h(x , y) dx converges
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8 S. Banerjee, A. Dixit, and S. Gupta

uniformly on [m, n], then ∫
∞

c h(x , y) dx converges uniformly on [m, n], and

d
d y ∫

∞

c
h(x , y) dx = ∫

∞

c

∂
∂y

h(x , y) dx .(2.4)

We will also be using Parseval’s theorem given next. LetF(s) = M[ f ; s] andG(s) =
M[g; s] denote the Mellin transforms of functions f (x) and g(x), respectively, and
let c = Re(s). If M[ f ; 1 − c − it] ∈ L(−∞,∞) and x c−1 g(x) ∈ L[0,∞), then Parseval’s
formula [49, p. 83] is given by

∫
∞

0
f (x)g(x)dx = 1

2πi ∫(c)
F(1 − s)G(s) ds,(2.5)

where the vertical line Re(s) = c lies in the common strip of analyticity of the Mellin
transforms F(1 − s) and G(s), and, here and throughout the sequel, we employ the
notation ∫(c) to denote the line integral ∫

c+i∞
c−i∞ .

3 New results on ψ1(z)
In [19], Dilcher studied in detail, the generalized gamma function Γk(z)which relates
to the Stieltjes constant γk , k ≥ 0, defined by2

γk ∶= lim
n→∞

⎛
⎝

n
∑
j=1

logk( j)
j

− logk+1(n)
k + 1

⎞
⎠

,(3.1)

in a similar way as the Euler gamma function Γ(z) relates to the Euler constant γ =
γ0. Using [19, Equation (2.1)] and [17, Equation (2.3.1)], we see that Dilcher’s Γ1(z) is
related to Deninger’s R(z) by3

log(Γ1(z)) = 1
2
(R(z) + ζ′′(0)).(3.2)

As mentioned by Deninger in [17, Remark 2.4], contrary to Euler’s Γ, the function
exp(R(x)), or equivalently Γ1(x), where x > 0, cannot be meromorphically continued
to the whole complex plane. But Γ1(z) is analytic in z ∈ D. It is this exp(R(x)) that
Languasco and Righi [45] call as the Ramanujan–Deninger gamma function. They have
also given a fast algorithm to compute it.

Dilcher also defined the generalized digamma function ψk(z) as the logarithmic
derivative of Γk(z). His Proposition 10 from [19] implies that for z ∈ D,

ψk(z) = −γk −
logk(z)

z
−

∞
∑
n=1

( logk(n + z)
n + z

− logk(n)
n

) ,(3.3)

where k ∈ N ∪ {0}. Its special case k = 1 has already been given in (1.12). The function
ψk(z) occurs in Entry 22 of Chapter 8 in Ramanujan’s second notebook, see [8]. It
is also used by Ishibashi [36] to construct the kth order Herglotz function which, in
turn, plays an important role in his evaluation of the Laurent series coefficients of a

2Note that Deninger’s definition of γ1 in [17, p. 174] involves an extra factor of 2 which is not present
in conventional definition of γ1 , that is, in the k = 1 case of (3.1).

3By analytic continuation, Equation (2.3.1) from [17] is valid for z ∈ D.
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Lambert series of logarithm, and a mean value theorem 9

zeta function associated with an indefinite quadratic form. As noted by Ishibashi and
Kanemitsu [37, p. 78],

ψk(z) = 1
k + 1

R′
k+1(z),

where Rk(z) is defined by [17, p. 173]

Rk(z) = (−1)k+1 ( ∂k

∂sk ζ(0, z) − ζ(k)(0)) ,(3.4)

and R2(z) = R(z) of Deninger. Thus,

ψ1(z) = 1
2

R′(z),(3.5)

which is also implied by (3.2). The function ψk(z) is related to the Laurent series
coefficients γk(z) of the Hurwitz zeta function ζ(s, z) known as the generalized
Stieltjes constants. To see this, from [5, Theorem 1], note that if

ζ(s, z) = 1
s − 1

+
∞
∑
k=0

(−1)kγk(z)
k!

(s − 1)k ,(3.6)

then4

γk(z) = lim
n→∞

⎛
⎝

n
∑
j=0

logk( j + z)
j + z

− logk+1(n + z)
k + 1

⎞
⎠

(3.7)

so that γk(1) = γk . Then from (3.1), (3.3), (3.7) and the fact [19, Lemma 1] that

lim
n→∞

(logk+1(n + z) − logk+1(n)) = 0 (z ∈ D),

it is not difficult to see that

ψk(z) = −γk(z),(3.8)

which was also shown by Shirasaka [56, p. 136]. Further properties and applications
of ψk(z) are derived in [18].

We thus see that the literature on R(z), that is, R2(z), and, in general, on Rk(z),
is growing fast. In the words of Ishibashi [36, p. 61], “Deninger proved several analytic
properties of R2(x) in order to familiarize and assimilate it as one of the most commonly
used number-theoretic special functions,. . ..” Languasco and Righi [45] have also given
a fast algorithm to compute ψ1(x), x > 0. The papers of Berndt [5], Blagouchine [11],
Coffey [15], Chatterjee and Khurana [14] (and also the references therein) on the
generalized Stieltjes constants, which, in view of (3.8), are nothing but −ψk(z), are
also vast sources of information on them. However, none of the studies prior to our
current work is devoted to applications of these constants in obtaining a “modular”
transformation for the Lambert series of logarithm and its application in the theory of
the moments of the Riemann zeta function given in Theorems 1.1 and 1.3, respectively.

4It is to be noted that Berndt includes the factor (−1)k

k! in the definition of γk(z) and does not have
it in the summand of (3.6).
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Our first result of this section gives the asymptotic expansion of ψ1(z) for z ∈ D.
To accomplish it, we require a generalization of Watson’s lemma which allows for
a logarithmic factor in the integrand. Such an expansion seems to have been first
obtained by Jones [40, p. 439] (see also [65, Equations (4.14) and (4.15)]). Though
we will be using the same expansion, it is useful to rigorously derive it as a special
case of a more general result due to Wong and Wyman [65, Theorem 4.1] given in the
following theorem. We note in passing that Riekstins [54] has also obtained asymptotic
expansions of integrals involving logarithmic factors.

Theorem 3.1 For γ ∈ R, define a function

F(z) ∶= ∫
∞e iγ

0
f (t)e−ztdt.

Assume that F(z) exists for some z = z0. If:

(1) For each integer N ∈ N ∪ {0},

f (t) =
N
∑
n=0

an tλn−1Pn(log t) + o(tλN−1(log t)m(N)),

as t → 0 along arg(t) = γ.
(2) Pn(ω) is a polynomial of degree m = m(n).
(3) {λn} is a sequence of complex numbers, with R(λn+1) >R(λn),R(λ0) > 0, for all

n such that n and n + 1 are in N ∪ {0}.
(4) {an} is a sequence of complex numbers.

Then as z →∞ in S(Δ)

F(z) ∼
N
∑
n=0

an Pn(Dn)[Γ(λn)z−λn ] + o (z−λN (log z)m(N)) ,

where S(Δ) ∶ ∣ arg(ze iγ)∣ ≦ π
2 − Δ, and Dn is the operator Dn ∶= d

d λn
. This result is

uniform in the approach of z →∞ in S(Δ).

Theorem 3.2 Fix any Δ > 0. Then as z →∞ with ∣ arg(z)∣ ≤ π − Δ,

ψ1(z) ∼ 1
2

log2(z) − 1
2z

log z +
∞
∑
k=1

B2k

2kz2k
⎛
⎝

2k−2
∑
j=1

1
j
+ 1

2k − 1
− log z

⎞
⎠

.(3.9)

Proof We first prove the result for ∣ arg(z)∣ < π/2 and then extend it to ∣ arg(z)∣ ≤
π − Δ. To that end, we begin with the analog for R(z) of Plana’s integral for log(Γ(z)),
namely, for Re(z) > 0, we have [17, Equation (2.12)]

R(z) = −ζ′′(0) − 2∫
∞

0
((z − 1)e−t + e−zt − e−t

1 − e−t ) γ + log(t)
t

dt.(3.10)

Differentiating (3.10) under the integral sign with respect to z and using (3.5), we see
that
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ψ1(z) = −∫
∞

0
(e−t − te−zt

1 − e−t )
(γ + log(t))

t
dt

= −∫
∞

0
(e−t − e−zt) (γ + log(t))dt

t
− ∫

∞

0
e−zt ( 1

t
− 1

1 − e−t )(γ + log(t))dt

= 1
2

log2(z) − ∫
∞

0
e−zt ( 1

t
− 1

1 − e−t )(γ + log(t))dt,

(3.11)

where we used the fact that for Re(z) > 0,

∫
∞

0
(e−t − e−zt)(γ + log(t))dt

t
= − 1

2
log2(z),

which follows from [17, Equation (2.13)]5

∫
∞

0
(e−βt − e−αt)(γ + log(t))dt

t
= 1

2
(log2(β) − log2(α)) .

Thus

ψ1(z) = 1
2

log2(z) − γ(ψ(z) − log(z)) − ∫
∞

0
e−zt ( 1

t
− 1

1 − e−t ) log(t) dt,(3.12)

where we employed the well-known result [31, p. 903, Formula 8.361.8] that for
Re(z) > 0,

ψ(z) = log(z) + ∫
∞

0
e−zt ( 1

t
− 1

1 − e−t ) dt.

