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ABSTRACT

In this paper we have tested some non-standard numeri~
cal methods to integrate the two-body problem., The integra-~
tion has been performed with Bettis methods, a symplectic
algorithm and special spherically exact scheme. The results
have been compared with those obtained with traditional in-
tegrators.

INTRODUCT ION

The problem of choosing a suitable integrator from
various numerical methods is quite a difficult task because
their efficiency depends strongly on the dynamical nature of
a particular dynamical system and the required accuracy.

In 1989 Kinoshita and Nakai ((7]) published 'the results
of a questionnaire they sent to members of IAU Comission 7
(Celestial Mechanics) to check what kind of integrators they
use. The answers show that classical methods such as 1linear
multistep algorithms: Adams-Bashforth, ‘Adams-Moulton, Stdrmer,
Cowell, ... or Runge-Kutta methods are widespread. Other
using the idea of Taylor series or similar ones are also
popular. Although much effort has been made in the last 20
years to develop more efficient special algorithms to be used
in Celestial Mechanics problems, the aforementioned enquiry
shows that many of the special codes are not much known and
their use is not extended.

Somet imes it is not the efficiency but other practical
conditions that determine which method is chosen, Classical
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methods have some advantages from the point of view of their
usage. Almost all of them are implemented in popular soft-~
ware packages easily available and ready to use, Besides,
their merits and demerits have been much discussed and can

be found in many textbooks. On the other hand, in most cases,
special algorithms must be implement by the user. This is
not so easy if we take into account that often the papers in
which these methods appear do not give their explicit form.
Perhaps that could be the reason why they have so little dif-
fusion and are scarcely applied.

Nevertheless, we are of the opinion that special algo-
rithms that can be used with less effort do exist. 1In this
wrk we have chosen a few special methods and compared the
results when applied to the two-body problem. This,we think,
can contribute to shedding some light on the problem of cri-
teria for selection of integrators.

Besides the special algorithms, we have used classical
finite difference methods, more precisely a predictor-correc-
tor scheme where the predictors are explicit Adams-Bashforth
and the correctors implicit Adams-Moulton, Among the tradi-
tional integrators the Adams schemes are reputed to be high-
ly efficient and much documentation exists on the subject.
The selected special methods are symplectic integrators, Bettis
algorithms and spherically exact methods.

Symplectic or canonical integrators are numerical inte-
gration schemes for Hamiltonian systems, which conserve the
symplectic 2-form exactly; as a consequence, the numerical
solutions have a property of area-preserving. Another impor-
tant property is that they do not have a secular term in the
discretization error of the energy integral. Recently some
sympteéctic integrators have been developed ([81,[121]1), and
also it has been proved ([12]1) that some Runge-Kutta schemes-
Gauss-Legendre, for instance - are canonical. Many works on
the subject are appearing lately, some of them by Celestial
Mechanics authors. The symplectic integrators tested in this
paper have some additional properties such a's ¢dnskrvation of
of the angular momentum vector of the n-body problem or time
reversibility; but they restrict to a Hamiltonian with the
form H(p,q) = V(p) + U(q). Their explicit expression appears
in {141, f£.i..

Together with this kind,of algoritilms, another class of
special integrators applying to problems Hamiltonian or not
can be found. In 1969 Bettis [1] developed some non-standard
methods, obtained as a modification of classical difference
schemes, to solve numerically perturbed problems and satisfy-
ing the requirement that they produce the exact solution
after perturbing terms are switched-off i,e, these special
methods integrate certain products of an ordinary polynomial
and a Fourier polynomial without truncation error. The Bettis
methods are becoming almost classic for some users. They can
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be handled easily, since they do not differ much from the
traditional multistep ones. In fact it suffices to modify
conveniently the last two coefficients, 1In 1990 an i@proved
version of Bettis methods has been introduced by Ferrandiz
and Novo ([3]), fitted for long-term prediction.

Besides, some kinds of geometrically designed algorit-
hms can be applied to problems of Celestial Mechanics., 1In
1987 Ferrandiz and Perez ((41]) introduced the first spheri-
cally exact scheme and then developed a whole family of met-
hods with the same property ([ 5]), that implies that the
numerically computed points of the solution curve lying on
the sphere do remain on it, That fact can be useful for the
integration of unitary vectors or, in other cases, means
that the energy is preserved. As those presented earlier,
these methods have simple expressions so their implementation
is not complicated although they are no longer linear. They
follow the line of those designed by Lambert and McLeod ([ 9]).
These algorithms are of special interest for the author be-
cause our present work is being developed in this field.

DESCRIPTION OF THE EXPERIMENTS

In this section we summarize the results of the integra-
tion performed with the algorithms mentioned in the former
section. Some figures are included representing the position
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Figure 1:Kepler problem in Cartesian variables, e = 0, I = 0,
Order = 4
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error and the decimal logaritim of the energy error versus
the revoluticns. The position errors measure the deviation
of the solution computed with a desired number of steps per
revolution from a reference orbit. This reference is a nume-
ricali solution of the problem obtained with the same integra-
tor. It bhas been selected satisfying strong requirements on
conservation of three independent integrals and stabiliza-
tion of a number of digits in the computed solutions while
the stepsize is being reduced. Nevertheless, its validity
has:been assured using other classical integrators, more pre-
cisely a Ruhge-Kutta-Felhberg of adaptative stepsize.
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Figure 2: Main problem in Cartesian variables, e=0, I=0,
J2= 0.001, Order = 4.