We now find the asymptotic expansion of the integral on the right-hand side of (3.12),
that is, of

I ∶= ∫
∞

0
e−zt f (t) dt,

where

f (t) ∶= ( 1
t
− 1

1 − e−t ) log(t),

by applying Theorem 3.1. To that end, observe that for ∣t∣ < 2π,

f (t) = log(t) ( 1
t
− 1

1 − e−t )

= − log(t)
t

( te t

e t − 1
− 1)

= − log(t)
t

(
∞
∑
n=0

Bn(1)tn

n!
− 1)

= log(t)
∞
∑
n=0

(−1)n Bn+1 tn

(n + 1)!
,

5Deninger requires it with α > 0, β > 0, however, it is easily seen to hold for Re(α) > 0 and Re(β) > 0
as well.
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where Bn(x) are Bernoulli polynomials. Thus, with Pn(x) = x, λn = n + 1, an =
(−1)n Bn+1
(n+1)! , n ≥ 0, all of the hypotheses of Theorem 3.1 are satisfied, and hence

I ∼
∞
∑
n=0

(−1)n Bn+1

(n + 1)zn+1 (ψ(n + 1) − log(z))

=
∞
∑
n=1

(−1)n−1Bn

nzn (−γ +
n−1
∑
k=1

1
k
− log(z)) ,

where we used the elementary fact ψ(n) = −γ +∑n−1
k=1

1
k . Inserting this asymptotic

expansion of I in (3.12) along with that of ψ(z), namely, for ∣ arg z∣ ≤ π − Δ, (with
Δ > 0),

ψ(z) ∼ log(z) − 1
2z

−
∞
∑
n=1

B2n

2nz2n ,(3.13)

as z →∞, we arrive at

ψ1(z) ∼ 1
2

log2(z) − γ (− 1
2z

−
∞
∑
n=1

B2n

2nz2n ) +
∞
∑
n=1

(−1)n Bn

nzn
⎛
⎝
−γ +

n−1
∑
j=1

1
j
− log(z)

⎞
⎠

= 1
2

log2(z) +
∞
∑
n=1

(−1)n Bn

nzn
⎛
⎝

n−1
∑
j=1

1
j
− log(z)

⎞
⎠

= 1
2

log2(z) − 1
2z

log z +
∞
∑
n=1

B2n

2nz2n
⎛
⎝

2n−2
∑
j=1

1
j
+ 1

2n − 1
− log(z)

⎞
⎠

using the well-known facts B1 = −1/2 and B2n−1 = 0, n > 1. This proves (3.9) for
∣ arg(z)∣ ≤ π/2 − Δ, where Δ > 0.

To extend it to ∣ arg(z)∣ ≤ π − Δ, we use the analog of Theorem 2.1 containing
a logarithmic factor in the integrand of the concerned integral, which practically
changes none of the hypotheses in the statement of Theorem 2.1 and its proof6 since
log(t) = O (tε) as t →∞ for any ε > 0. We apply it with α = −π/2 and β = π/2. It
shows that the expansion in (3.9) holds for ∣ arg(z)∣ ≤ π − Δ. ∎
Remark 3.1 The result in the above theorem is not new. In fact, in [15, Proposition
3], this has been done for ψk(z) for all k ∈ N in view of (3.8). We derive the asymptotic
expansion for ψ1(z) right from scratch only to make this paper self-contained. Also, it
is to be noted that in [15], the result has been proved only for ∣ arg(z)∣ < π/2 whereas
we crucially require the result to hold for ∣ arg(z)∣ ≤ π − Δ for Δ > 0. We also note that
one could also obtain this asymptotic behavior beginning with the Euler–Maclaurin
summation formula.

Our next result is a new analog of Kloosterman’s result for ψ(x) [59, pp. 24–25].

Theorem 3.3 Let ∣ arg(z)∣ < π. Let ψ1 be defined in (1.12). For 0 < c = Re(s) < 1,

ψ1(z + 1) − 1
2

log2(z) = 1
2πi ∫(c)

πζ(1 − s)
sin(πs) (γ − log(z) + ψ(s)) z−s ds.(3.14)

6Temme [58, p. 15] refers to Olver [47, p. 114] for a proof.
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Proof We first prove the result for z > 0 and later extend it to ∣ arg(z)∣ < π by analytic
continuation. Using (3.11), we have

ψ1(z) − 1
2

log2(z) = ∫
∞

0
e−zt (γ + log(t)) dt + ∫

∞

0
( 1

e t − 1
− 1

t
) e−zt (γ + log(t)) dt

= − log(z)
z

+ ∫
∞

0
( 1

e t − 1
− 1

t
) e−zt (γ + log(t)) dt,(3.15)

where in the last step, we employed [31, p. 573, Formula 4.352.1]

∫
∞

0
ts−1e−zt (γ + log(t)) dt = Γ(s)

zs (γ − log(z) + ψ(s)) (Re(s) > 0)(3.16)

with s = 1 and the fact that ψ(1) = −γ. We now evaluate the integral on the right-hand
side of (3.15) by means of Parseval’s formula for Mellin transforms [49, p. 83, Equation
(3.1.13)]. For 0 < Re(s) < 1, we have [59, p. 23, Equation (2.7.1)]

∫
∞

0
ts−1 ( 1

e t − 1
− 1

t
) dt = Γ(s)ζ(s).(3.17)

Therefore, along with (3.16) and the equation given above, for 0 < c = Re(s) < 1,
Parseval’s formula (2.5) implies

∫
∞

0
( 1

e t − 1
− 1

t
) e−zt (γ + log(t)) dt = 1

2πi ∫(c)
Γ(s)ζ(s) Γ(1 − s)

z1−s (γ − log(z) + ψ(1 − s)) ds

= 1
2πiz ∫(c)

πζ(s)
sin(πs)

(γ − log(z) + ψ(1 − s)) zs ds

= 1
2πi ∫(c′)

πζ(1 − s)
sin(πs)

(γ − log(z) + ψ(s)) z−s ds,(3.18)

where 0 < c′ < 1. In the second step, we used the reflection formula Γ(s)Γ(1 − s) =
π/ sin(πs), s ∉ Z, and in the last step, we replaced s by 1 − s.

Now, (3.14) follows by substituting (3.18) in (3.15) and using the fact [19, Equation
(8.3)]

ψ1(z) = ψ1(z + 1) − log(z)
z

.(3.19)

This proves (3.14) for z > 0. The result is easily seen to be true for any complex z such
that ∣ arg(z)∣ < π by analytic continuation with the help of (1.12), elementary bounds
on the Riemann zeta function, Stirling’s formula (2.1) and the corresponding estimate
for ψ(s). ∎

In the next theorem, we give a closed-form evaluation of an infinite series of
integrals in terms of the digamma function and ψ1(z). This theorem is an analog of
(2.2) and will play a fundamental role in the proof of Theorem 1.1.

Theorem 3.4 For Re(w) > 0, we have

4
∞
∑
m=1

∫
∞

0

u cos(u) log(u/w)
u2 + (2πmw)2 du = ψ1(iw) − 1

2
log2(iw) + ψ1(−iw) − 1

2
log2(−iw) + π

2w
+ γ (ψ(iw) + ψ(−iw) − 2 log(w)) .(3.20)
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Proof Using Theorem 3.3, once with z = iw, and again with z = −iw and adding the
respective sides, for 0 < c = Re(s) < 1, we obtain

ψ1(iw + 1) − 1
2

log2(iw) + ψ1(−iw + 1) − 1
2

log2(−iw)

= 1
2πi ∫

(c)

πζ(1 − s)
sin(πs) (γ − log(iw) + ψ(s)) (iw)−sds

+ 1
2πi ∫

(c)

πζ(1 − s)
sin(πs) (γ − log(−iw) + ψ(s)) (−iw)−sds

= 1
2πi ∫

(c)

2πζ(1 − s)
sin(πs) (γ + ψ(s)) cos(πs

2
)w−s ds − I2 ,(3.21)

where

I2 ∶=
1

2πi ∫(c)

πζ(1 − s)
sin(πs) (e−

iπs
2 log(iw) + e

iπs
2 log(−iw))w−s ds.(3.22)

Next, using the series expansions of the exponential functions e iπs
2 and e− iπs

2 and
splitting them according to n even and n odd, it is easily seen that

e−
iπs
2 log(iw) + e

iπs
2 log(−iw) = 2 log(w) cos(πs

2
) + π sin(πs

2
) .(3.23)

Hence, from (3.21)–(3.23), we see that

ψ1(iw + 1) − 1
2

log2(iw) + ψ1(−iw + 1) − 1
2

log2(−iw) =∶ J1 − J2 ,(3.24)

where

J1 ∶=
1

2πi ∫(c)

πζ(1 − s)
sin ( πs

2 )
(γ + ψ(s) − log(w))w−s ds,

J2 ∶=
1

2πi ∫(c)

π2ζ(1 − s)
2 cos ( πs

2 )
w−s ds.

Using the functional equation of ζ(s) [59, p. 13, Equation (2.1.1)]

ζ(s) = 2s πs−1Γ(1 − s)ζ(1 − s) sin( 1
2

πs) ,(3.25)

with s replaced by 1 − s, we have

J2 =
π2

2πi ∫(c)
Γ(s)ζ(s)(2πw)−s ds = π2 ( 1

e2πw − 1
− 1

2πw
) ,(3.26)

where the last step follows from (3.17). Again using (3.25) with s replaced by 1 − s, we
observe that

J1 =
1

2πi ∫(c)
2πΓ(s)ζ(s) cot(πs

2
)(γ + ψ(s) − log(w)) (2πw)−s ds.
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Now, it is important to observe that shifting the line of integration from Re(s) = c,
0 < c < 1 to Re(s) = d , 1 < d < 2 does not introduce any pole of the integrand. So
consider the rectangular contour [c − iT , d − iT], [d − iT , d + iT], [d + iT , c + iT],
and [c + iT , c − iT]. By Cauchy’s residue theorem and the fact that the integral along
the horizontal segments of the contour tend to zero as T →∞, as can be seen from
(2.1), elementary bounds of the zeta function and the fact [29, Equation (15)] ψ(s) =
log(s) + O(1/∣s∣), it is seen that

J1 =
1

2πi ∫(d)
2πΓ(s)ζ(s) cot(πs

2
)(γ + ψ(s) − log(w)) (2πw)−s ds

=
∞
∑
m=1

1
2πi ∫(d)

2πΓ(s) cot(πs
2
)(γ + ψ(s) − log(w)) (2πmw)−s ds

= 2π
∞
∑
m=1

{(γ − log(w))
2πi ∫(d)

Γ(s) cot(πs
2
)(2πmw)−s ds

+ 1
2πi ∫(d)

Γ(s)ψ(s) cot(πs
2
)(2πmw)−s ds} ,(3.27)

where in the first step, we used the series representation for ζ(s) and then interchanged
the order of summation and integration which is valid because of absolute and uni-
form convergence. We now find convenient representations for the two line integrals.

For 0 < Re(s) = (c1) < 2 and Re(z) > 0, we show that

1
2πi ∫(c1)

Γ(s) cot(πs
2
) z−s ds = 2

π ∫
∞

0

u cos(u)
u2 + z2 du.(3.28)

We first prove this result for z > 0 and then extend it by analytic continuation. We
also first prove the result for 0 < Re(s) = c1 < 1. To that end, using the double angle
formulas for sine and cosine, we have

1
2πi ∫(c1)

Γ(s) cot(πs
2
) z−s ds = 1

2πi ∫(c1)
Γ(s)(1 + cos (πs))

sin(πs) z−s ds

= 1
2πi ∫(c1)

Γ(s)cosec(πs)z−s ds

+ 1
2πi ∫(c1)

Γ(s) cot(πs)z−s ds

= − 1
π

ezEi(−z) − 1
π

e−zEi(z),(3.29)

where in the last step we used [13, p. 102, Formula 3.3.2.1], and where Ei(x) is the
exponential integral defined [51, p. 788] for z > 0 by Ei(z) ∶= ∫

z
−∞ e t/t dt, or, as is seen

from [39, p. 1], by Ei(−z) ∶= −∫
∞

z e−t/t dt. Equation (3.28) now follows upon using
[50, p. 395, Formula 2.5.9.12]

e−zEi(z) + ezEi(−z) = −2∫
∞

0

u cos(u)
u2 + z2 du.(3.30)

Since both sides are analytic for Re(z) > 0, the result now follows by analytic contin-
uation for Re(z) > 0.
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Next, observe that shifting the line of integration from Re(s) = c1 to Re(s) = d,
where 1 < d < 2, and using Cauchy’s residue theorem does not change the evaluation
of the integral on the left-hand side of (3.28). Hence, invoking (3.28) with z = 2πmw,
we find that

∞
∑
m=1

1
2πi ∫(d)

Γ(s) cot(πs
2
)(2πmw)−s ds = 2

π

∞
∑
m=1

∫
∞

0

u cos(u)
u2 + (2πmw)2 du

= 1
π
(log(w) − 1

2
(ψ(iw) + ψ(−iw))) ,(3.31)

where in the last step, we employed (2.2).
Here, it is important to note that the series representation of J1 in (3.27) and the

convergence of the series in (3.31) together imply that the series
∞
∑
m=1

1
2πi ∫(d)

Γ(s)ψ(s) cot(πs
2
)(2πmw)−s ds

converges too. We now suitably transform the line integral in the above equation into
an integral of a real variable by proving that for 0 < Re(s) = c < 1 and Re(z) > 0, we
have

1
2πi ∫(c)

Γ(s)ψ(s) cot(πs
2
) z−s ds = 2

π ∫
∞

0

u cos(u) log(u)
u2 + z2 du + π

2
e−z .(3.32)

Again, we first prove this result for z > 0 and later extend it by analytic continuation
to Re(z) > 0. Note that from [46, p. 201, Equation (5.68)], for 0 < Re(s) = c < 1 and
x > 0,

1
2πi ∫(c)

Γ(s)ψ(s) cos(πs
2
)(xz)−s ds = cos(xz) log(xz) + π

2
sin(xz).(3.33)

Multiply both sides by x
1+x2 and integrate with respect to x from 0 to ∞ thereby

obtaining

∫
∞

0

x
1 + x2

1
2πi ∫(c)

Γ(s)ψ(s) cos( πs
2
) (xz)−s ds dx = ∫

∞

0
(cos(xz) log(xz) + π

2
sin(xz)) x dx

1 + x2 .

(3.34)

On the left-hand side, an application of Fubini’s theorem allows us to interchange the
order of integration. On the right-hand side, we employ the change of variable x = u/z.
Doing this and then using the well-known evaluation

∫
∞

0

x 1−s

1 + x2 dx = π
2 sin ( πs

2 )
,

we get

π
2

1
2πi ∫(c)

Γ(s)ψ(s) cot(πs
2
) z−s ds = ∫

∞

0

u cos(u) log(u)
u2 + z2 du + π

2 ∫
∞

0

u sin(u)
u2 + z2 du.

(3.35)

From [26, p. 65, Formula (15)],

∫
∞

0

u sin(u)
u2 + z2 du = π

2
e−z .(3.36)
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Substituting (3.36) in (3.35) and multiplying both sides by 2/π, we arrive at (3.32).
The identity also holds, by analytic continuation, for Re(z) > 0, since both sides are
analytic in this region.

Now again, shifting the line of integration from Re(s) = c to Re(s) = d , 1 < d < 2,
noting that there is no pole of the integrand, applying Cauchy’s residue theorem and
making use of the fact that the integrals along the horizontal segments tend to zero as
the height of the contour tends to ∞, we see that for Re(w) > 0,

1
2πi ∫(c)

Γ(s)ψ(s) cot(πs
2
) (2πmw)−s ds = 1

2πi ∫(d) Γ(s)ψ(s) cot(πs
2
) (2πmw)−s ds.

Hence, from (3.32) with z = 2πmw,

∞
∑
m=1

1
2πi ∫(d)

Γ(s)ψ(s) cot(πs
2
)(2πmw)−s ds =

∞
∑
m=1

{ 2
π ∫

∞

0

u cos(u) log(u)
u2 + (2πmw)2 du + π

2
e−2πmw} .

(3.37)

Therefore, substituting (3.37) and (3.31) in (3.27), we get

J1 = 2π
⎡⎢⎢⎢⎢⎣

(γ − log(w))
2π

(2 log(w) − (ψ(iw) + ψ(−iw))) +
∞
∑
m=1

⎧⎪⎪⎨⎪⎪⎩

2
π ∫

∞

0

u cos(u) log(u)
u2 + (2πmw)2 du + π

2
e−2πmw

⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦

= 2(γ − log(w)) (log(w) − 1
2
(ψ(iw) + ψ(−iw))) + 4

∞
∑
m=1

∫
∞

0

u cos(u) log(u)
u2 + (2πmw)2 du + π2

e2πw − 1
.

(3.38)

Now, from (3.24), (3.26), and (3.38), we have

ψ1(iw + 1) − 1
2

log2(iw) + ψ1(−iw + 1) − 1
2

log2(−iw)

= 2(γ − log(w))(log(w) − 1
2
(ψ(iw) + ψ(−iw))) + 4

∞
∑
m=1

∫
∞

0

u cos(u) log(u)
u2 + (2πmw)2 du + π2

e2πw − 1

− π2 ( 1
e2πw − 1

− 1
2πw

) .

Now, using (3.19) twice and using the elementary fact log(iw) − log(−iw) = πi for
Re(w) > 0, we are led to

4
∞
∑
m=1

∫
∞

0

u cos(u) log(u)
u2 + (2πmw)2 du = ψ1(iw) − 1

2
log2(iw) + ψ1(−iw) − 1

2
log2(−iw) + π

2w
+ (γ − log(w)) (ψ(iw) + ψ(−iw) − 2 log(w)) .(3.39)

Lastly, employing (2.2) again with w replaced by 2πw, we see that

−4 log(w)
∞
∑
m=1

∫
∞

0

u cos(u)
u2 + (2πmw)2 du = log(w) (ψ(iw) + ψ(−iw) − 2 log(w)) .

(3.40)

Finally, adding the respective sides of (3.39) and (3.40), we are led to (3.20). This
completes the proof. ∎
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4 A new representation for ∂2

∂b2 E2,b(z)∣ b=1

The two-variable Mittag-Leffler function Eα ,β(z), introduced by Wiman [64], is
defined by

Eα ,β(z) ∶=
∞
∑
k=0

zk

Γ(αk + β) (Re(α) > 0, Re(β) > 0).(4.1)

There is an extensive literature on these Mittag-Leffler functions (see, for example,
[30] and the references therein). Yet, closed-form expressions exist only for the first
derivatives of Eα ,β(z)with respect to the parameters α and β. The reader is referred to
a recent paper of Apelblat [1] for a collection of such evaluations most of which involve
the Shi(z) and Chi(z) functions defined in (4.3).