The special characteristics of the metﬁods'f&rce us to
use different sets of variables. Thus, the required form of
the Hamiltonian for the symplectic integrators oblige us to
use Cartesian coordinates while for the spherically exact me-
thods K-S variables are preferred. (see [5]1,[6]). Thus we
have two different blocks of experiments,

In the first one, the two-body problem in Cartesian var-
iables has been integrated by means of two symplectic integ-
rators of orders four and six, two predictor-corrector pairs
in PECE mode, -explicit Adams-Bashforth, implicit Adams-Moul-
ton- of order four and six and two Bettis schemes correspond-
ing to the modification of the former Adams pairs. Notice
that, although the equations of motion in Cartesian variables
are not perturbed oscillators, the analitical expression of
the solution for the circular Kepler problem allows to use
successfully Bettis methods. The results with algorithms of
the same order are compared in figures 1 to 4.
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Figure 3: Kepler problem in Cartesian variables, e=0, I=0,
. Order = 6,
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Figure 4: Main problem in Cartesian variables, e=0, I=0
J2 = 0.001, Order = 6.
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The results of the integration of the Kepler problem
with zero eccentricity and inclination are shown in figure 1
and figure 3. In the first one the algorithms are of order
four and in the second of order six. In.this case the step-
size is fixed corresponding to 144 steps per revolution for
Adams (solid) and Bettis (dashed) schemes. For the symplec~
tic one (dotted) we have chosen the solution that needs the
same number of evaluations of the function.
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Figure 5: Kepler problem in Cartesian variables, e=0, I=0,
Order = 4,

PP

In figures 2 and 4 the former problem has been perturb-
ed with J2=0.001. The rest of the conditions are the same as
describéd in figure 1 and 3, respectively.

Figures 5 to 8 show the opposite of the'declimal loga-
rithm of the relative error in energy versus the independent
variable over a span of 100 revolutions performed in the
four experiments described above. As before the solid graph
corresponds to Adams, the dashed to Bettis and the dotted to
the symplectic integrators.

The second block of experiments correspond to the Kep-
ler problem in K-S variables. As in the first group, it has
been integrated with predictor-corrector pairs in PECE wmode,
both again of Adams type, but this time of order four and
seven. The special algoritlms used here are spherically ex-
act ones (see [6]). They are non-linear algorithms obtain-
ed by means of a projection from the Adams. 1In this sense
they are still predictor-corrector pairs in PECE mode.
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Figure 6: Main problem in Cartesian variables, e=0, I=0,
J2=0.001, Order=4.
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Figure 7: Kepler problem in Cartesian variables, e=0, I=0,
Order = 6.
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Figure 8: Main problem in Cartesian variables, e=0, I=0,
J2= 0.001, Order = 6.

We do not want to give here an exhaustive study of the
behaviour of these special integrators, but only to show
some experiments that make feasible that further investigat-
ion could produce new more interesting fruits. More results
concerning experimentation with spherically exact methods can
be found in [ 53,061 or (111
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Figure 9: Kepler problem in K-S variables, e=0, I=0,0rder=4.
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In figures 9 and 10 the dashed and dotted upper curves
represent the position error for the Adams integrator with
16 and 200 points per revolution, respectively. The lower so-
lid graph shows the error of the spheric method for stepsize
corresponding to only 16 points per revolution. The results
for the last one are remarkable, since it performed almost a
round—-off error while the classic Adams algorithm turned out
to be highly inefficient for long stepsize and not very sat=
isfactory with smaller steps.
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Figure 10:Kepler problem in K-8 variables,e=Q, I=0, Order=7.

The spherically exact methods preserves the energy as
shown in figure 11.
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Figure 11: Kepler problem in K-S variables,e=0, I=0, Order=4.
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FINAL REMARKS

The Bettis algorithms have proved to be the most effic-
ient of the three methods used to integrate the nearly circu-
lar two-body problem in Cartesian variables. Additional expe-
rimentation confirms this assertation and shows that they are
more efficient than the Adams algorithms with a long stepsize,
hut this advantage is gradually lost when the stepsize is re-
duced. This behaviour is due to the way they have been deri-
ved, which determines that when the stepsize tends to zero
the modified coefficients of Bettis tend to those of Adams.
These comments can be extended to all the cases where Bettis
is applicable.

The symplectic integrators with the same cost give worse
results than the linear schemes. The difference between both
of them - notice that the error for the order four method,
compared with Adams, is smaller than that for the six order
one- can be explained by the distinct number of evaluation
per step that they need. The first scheme evaluates V(p)
four times and U(q) three times as opposed to the ten and
nine evaluations that the six order one requires, which means
a high cost compared with the linear schemes.

However, the error in energy exhibits a wide oscillation
during each revolution, in such a way that, in general, the
maximal errors are greater and the minimal ones are smaller
than those given by the Bettis methods. In this case the con-
servation of the energy is not a good criterion for the err-
or of position since a dephase can be observed in the integ-
ration, This agrees with the results of experiments shown in
(81.
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