From (4.1), it is easy to see that [1, Equation (98)]

∂2

∂β2 Eα ,β(t) =
∞
∑
k=0

ψ2(αk + β) − ψ′(αk + β)
Γ(αk + β) tk .(4.2)

However, there are no closed-form evaluations known for the above series. In what
follows, we establish a new result which transforms ∂2

∂β2 E2,β(t)∣ β=1 into a suitable
integral which is absolutely essential in proving Theorem 1.1. Before we embark upon
the proof though, we need a few lemmas concerning the hyperbolic sine and cosine
integrals Shi(z) and Chi(z) defined by [48, p. 150, Equations (6.2.15) and (6.2.16)]

Shi(z) ∶= ∫
z

0

sinh(t)
t

dt, Chi(z) ∶= γ + log(z) + ∫
z

0

cosh(t) − 1
t

dt.(4.3)

The first lemma involving these functions was established in [23, Lemma 9.1]. Here,
and throughout the sequel, we use the following notation for brevity.

(sinh Shi− cosh Chi) (w) ∶= sinh(w) Shi(w) − cosh(w)Chi(w).

Lemma 4.1 Let Re(w) > 0. Then

∫
∞

0

t cos t dt
t2 +w2 = (sinh Shi− cosh Chi) (w).

We require another result from [22, Lemma 3.2].

Lemma 4.2 For Re(w) > 0,
∞
∑
k=0

ψ(2k + 1)
Γ (2k + 1)w2k = (sinh Shi− cosh Chi) (w) + log(w) cosh(w).

We also need the following integral representation for the Mittag-Leffler function
E2,b(z) which was obtained by Dzhrbashyan [25, p. 130, Equation (2.12)]. Since
Dzhrbashyan’s book [25] is not easily accessible and we could not find this result in any
contemporary texts on these functions, for example, [30], we briefly sketch his proof
of it.
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Lemma 4.3 Let the two-variable Mittag-Leffler function Eα ,β(z) be defined in (4.1).
For 0 < Re(b) < 3, and 0 ≤ arg(z) < π or −π < arg(z) ≤ 0, one has7

E2,b(z) = 1
2

z
1
2 (1−b) {e

√
z + e∓iπ(1−b)−

√
z} + sin(πb)

2π ∫
∞

0

e±i(
√

t− π
2 (1−b))

t + z
t

1
2 (1−b) dt,

(4.4)

where the upper or lower signs are taken, respectively, for 0 ≤ arg(z) < π or −π <
arg(z) ≤ 0.

Proof For Re(η) > 0, Hankel’s representation for the reciprocal of Γ(η) is given by
[25, Equation (2.7’)]

1
Γ(η) =

1
4πi ∫γ(ε;π)

es1/2
s−(η+1)/2 ds,(4.5)

where γ(ε; π) represents the Hankel contour which runs from −∞, arg(s) = −π,
encircles the origin in the form a circle with infinitesimal radius ε > 0 in the
counter-clockwise direction and then terminates at −∞, but now with arg(s) = +π.
This contour divides the complex plane into two unbounded regions G(−)(ε; π)
and G(+)(ε; π), where G(−)(ε; π) = {s ∶ ∣ arg(s)∣ < π, ∣s∣ < ε} and G(+)(ε; π) = {s ∶
∣ arg(s)∣ < π, ∣s∣ > ε}.

Let ∣ arg(z)∣ < π and Re(b) > 0. Using (4.5) in the definition (4.1) of E2,b(z), after
some simplification, we find that for z ∈ G(−)(ε; π), we have [25, Equation (2.4)],

E2,b(z) = 1
4πi ∫γ(ε;π)

es1/2
s(1−b)/2

s − z
ds.

Now, if z ∈ G(+)(ε; π), say, ε < ∣z∣ < ε1, then using Cauchy’s residue theorem (along the
curve obtained by considering a straight line segment going from a point on γ(ε; π)
radially to γ(ε1; π) which misses z), we see that [25, Equation (2.9)],

1
4πi ∫γ(ε1 ;π)

es1/2
s(1−b)/2

s − z
ds − 1

4πi ∫γ(ε;π)

es1/2
s(1−b)/2

s − z
ds = 1

2
z(1−b)/2ez1/2

,

and hence, this implies that, for z ∈ G(+)(ε; π), we have [25, Equation (2.5)]

E2,b(z) = 1
2

z(1−b)/2ez1/2
+ 1

4πi ∫γ(ε;π)

es1/2
s(1−b)/2

s − z
ds.(4.6)

For more details, see [25, p. 129]. Now, in addition to Re(b) > 0, if we assume Re(b) <
3, then we can let ε → 0 in (4.6), thereby obtaining

E2,b(z) = 1
2

z(1−b)/2ez1/2
+ 1

4πi ∫γ(0;π)

es1/2
s(1−b)/2

s − z
ds.

7It is to be noted that Dzhrbashyan uses a different notation for the two-variable Mittag-Leffler
function in his book, namely, Eρ(z; b) = ∑∞k=0 zk/Γ(b + kρ−1) (see [25, p. 117]). We have used the
contemporary notation here.
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Since the integral over the Hankel contour can be written as sum of two integrals from
0 to ∞, we can rewrite the above equation in the form

1
2

z(1−b)/2ez1/2
+ 1

2π ∫
∞

0

sin (
√

t + π
2 (1 − b))

t + z
t

1−b
2 dt = E2,b(z).(4.7)

This representation holds for any fixed z such that ∣ arg(z)∣ < π.
Next, we show that for ∣ arg(z)∣ < π, we have [25, Equation (2.15)]

z(1−b)/2e−z1/2
+ 1

2πi ∫γ(0;π)

e−s1/2
s(1−b)/2

s − z
ds = 0.(4.8)

Let γR(ε; π) denote the portion of the contour γ(ε; π) belonging to the disk ∣s∣ < R.
By Cauchy’s residue theorem,

1
2πi ∫γR(ε;π)

e−s1/2
s(1−b)/2

s − z
ds + 1

2πi ∫∣s∣=R

e−s1/2
s(1−b)/2

s − z
ds = −e−z1/2

z(1−b)/2(4.9)

if ε < ∣z∣ < R and ∣ arg(z)∣ < π. Observe that the following estimate holds:
������������
∫
∣s∣=R

e−s1/2
s(1−b)/2

s − z
ds
������������
≤ R

3
2−

Re(b)
2

R − ∣z∣ ∫
π

−π
e−R1/2 cos( ϕ

2 )+
ϕ
2 Im(b) dϕ < 2πR

R − ∣z∣R
− 1

2 Re(b)e
π
2 Im(b) ,

in the last step, we applied Jordan’s inequality, namely, sin(u/2) ≥ u/π for u ∈ [0, π]
after the change of variable ϕ = π − u. Using the above estimate, and letting ε → 0,
R →∞ in (4.9) leads us to (4.8), since b is a fixed complex number with 0 < Re(b) < 3.

Now, for z ≠ 0, (4.8) can be rewritten in the form

z(1−b)/2e−z1/2
+ 1

2πi ∫
∞

0

exp (−i (
√

t − π
2 (1 − b))) − exp (i (

√
t − π

2 (1 − b)))
t + z

t
1−b

2 dt = 0.

Now, multiplying both sides of the above equation by 1
2 e−iπ(1−b) if 0 ≤ arg(z) < π,

and by 1
2 e iπ(1−b) if −π < arg(z) ≤ 0, and then adding the corresponding sides of the

respective resulting equations to those of (4.7), we arrive at (4.4). ∎

We are now ready to prove our result on evaluating the second derivative of the
Mittag-Leffler function E2,b(z) with respect to the parameter b at b = 1.

Theorem 4.4 Let 1 ≤ b ≤ 3/2 and w > 0. Let the two-variable Mittag-Leffler function
E2,b(z) be defined in (4.1). Then

∂2

∂b2 E2,b(w2)∣ b=1 = log2(w) cosh(w) + 2∫
∞

0

u cos(u) log(u) du
u2 +w2 .(4.10)

Proof Assume z > 0. We would like to differentiate (4.4) twice with respect to b. This,
in turn, requires differentiating the integral in (4.4) under the integral sign twice with
respect to b. (Note that since arg(z) = 0, we can take the plus sign in the exponent
of the exponential function inside the integrand.) To justify this, one needs to invoke
Theorem 2.3 twice. We justify this only for the first derivative with respect to b. The
verification for the second derivative can be done similarly.

https://doi.org/10.4153/S0008414X23000597 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000597


Lambert series of logarithm, and a mean value theorem 21

To that end, let

I(b) ∶= ∫
∞

0

e i
√

t t 1
2 (1−b)

t + z
dt.

Observe that the convergence of I(b) for any b ∈ [1, 3/2] results from (4.4) itself. Thus,
we can apply (2.4) provided, we show that

J(b) ∶= ∫
∞

0

∂
∂b

e i
√

t t 1
2 (1−b)

t + z
dt = − 1

2 ∫
∞

0

e i
√

t t 1
2 (1−b) log(t)
t + z

dt

converges uniformly in [1, 3/2]. Now, write the above integral as the sum of two
integrals—one from 0 to 1, and the second from 1 to ∞. Then in the first, replace t
by 1/t and in the second, employ the change of variable t = x2 to get

J(b) = 1
2 ∫

∞

1

e
i√

t t 1
2 (b−3) log(t)
1 + tz

dt − 2∫
∞

1

e ix x(2−b) log(x)
x2 + z

dx

=∶ I2 + I3 .

We now show that both I2 and I3 converge uniformly in [1, 3/2], whence we will be
done. We first handle I2. Let f (t, b) = t1/2

1+zt and g(t, b) = t b
2 −2e i/

√
t log(t).

Suppose first z ∈ [1,∞). Then f (t, b) not only tends to zero as t →∞ but is also
decreasing on [1,∞). Further,

∣∫
X

1
t

b
2 −2e i/

√
t log(t) dt∣ ≤ ∫

X

1
t

b
2 −2 log(t) dt = X b

2 −1 log(X)
b
2 − 1

− (X b
2 −1 − 1)

( b
2 − 1)2

≤ 16.

Hence, the hypotheses of Dirichlet’s test for uniform convergence given in Theorem
2.2 are satisfied, and I2 converges uniformly on [1, 3/2].

Now, if z ∈ (0, 1), then f (t, b) increases on [1, 1/z] and decreases on [1/z,∞). Thus,
in this case, one needs to further split I2 as

I2 = ∫
1/z

1
f (t, b)g(t, b) dt + ∫

∞

1/z
f (t, b)g(t, b) dt.

The integral from 1/z to ∞ converges uniformly by Dirichlet’s test similarly as was
just shown above. For the integral from 1 to 1/z, we apply Weierstrass M-test [62, p.
289, Theorem 7*]. Together, we see that for any fixed z > 0, I2 converges uniformly on
[1, 3/2].

We now focus on I3 and begin by rewriting it as

I3 = −2∫
∞

1

x(2−b) cos x log x
x2 + z

dx − 2i ∫
∞

1

x(2−b) sin x log x
x2 + z

dx .

We show the uniform convergence of only the integral involving cos(x). That for the
second integral can be shown similarly.

To that end, we again apply Dirichlet’s test (Theorem 2.2) with f (x , b) = x2−b log x
x2+z

and g(x , b) = cos x. To verify that its hypotheses are satisfied, first observe that f (x , b)
tends to zero as x →∞. However, f (x , b) is not decreasing throughout the interval
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[1,∞). But if we write f (x , b) = log(x)√
x

x
5
2 −b

x2+z , by elementary calculus, it is not difficult

to see that if Cz ∶= max{e2 ,
√

3z}, then f (x , b) is decreasing in [Cz ,∞), since log(x)√
x

is positive and decreasing in (e2 ,∞) and x
5
2 −b

x2+z is positive and decreasing in (
√

3z,∞).
Hence, we write

∫
∞

1

x(2−b) cos x log x
x2 + z

dx = ∫
Cz

1

x(2−b) cos x log x
x2 + z

dx + ∫
∞

Cz

x(2−b) cos x log x
x2 + z

dx = J2 + J3(say).

Using Weierstrass test for J2 with M(x) = 2
z x log x justifies its uniform convergence.

Finally, for J3, we have ∣∫
X

Cz
cos x dx∣ ≤ 2. Hence, by another application of Dirichlet’s

test, J3 converges uniformly. Therefore, I3 converges uniformly too. Combining all of
the above facts, we conclude that J(b) converges uniformly for all b ∈ [1, 3/2].

Differentiating (4.4) twice with respect to b and simplifying leads to

∂2

∂b2 E2,b(z) = 1
2

⎡⎢⎢⎢⎢⎣
− 1

2
log(z){− 1

2
z

1
2
(1−b) log(z) (e

√
z + e−iπ(1−b)−

√
z) + iπz

1
2
(1−b)e iπ(b−1)−

√
z}

+ iπ
√

ze−
√

z z−
b
2 e iπ(b−1) (iπ − 1

2
log(z))

⎤⎥⎥⎥⎥⎦
− π sin(πb)

2 ∫
∞

0

e i(
√

t− π
2
(1−b))

t + z
t

1
2
(1−b) dt

+ 1
2

cos(πb)∫
∞

0

e i(
√

t− π
2
(1−b))

t + z
t

1
2
(1−b)(iπ − log(t)) dt

+ 1
8π

sin(πb)∫
∞

0

e i(
√

t− π
2
(1−b))

t + z
t

1
2
(1−b)(iπ − log(t))2 dt ,

so that

∂2

∂b2 E2,b(z)∣ b=1 =
1
4

log2(z) cosh(
√

z) − iπ
2

e−
√

z log(z) − π2

2
e−
√

z − 1
2 ∫

∞

0

e i
√

t(iπ − log(t))
t + z

dt.

(4.11)

Now, employing the change of variable t = u2, we have

∫
∞

0

e i
√

t(iπ − log(t))
t + z

dt = 2∫
∞

0

ueiu(iπ − 2 log(u))
u2 + z

du

= 2πi∫
∞

0

u cos(u)
u2 + z

du − 2π∫
∞

0

u sin(u)
u2 + z

du − 4∫
∞

0

ueiu log(u)
u2 + z

du.(4.12)

Next, from Lemma 4.1,

∫
∞

0

u cos(u)
u2 + z

du = (sinh Shi− cosh Chi) (
√

z).(4.13)

Moreover,

∫
∞

0

ue iu log(u)
u2 + z

du = ∫
∞

0

u cos(u) log(u)
u2 + z

du + i ∫
∞

0

u sin(u) log(u)
u2 + z

du,

(4.14)
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Now, from [50, p. 537, Formula 2.6.32.8],8

∫
∞

0

u sin(u) log(u)
u2 + z

du = π
2
{e−

√
z log(

√
z) − 1

2
(e

√
zEi(−

√
z) + e−

√
zEi(

√
z))} .

(4.15)

Hence, along with Lemma 4.1, (3.30), and (4.15) imply

∫
∞

0

u sin(u) log(u)
u2 + z

du = π
2
{e−

√
z log(

√
z) + (sinh Shi− cosh Chi) (

√
z)} .

(4.16)

Therefore, from (4.12), (4.13), (3.36), (4.14), and (4.16), we arrive at

∫
∞

0

e i
√

t(iπ − log(t))
t + z

dt = −π2 e−
√

z − 2πie−
√

z log(
√

z) − 4∫
∞

0

u cos(u) log(u)
u2 + z

du.

(4.17)

Finally, substituting (4.17) in (4.11), we arrive at

∂2

∂b2 E2,b(z)∣ b=1 = log2(
√

z) cosh(
√

z) + 2∫
∞

0

u cos(u) log(u)
u2 + z

du.

Now, let z = w2 to arrive at (4.10). ∎

5 Proof of the main results

This section is devoted to proving the transformation for the Lambert series for
logarithm given in Theorem 1.1, the asymptotic expansion of this series in Theorem
1.2, and a mean value theorem in Theorem 1.3.

5.1 Proof of Theorem 1.1

We first prove the result for y > 0 and then extend it to Re(y) > 0 by analytic
continuation.

The idea is to differentiate both sides of (1.5) with respect to a and then let a → 0.
Define

F1(a, y) ∶= d
da

∞
∑
n=1

σa(n)e−ny ,

F2(a, y) ∶= d
da

⎧⎪⎪⎨⎪⎪⎩

1
2
⎛
⎝
( 2π

y
)

1+a
cosec(πa

2
) + 1

⎞
⎠

ζ(−a) − 1
y

ζ(1 − a)
⎫⎪⎪⎬⎪⎪⎭

,

F3(a, y) ∶= d
da

⎧⎪⎪⎨⎪⎪⎩

2π
y sin ( πa

2 )

∞
∑
n=1

σa(n)
⎛
⎝
(2πn)−a

Γ(1−a) 1F2 (1; 1−a
2 , 1 − a

2 ; 4π4 n2

y2 ) − ( 2π
y )

a
cosh ( 4π2 n

y )
⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
,

(5.1)

and let

G1(y) = lim
a→0

F1(a, y), G2(y) = lim
a→0

F2(a, y), G3(y) = lim
a→0

F3(a, y).(5.2)

8The formula given in the book has a typo. We have corrected it here.
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Clearly, from (1.5),

G1(y) +G2(y) = G3(y).(5.3)

Using (1.3), it is readily seen that

G1(y) =
∞
∑
n=1

log(n)
eny − 1

.(5.4)

By routine differentiation,

F2(a, y) = 1
y

ζ′(1 − a) − 1
2

ζ′(−a) − 1
2
(2π

y
)

1+a

cosec(πa
2
) ζ′(−a)

+ 1
2

ζ(−a)(2π
y
)

1+a

cosec(πa
2
)(log(2π

y
) − π

2
cot(πa

2
)) .(5.5)

Letting a → 0 in (5.5) leads to

G2(y) = 1
4

log(2π) − 1
2y

log2(y) + γ2

2y
− π2

12y
,(5.6)

which is now proved. Note that

G2(y) = lim
a→0

(− 1
2

ζ′(−a))

+ lim
a→0

⎡⎢⎢⎢⎢⎣

1
y

ζ′(1 − a) − (2π/y)1+a

2 sin ( πa
2 )

{ζ′(−a) − ζ(−a) log(2π
y
) + π

2
ζ(−a) cot(πa

2
)}
⎤⎥⎥⎥⎥⎦

.(5.7)

We make use of the following well-known Laurent series expansions around a = 0:

ζ(−a) = − 1
2
+ 1

2
log(2π)a + [γ2

4
− π2

48
− log2(2π)

4
+ γ1

2
] a2 + O(a3),

ζ′(1 − a) = − 1
a2 − γ1 − γ2a + O(a2),

(2π
y
)

1+a

= 2π
y
+ 2π

y
log(2π

y
) a + π

y
log2 (2π

y
) a2 + O(a3),

cosec(πa
2
) = 2

πa
+ π

12
a + O(a3),

cot(πa
2
) = 2

πa
− π

6
a + O(a3).(5.8)

Hence, substituting (5.8) in (5.7), we get

G2(y) = 1
4 log(2π) + lim

a→0
[ − 1

ya2 − γ1
y + O(a) + {− 2

ya − 2
y log ( 2π

y ) + (− π2

12y − 1
y log2 ( 2π

y )) a + O(a2)}

× {− 1
2a + 1

2 log ( 2π
y ) + (− γ2

4 + π2

16 − γ1
2 + 1

4 log2(2π) − 1
2 log(2π) log ( 2π

y )) a + O(a2)} ]

= 1
4

log(2π) + lim
a→0

⎡⎢⎢⎢⎢⎣
(− 1

y
+ 1

y
) 1

a2 + (− 1
y

log ( 2π
y

) + 1
y

log ( 2π
y

)) 1
a
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+ (− γ1

y
+ γ2

2y
− π2

12y
+ γ1

y
− 1

2y
{log2(2π) − 2 log(2π) log ( 2π

y
) + log2 ( 2π

y
)}) + O(a)

⎤⎥⎥⎥⎥⎦

= 1
4

log(2π) + γ2

2y
− π2

12y
− log2 y

2y
.

Next, we apply the definitions of σa(n), 1F2 and simplify to obtain

F3(a , y) = d
d a

⎡⎢⎢⎢⎢⎣

2π
y sin ( πa

2 )

∞
∑

m ,n=1

⎧⎪⎪⎨⎪⎪⎩
(2πn)−a

∞
∑
k=0

(4π2 mn/y)2k

Γ(1 − a + 2k)
− ( 2πm

y
)

a

cosh ( 4π2 mn
y

)
⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦

= 2π
y

∞
∑

m ,n=1

∞
∑
k=0

( 4π2 mn
y

)
2k 1

sin2 ( πa
2 )

⎡⎢⎢⎢⎢⎣

(2πn)−a

Γ(1 − a + 2k)
{ (ψ(1 − a + 2k) − log(2πn)) sin ( πa

2
)

− π
2

cos ( πa
2

)} − 1
Γ(2k + 1)

( 2πm
y

)
a

(log ( 2πm
y

) sin ( πa
2

) − π
2

cos ( πa
2

))
⎤⎥⎥⎥⎥⎦

= 2π
y

∞
∑

m ,n=1

∞
∑
k=0

( 4π2 mn
y

)
2k A1(a) − A2(a)

sin2 ( πa
2 )

,

where in the first step, we have interchanged the order of summation and differen-
tiation using the fact [23, p. 35] that the series in the definition of (5.1) converges
uniformly as long as Re(a) > −1, and where

A1(a) = A1(m , n , k ; a) ∶= (2πn)−a

Γ(1 − a + 2k)
{(ψ(1 − a + 2k) − log(2πn)) sin ( πa

2
) − π

2
cos ( πa

2
)} ,

A2(a) = A2(m , n , k ; a) ∶= 1
Γ(2k + 1)

( 2πm
y

)
a

{log ( 2πm
y

) sin ( πa
2

) − π
2

cos ( πa
2

)} .

We now show that

lim
a→0

A1(a) − A2(a)
sin2 ( πa

2 )
= 1

πΓ(2k + 1)
{ log(4π2mn

y
) log( ny

m
) − 2 log(2nπ)ψ(2k + 1) + ψ2(2k + 1)

− ψ′(2k + 1)}.(5.9)

Let L denote the limit in the equation given above. The expression inside the limit is
of the form 0/0. By routine calculation, we find that

A′1(a) = (2πn)−a

Γ(1 − a + 2k)
{−ψ′(1 − a + 2k) + π2

4
+ (ψ(1 − a + 2k) − log(2πn))2} sin(πa

2
) ,

(5.10)

A′
2(a) = (2πm/y)a

Γ(2k + 1) { log(2πm
y

)(log(2πm
y

) sin(πa
2
) − π

2
cos(πa

2
))

+ π
2

log(2πm
y

) cos(πa
2
) + π2

4
sin(πa

2
)},(5.11)

where ′ denotes differentiation with respect to a. Since A′
1(0) = A′

2(0) = 0, using
L’Hopital’s rule again, it is seen that

L = A′′
1 (0) − A′′

2(0)
π2/2 ,
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Differentiating (5.10) and (5.11) with respect to a, we get

A′′
1 (0) = π

2Γ(2k + 1) {−ψ′(2k + 1) + π2

4
+ (ψ(2k + 1) − log(2πn))2} ,

A′′
2(0) = 1

Γ(2k + 1) {
π
2

log2 (2πm
y

) + π3

8
} ,

whence we obtain (5.9) upon simplification. Therefore, from (5.2) and (5.9), we deduce
that

G3(y) = 2
y

∞
∑

m ,n=1

∞
∑
k=0

(4π2mn/y)2k

(2k)!
{ log(4π2mn

y
) log( ny

m
) − 2 log(2nπ)ψ(2k + 1)

+ ψ2(2k + 1) − ψ′(2k + 1)}

= 2
y

∞
∑

m ,n=1

⎧⎪⎪⎨⎪⎪⎩
log(4π2mn

y
) log( ny

m
) cosh(4π2mn

y
) − 2 log(2nπ)

∞
∑
k=0

ψ(2k + 1)
Γ(2k + 1)

(4π2mn
y

)
2k

+
∞
∑
k=0

ψ2(2k + 1) − ψ′(2k + 1)
Γ(2k + 1)

(4π2mn
y

)
2k ⎫⎪⎪⎬⎪⎪⎭

.

Therefore, invoking Lemma 4.2, using (4.2) and Theorem 4.4 with w = 4π2mn/y, we
are led to

G3(y) = 2
y

∞
∑

m ,n=1
{log ( 4π2 mn

y
) log ( ny

m
) cosh ( 4π2 mn

y
) − 2 log(2nπ)[ (sinh Shi − cosh Chi)( 4π2 mn

y
)

+ log ( 4π2 mn
y

) cosh ( 4π2 mn
y

)] + log2 ( 4π2 mn
y

) cosh ( 4π2 mn
y

) + 2∫
∞

0

u cos(u) log(u) du
u2 + (4π2 mn/y)2 }

= 4
y

∞
∑
n=1

∞
∑
m=1

∫
∞

0

u cos(u) log(u/(2πn))
u2 + (4π2 mn/y)2 du ,

where in the last step, we used Lemma 4.1 with w = 4π2mn/y.
Next, an application of Theorem 3.4 with w = 2πn/y and then of (2.2) with w =

4π2n/y in the second step further yields

G3(y) = 4
y

∞
∑
n=1

{
∞
∑
m=1

∫
∞

0

u cos(u) log(uy/(2πn))
u2 + (4π2 mn/y)2 du − log(y)

∞
∑
m=1

∫
∞

0

u cos(u)
u2 + (4π2 mn/y)2 du}

= 1
y

∞
∑
n=1

⎧⎪⎪⎨⎪⎪⎩
ψ1 (

2πin
y

) − 1
2

log2 ( 2πin
y

) + ψ1 (−
2πin

y
) − 1

2
log2 (− 2πin

y
) + y

4n

+ (γ + log(y))(ψ ( 2πin
y

) + ψ (− 2πin
y

) − 2 log ( 2πn
y

))
⎫⎪⎪⎬⎪⎪⎭

= 1
y

∞
∑
n=1

⎧⎪⎪⎨⎪⎪⎩
ψ1 (

2πin
y

) − 1
2

log2 ( 2πin
y

) + ψ1 (−
2πin

y
) − 1

2
log2 (− 2πin

y
) + y

4n

⎫⎪⎪⎬⎪⎪⎭

+ (γ + log(y))
y

∞
∑
n=1

⎧⎪⎪⎨⎪⎪⎩
(ψ ( 2πin

y
) + ψ (− 2πin

y
) − 2 log ( 2πn

y
))

⎫⎪⎪⎬⎪⎪⎭
,(5.12)
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where the validity of the last step results from the fact that invoking Theorem 3.2, once
with z = 2πin/y, and again with z = −2πin/y, and adding the two expansions yields

ψ1 (
2πin

y
) − 1

2
log2 (2πin

y
) + ψ1 (−

2πin
y

) − 1
2

log2 (−2πin
y

) + y
4n

= Oy (
log(n)

n2 ) .

(5.13)

Therefore, from (5.3), (5.4), (5.6), and (5.12), we arrive at

∞
∑
n=1

log(n)
eny − 1

+ 1
4

log(2π) − 1
2y

log2(y) + γ2

2y
− π2

12y

= 1
y

∞
∑
n=1

⎧⎪⎪⎨⎪⎪⎩
ψ1 (

2πin
y

) − 1
2

log2 (2πin
y

) + ψ1 (−
2πin

y
) − 1

2
log2 (−2πin

y
) + y

4n

⎫⎪⎪⎬⎪⎪⎭

+ (γ + log(y))
y

∞
∑
n=1

⎧⎪⎪⎨⎪⎪⎩
(ψ (2πin

y
) + ψ (−2πin

y
) − 2 log(2πn

y
))

⎫⎪⎪⎬⎪⎪⎭
,

which, upon rearrangement, gives (1.13).
Now, (1.14) can be immediately derived from (1.13) by invoking (1.6) to transform

the first series on the right-hand side of (1.13), multiplying both sides of the resulting
identity by y followed by simplification and rearrangement. This completes the proof
for y > 0. Using Weierstrass’ theorem on analytic functions, it is not difficult to see that
all of the infinite series are analytic in Re(y) > 0. Since the other expressions in (1.14)
are analytic in this region too, the result holds in Re(y) > 0 by analytic continuation.

The theorem just proved allows us to obtain the complete asymptotic expansion of
∞
∑
n=1

d(n) log(n)e−ny as y → 0. This is derived next.

5.2 Proof of Theorem 1.2

From (3.13), as y → 0,

ψ (±2πin
y

)∼ log(±2πin
y

) ∓ y
4πin

−
∞
∑
k=1

B2k

2k
(±2πin

y
)
−2k

Inserting the above asymptotics into the first sum of the right-hand side of (1.13), we
obtain

∞
∑
n=1

{log(2πn
y
) − 1

2
(ψ (2πin

y
) + ψ (−2πin

y
))} ∼

∞
∑
n=1

∞
∑
k=1

(−1)k B2k

2k
(2πn

y
)
−2k

=
∞
∑
k=1

(−1)k B2k ζ(2k)
2k

(2π
y
)
−2k

= − 1
2

∞
∑
k=1

B2
2k y2k

(2k)(2k)!
,(5.14)
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where in the last step, we used Euler’s formula

ζ(2m) = (−1)m+1 (2π)2m B2m

2(2m)!
(m ≥ 0).(5.15)

Next, we need to find the asymptotic expansion of the second sum on the right-hand
side of (1.13). Invoking Theorem 3.2 twice, once with z = 2πin/y, and again, with z =
−2πin/y, and inserting them into the second sum of the right-hand side of (1.13), we
obtain
∞
∑
n=1
{ψ1 (

2πin
y

) + ψ1 (−
2πin

y
) − 1

2
(log2 (2πin

y
) + log2 (−2πin

y
)) + y

4n
}

∼
∞
∑
n=1

∞
∑
k=1

(−1)k B2k

k
( y

2πn
)

2k ⎡⎢⎢⎢⎢⎣

1
2k − 1

+
2k−2
∑
j=1

1
j
− log(2πn

y
)
⎤⎥⎥⎥⎥⎦

=
∞
∑
n=1

∞
∑
k=1

(−1)k B2k

k
( y

2πn
)

2k ⎡⎢⎢⎢⎢⎣

1
2k − 1

+
⎛
⎝

2k−2
∑
j=1

1
j
− log(2π

y
)
⎞
⎠
− log n

⎤⎥⎥⎥⎥⎦

=
∞
∑
k=1

(−1)k B2k

k
( y

2π
)

2k ⎡⎢⎢⎢⎢⎣
ζ(2k)

⎧⎪⎪⎨⎪⎪⎩

1
2k − 1

+
⎛
⎝

2k−2
∑
j=1

1
j
− log(2π

y
)
⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
+ ζ′(2k)

⎤⎥⎥⎥⎥⎦

= −
∞
∑
k=1

⎡⎢⎢⎢⎢⎣

B2
2k y2k

(2k − 1)(2k)(2k)!
+ B2

2k y2k

2k(2k)!
⎛
⎝

2k−2
∑
j=1

1
j
− log(2π

y
)
⎞
⎠
+ (−1)k+1B2k ζ′(2k)

k
( y

2π
)

2k⎤⎥⎥⎥⎥⎦
,

(5.16)

where in the penultimate step, we used ζ′(s) = −∑∞
n=1 log(n)n−s for Re(s) > 1, and in

the last step, we used (5.15). Substituting (5.14) and (5.16) in (1.13), we see that as y → 0,
∞
∑
n=1

log(n)
eny − 1

∼ − 1
4

log(2π) + 1
2y

log2(y) − γ2

2y
+ π2

12y
− 2

y
(γ + log(y))

⎧⎪⎪⎨⎪⎪⎩
− 1

2

∞
∑
k=1

B2
2k y2k

(2k)(2k)!

⎫⎪⎪⎬⎪⎪⎭

− 1
y

∞
∑
k=1

⎡⎢⎢⎢⎢⎣

B2
2k y2k

(2k − 1)(2k)(2k)!
+

B2
2k y2k

2k(2k)!
⎛
⎝

2k−2
∑
j=1

1
j
− log ( 2π

y
)
⎞
⎠
+ (−1)k+1 B2k ζ′(2k)

k
( y

2π
)

2k⎤⎥⎥⎥⎥⎦

= − 1
4

log(2π) + 1
2y

log2(y) − γ2

2y
+ π2

12y
+
∞
∑
k=1

B2k y2k−1

k

⎧⎪⎪⎨⎪⎪⎩

B2k

2(2k)!
⎛
⎝

γ −
2k−1
∑
j=1

1
j
+ log(2π)

⎞
⎠
+(−1)k ζ′(2k)

(2π)2k

⎫⎪⎪⎬⎪⎪⎭

= − 1
4

log(2π) + 1
2y

log2(y) − γ2

2y
+ π2

12y
+ y

6
{ 1

24
(γ − 1 + log(2π)) − 1

4π2 [
π2

6
(γ + log(2π)

− 12 log(A))]} +
∞
∑
k=2

B2k y2k−1

k

⎧⎪⎪⎨⎪⎪⎩

B2k

2(2k)!
⎛
⎝

γ −
2k−1
∑
j=1

1
j
+ log(2π)

⎞
⎠
+ (−1)k ζ′(2k)

(2π)2k

⎫⎪⎪⎬⎪⎪⎭

= 1
2y

log2(y) + 1
y
( π2

12
− γ2

2
) − 1

4
log(2π) + y

12
(log(A) − 1

12
)

+
∞
∑
k=2

B2k y2k−1

k

⎧⎪⎪⎨⎪⎪⎩

B2k

2(2k)!
⎛
⎝

γ −
2k−1
∑
j=1

1
j
+ log(2π)

⎞
⎠
+ (−1)k ζ′(2k)

(2π)2k

⎫⎪⎪⎬⎪⎪⎭
.

This completes the proof.
An application of the result proved above in the theory of the moments of the

Riemann zeta function is given next.
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5.3 Proof of Theorem 1.3

Our goal is to link
∞
∫
0

ζ ( 1
2 − it) ζ′ ( 1

2 + it) e−δt dt with
∞
∑
n=1

log(n)
exp(2πine−iδ)−1 and then

invoke Theorem 1.2. Our treatment is similar to that of Atkinson [3].
First note that, for Re(y) > 0,

∞
∑
n=1

d(n) log(n)e−ny =
∞
∑
n=1

d(n) log(n) 1
2πi ∫

(c)

Γ(s)(ny)−sds,(5.17)

where c = Re(s) > 1. Using (1 ∗ log)(n) = ∑d ∣n log d = 1
2 d(n) log(n) and interchang-

ing the order of summation and integration on the right-hand side of (5.17), we obtain

∞
∑
n=1

d(n) log(n)e−ny = 1
2πi ∫

(c)

Γ(s)(
∞
∑
n=1

d(n) log(n)
ns ) y−sds

= 2
2πi ∫

(c)

Γ(s)
∞
∑
n=1

(1 ∗ log)(n)
ns y−sds

= − 2
2πi ∫

(c)

Γ(s)ζ(s)ζ′(s)y−sds.(5.18)

Letting y = 2πie−iδ so that 0 < Re(δ) < π, we deduce that

∞
∑
n=1

d(n) log(n) exp (−2πine−iδ) = − 2
2πi ∫

(c)

Γ(s)ζ(s)ζ′(s)(2πie−iδ)−sds.(5.19)

We would like to shift the line of integration from Re(s) = c to Re(s) =
1/2. The integrand in (5.19) has a third-order pole at s = 1. Therefore,
using Cauchy’s residue theorem on the rectangular contour with sides
[c − iT , c + iT] , [c + iT , 1

2 + iT] , [ 1
2 + iT , 1

2 − iT], and [ 1
2 − iT , c − iT], where

T > 0, noting that (2.1) implies that the integrals along the horizontal line segments
tend to zero as T →∞, we obtain

1
2πi ∫

(c)

Γ(s)ζ(s)ζ′(s)(2πie−iδ)−sds

= 1
2πi ∫

( 1
2 )

Γ(s)ζ(s)ζ′(s)(2πie−iδ)−sds + Ress=1Γ(s)ζ(s)ζ′(s)(2πie−iδ)−s

= 1
4πi ∫

( 1
2 )

ζ(1 − s)ζ′(s)(ie−iδ)−s

cos ( πs
2 )

ds + 1
2πie−iδ (

γ2

2
− π2

12
− 1

2
log2(2πie−iδ)) ,

(5.20)
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where, in the last step, we used the functional equation (3.25) with s replaced by 1 − s.
Hence, from (5.19) and (5.20), we arrive at

e− iδ
2

2i ∫
( 1

2 )

ζ(1 − s)ζ′(s)e−i s( π
2 −δ)

cos ( πs
2 )

ds = −πe−
iδ
2

∞
∑
n=1

d(n) log(n) exp (−2πine−iδ)

+ ie iδ
2

2
(γ2 − π2

6
− log2(2πie−iδ)) .(5.21)

We next consider the difference of the integrals on the left-hand sides of (1.16) and
(5.21) and employ the change of variable s = 1

2 + it in the second integral in the first
step below to see that

∫
∞

0
ζ ( 1

2
− it) ζ′ ( 1

2
+ it) e−δt dt − e−

iδ
2

i ∫( 1
2 )

ζ (1 − s) ζ′ (s)
2 cos ( πs

2 )
e−i s( π

2 −δ)ds

= ∫
∞

0
ζ ( 1

2
− it) ζ′ ( 1

2
+ it) e−δt dt − e−

iδ
2 ∫

∞

−∞

ζ ( 1
2 − it) ζ′ ( 1

2 + it)

(e
iπ
2 (

1
2 +i t) + e−

iπ
2 (

1
2 +i t))

e−i( 1
2 +i t)( π

2 −δ)dt

= ∫
∞

0
ζ ( 1

2
− it) ζ′ ( 1

2
+ it) e−δt dt − ∫

∞

0

ζ ( 1
2 + it) ζ′ ( 1

2 − it)

(e
iπ
4 +

πt
2 + e−

iπ
4 −

πt
2 )

e−
iπ
4 −

πt
2 +δt dt

− ∫
∞

0

ζ ( 1
2 − it) ζ′ ( 1

2 + it)

(e
iπ
4 −

πt
2 + e−

iπ
4 +

πt
2 )

e−
iπ
4 +

πt
2 −δt dt

= ∫
∞

0

ζ ( 1
2 − it) ζ′ ( 1

2 + it)

(e
iπ
4 −

πt
2 + e−

iπ
4 +

πt
2 )

e
iπ
4 −

πt
2 −δt dt − ∫

∞

0

ζ ( 1
2 + it) ζ′ ( 1

2 − it)

(e
iπ
4 +

πt
2 + e−

iπ
4 −

πt
2 )

e−
iπ
4 −

πt
2 +δt dt.

(5.22)

From [29, p. 127, Equation (20)], we have

ζ ( 1
2
− it) ≪ ∣t∣ 1

4 +
ε
2 and ζ′ ( 1

2
+ it) ≪ ∣t∣ 1

4 +
ε
2 ,

whence, by reverse triangle inequality, we have
AAAAAAAAAAAAAA

ζ ( 1
2 − it) ζ′ ( 1

2 + it)
(e iπ

4 − πt
2 + e− iπ

4 + πt
2 )

e
iπ
4 − πt

2 −δt
AAAAAAAAAAAAAA
≪ ∣t∣ 1

2 +ε e−Re(δ)t− πt
2

e πt
2 − e− πt

2
= ∣t∣ 1

2 +ε e(−Re(δ)−π)t

1 − e−πt .

This implies that the first integral is analytic for Re(δ) > −π. Similarly, the second
integral is analytic for Re(δ) < π. Consequently, both integrals of (5.22) are analytic
in δ in ∣δ∣ < π.

From (5.21) and above discussion, we can say that the expression

ϕ(δ) ∶= ∫
∞

0
ζ ( 1

2
− it) ζ′ ( 1

2
+ it) e−δtdt + πe−

iδ
2

∞
∑
n=1

d(n) log(n) exp (−2πine−iδ)

− ie
iδ
2 (γ2

2
− π2

12
− log2(2πie−iδ)

2
)

(5.23)
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is an analytic function of δ in ∣δ∣ < π/2. Hence, ϕ(δ) + ie iδ
2 ( γ2

2 − π2

12 −
log2(2πie−iδ)

2 )
can be expressed as a power series in δ for ∣δ∣ < π/2.

Letting y = 2πi(e−iδ − 1) in the asymptotic expansion of ∑∞
n=1 d(n) log(n)e−ny in

(1.15), we find that as δ → 0 (within the region 0 < Re(δ) < π),

πe−
iδ
2

∞
∑
n=1

d(n) log(n) exp (−2πine−iδ)

= πe−
iδ
2

∞
∑
n=1

d(n) log(n) exp (−2πin(e−iδ − 1))

= πe−
iδ
2 [ 1

2πi(e−iδ − 1) (log2(2πi(e−iδ − 1)) + π2

6
− γ2) − 1

2
log(2π)

+
m−1
∑
k=2

B2k(2πi(e−iδ − 1))2k−1

k

⎧⎪⎪⎨⎪⎪⎩

B2k

(2k)!
⎛
⎝

γ −
2k−1
∑
j=1

1
j
+ log(2π)

⎞
⎠
+ 2(−1)k ζ′(2k)

(2π)2k

⎫⎪⎪⎬⎪⎪⎭

+ 2πi(e−iδ − 1)
6

(log A− 1
12
) + O ((e−iδ − 1)2m−1)] .

(5.24)

Now, observe that upon expanding e−iδ as a power series in δ and simplifying, we
have

log2(2πi(e−iδ − 1)) = log2(2πδ) + 2 log(2πδ) log(1 + i3δ
2!

− i4δ2

3!
+ . . .)

+ log2 (1 + i3δ
2!

− i4δ2

3!
+ . . .) .(5.25)

As δ → 0, the second expression on the above right-hand side simplifies to

2 log(2πδ) log(1 + i3δ
2!

− i4δ2

3!
+ . . .) = 2 log(2πδ)

∞
∑
k=1

(−1)k+1

k
( i3δ

2!
− i4δ2

3!
+ . . .)

k

= −2 log(2πδ)
2m−1
∑
k=1

ak δk + O (δ2m log(δ)) ,(5.26)

and, using the power series expansion of log2(1 + x), we see that the third expression
becomes

log2 (1 + i3δ
2!

− i4δ2

3!
+ . . .) =

2m−1
∑
k=2

bk δk + O (δ2m) ,(5.27)

where ak and bk are effectively computable constants. Inserting (5.26) and (5.27) in
(5.25), we find that

log2(2πi(e−iδ − 1) = log2(2πδ) − 2 log(2πδ)
2m−1
∑
k=1

ak δk +
2m−1
∑
k=2

bk δk + O (δ2m log(δ)) .

(5.28)
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Substitute the above estimate for log2(2πi(e−iδ − 1) in (5.24) to find upon simplifica-
tion that as δ → 0,

πe−
iδ
2

∞
∑
n=1

d(n) log(n) exp (−2πine−iδ)

= 1
4 sin ( δ

2 )
(log2(2πδ) − 2 log(2πδ)

2m−1
∑
k=1

ak δk +
2m−1
∑
k=2

bk δk

+O (δ2m log(δ)) + π2

6
− γ2) − π

2
e−

iδ
2 log(2π)

+
m−1
∑
k=1

πc′k e−
iδ
2 (2πi(e−iδ − 1))2k−1 + O ((e−iδ − 1)2m−1)

= 1
4 sin ( δ

2 )
(log2(2πδ) − 2 log(2πδ)

2m−1
∑
k=1

ak δk +
2m−1
∑
k=2

bk δk + π2

6
− γ2)

+
2m−2
∑
k=0

ck δk + O (δ2m−1 log(δ)) ,(5.29)

where c0 = −(π/2) log(2π). In the last step, we used the fact that 1/ sin ( δ
2 ) = O(1/δ).

Consequently, from (5.23) and (5.29), as δ → 0 in ∣ arg(δ)∣ < π/2, we arrive at (1.16)
upon simplification which involves the use of the estimate

1
sin( δ

2 )
= 2

δ
+

m−1
∑
n=1

rn δ2n−1 + O (δ2m−1)

as δ → 0, where rn are constants. This completes the proof.

6 Concluding remarks

The main highlight of this paper was to derive (1.13), that is, an exact transformation

for the series
∞
∑
n=1

log(n)
eny − 1

, or equivalently, for∑∞
n=1 d(n) log(n)e−ny , where Re(y) > 0.

Such a transformation was missing from the literature up to now. One of the reasons
for this could be the lack of availability of the transformation in (1.5) until [23]
appeared, which, in turn, resulted from evaluating an integral with a combination
of Bessel functions as its associated kernel. This underscores the importance of the
applicability of integral transforms in number theory.

In addition, it is to be emphasized that in order to derive (1.13), several new
intermediate results, interesting in themselves, had to be derived, for example, the
ones given in Theorems 3.3, 3.4, and 4.4. This also shows how important ψ1(z), and,
in general, ψk(z), are in number theory, and further corroborates Ishibashi’s quote
given in the introduction.

The transformation in (1.13) has a nice application in the study of moments of ζ(s),
namely, to obtain the asymptotic expansion of ∫

∞
0 ζ ( 1

2 − it) ζ′ ( 1
2 + it) e−δt dt as δ →

0. However, considering the fact that (1.13) holds for any y with Re(y) > 0, we expect
further applications of it in the future, in particular, in the theory of modular forms.
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A generalization of (1.13), equivalently, of (1.14), may be obtained for the series
∑∞

n=1 d(n) logk(n)e−ny . This would require differentiating (1.5) k times with respect
to a and then letting a → 0. This would involve Ishibashi’s higher analogs of Deninger’s
R(z) defined in (3.4). Ishibashi [36, Theorem 1] gave a Plana-type formula for
Rk(x), x > 0, which is easily seen to hold for complex x in the right-half plane Re(x) >
0. This formula involves a polynomial in log(t) defined by Sk(t) ∶= ∑k−1

j=0 ak , j log j(t),
where ak , j are recursively defined by ak , j = −∑k−2

r=0 (k−1
r )Γ(k−r−1)(1)ar+1, j , 0 ≤ j ≤ k −

2, with a1,0 = 1 and ak ,k−1 = 1.
Observe that S1(t) = 1 and S2(t) = γ + log(t), and so the numerators of the sum-

mands of the series on the left-hand sides of (1.6) and (1.14) are S1(ny) and S2(ny)
respectively. In view of this, we speculate the left-hand side of (1.14) to generalize to
∞
∑
n=1

Sk+1(ny)
eny − 1

and the right-hand side to involve ψk(z).

Since (5.18) can be generalized to

∞
∑
n=1

logk(n)
eny − 1

= − 1
2πi ∫(c)

Γ(s)ζ(s)ζ(k)(s)y−s ds (c = Re(s) > 1, Re(y) > 0),

on account of the fact that ζ(k)(s) = (−1)k
∞
∑
n=1

logk(n)n−s , once a generalization of

(1.14) is obtained, it would possibly give us the complete asymptotic expansion of
∫

∞
0 ζ ( 1

2 − it) ζ(k) ( 1
2 + it) e−δt dt as δ → 0. Details will appear elsewhere.
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