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We investigate the fundamental time scales that characterise the statistics of fragmentation
under homogeneous isotropic turbulence for air–water bubbly flows at moderate to large
bubble Weber numbers, We. We elucidate three time scales: τr, the characteristic age
of bubbles when their subsequent statistics become stationary; τ�, the expected lifetime
of a bubble before further fragmentation; and τc, the expected time for the air within a
bubble to reach the Hinze scale, radius aH , through the fragmentation cascade. The time
scale τ� is important to the population balance equation (PBE), τr is critical to evaluating
the applicability of the PBE no-hysteresis assumption, and τc provides the characteristic
time for fragmentation cascades to equilibrate. By identifying a non-dimensionalised
average speed s̄ at which air moves through the cascade, we derive τc = Cτ ε

−1/3a2/3(1 −
(amax/aH)−2/3), where Cτ = 1/s̄ and amax is the largest bubble radius in the cascade.
While s̄ is a function of PBE fragmentation statistics, which depend on the measurement
interval T , s̄ itself is independent of T for τr � T � τc. We verify the T-independence
of s̄ and its direct relationship to τc using Monte Carlo simulations. We perform direct
numerical simulations (DNS) at moderate to large bubble Weber numbers, We, to measure
fragmentation statistics over a range of T . We establish that non-stationary effects decay
exponentially with T , independent of We, and provide τr = Crε

−1/3a2/3 with Cr ≈ 0.11.
This gives τr � τ�, validating the PBE no-hysteresis assumption. From DNS, we measure
s̄ and find that for large Weber numbers (We > 30), Cτ ≈ 9. In addition to providing τc,
this obtains a new constraint on fragmentation models for PBE.
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1. Introduction

Fragmentation of bubbles by turbulence resulting in transfer of volume from large to small
scales through a fragmentation cascade is relevant to a variety of natural and engineering
applications. We consider air–water turbulent bubbly flows where the density ratio
between that of the bubble (ρa) and the surrounding fluid (ρw) is ρw/ρa ∼ 1000. While
these flows often exhibit multiple physical processes that affect the number of bubbles
of a given size (e.g. entrainment, degassing, dissolution, coalescence), fragmentation is
critical to understanding the size-distribution of bubbles. For typical bubbly flows with
macroscopic time scales large compared with those of the underlying turbulence, the
distribution of large bubbles often matches an equilibrium fragmentation cascade (Garrett,
Li & Farmer 2000; Deane & Stokes 2002; Deike 2022), suggesting that fragmentation
dominates and rapidly reaches equilibrium. Applicable to flows with large Reynolds
numbers where the length scale of the bubbles is much larger than the Kolmogorov scale
but much smaller than the geometric length scales of the flow, fragmentation of bubbles
within the Kolmogorov inertial subrange of homogeneous isotropic turbulence (HIT) is
often studied. Recent work has shown that HIT is observed at the bubble scale even in
close proximity to a free surface (Yu et al. 2019).

In HIT, fragmentation is primarily governed by the disturbing effect of turbulent
fluctuations and the restoring effect of surface tension. The ratio between the two is given
by the bubble Weber number

We = 2ε2/3(2a)5/3

(σ/ρw)
, (1.1)

where ε is the turbulent dissipation rate, a is the parent-bubble radius and σ is the
surface-tension coefficient. As bubbles are not generally spherical, radius, a, of a bubble
here is defined in terms of the volume, v, of the bubble by a = (3v/4π)1/3. The Hinze
scale is defined as the Weber number WeH (and corresponding radius aH) below which
surface tension largely prevents fragmentation (Hinze 1955). Thus, our focus is moderate
(We � WeH) to large (We � WeH) Weber numbers where fragmentation is present.

For We ∼ ∞, the daughter bubbles of a previous fragmentation will themselves
fragment, leading to an equilibrium fragmentation cascade with bubble-size distribution
N(a) ∝ a−10/3 (Garrett et al. 2000). Here, N(a)δa is defined to be the number of bubbles
of radius a ≤ a′ < a + δa. Using location as an analogy for bubble size, for finite We the
flux of air due to fragmentation can be either local, corresponding to daughter bubbles of
similar size as the parent bubble and likely to further fragment, or non-local, corresponding
to daughters much smaller than the parent and likely smaller than aH (Chan, Johnson &
Moin 2021b). Chan et al. (2021c) measure bubbles We ∼ 20 and demonstrate the locality
of the majority of the flux, confirming the applicability of the fragmentation cascade and
associated −10/3 power law for moderate and large We, where surface tension is present
but does not prevent fragmentation. This −10/3 power law is observed in a variety of flows
including emulsions (Skartlien, Sollum & Schumann 2013), breaking waves (Deane &
Stokes 2002) and turbulent free-surface entrainment (Yu, Hendrickson & Yue 2020). This
prevalence illustrates that fragmentation cascades are ubiquitous to turbulent bubbly flows
for We > WeH , and that, despite these flows being transient, an equilibrium fragmentation
cascade is often obtained.

For We > WeH where a cascade is formed, our interest here is the evolution of the
bubble statistics, in particular the bubble-size distribution N(a), due to fragmentation. In
principle, this evolution can be derived from a (more) complete mechanistic description
of fragmentation, which is a subject of active investigation (e.g. Liao & Lucas 2009;
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Fundamental time scales of bubble fragmentation in HIT

Rivière et al. 2021, 2022; Qi et al. 2022). In addition to the challenge of disparate
mechanistic descriptions, another challenge is that these often describe the behaviour
of a bubble as dependent on its history (for example, the two-step process presented
by Rivière et al. (2022)). Contrarily, statistical modelling of bubble-size distributions,
particularly through population balance equations (PBE) often used to model large-scale
bubbly flows (e.g. Castro & Carrica 2013), assumes that the statistical behaviour of a
bubble is independent of its history, i.e. no hysteresis. The present work complements
mechanistic studies by focusing on the fundamental statistics of turbulent fragmentation,
quantified through their characteristic time scales. While individual physical mechanisms
can also be characterised by time scales, such as the time scale for a sufficiently strong
eddy to fragment a bubble (Qi et al. 2022) or the time scale for capillary-driven production
of sub-Hinze bubbles (Rivière et al. 2021, 2022), our focus is on the time scales that
characterise the fundamental statistics of fragmentation. Understanding these time scales
will directly support the statistical modelling of bubble-size distributions through PBE.
Additionally, the understanding provided by these statistical time scales will provide robust
ways to compare disparate mechanistic models of fragmentation.

In this work, we elucidate and quantify three fundamental time scales of fragmentation
for moderate- to large-We HIT. In order of magnitude from small to large, these are: the
bubble relaxation time τr which characterises the time from when a bubble is formed
to when its subsequent dynamics (e.g. the rate of fragmentation) become statistically
stationary, the (well-established) bubble lifetime τ� which characterises the time from
when a bubble is formed to when it undergoes fragmentation (Martínez-Bazán, Montañés
& Lasheras 1999a; Garrett et al. 2000), and the convergence time τc which characterises
the time needed for the air to go from the scale of the largest bubble, radius amax, to the
Hinze scale, aH . In § 2 we examine how these time scales relate to statistical modelling
of bubble-size distributions through PBE. In previous work, τc could not be described
for realistic fragmentation statistics (Deike, Melville & Popinet 2016; Qi, Mohammad
Masuk & Ni 2020). In § 3 we develop a Lagrangian mathematical description which
provides the speed at which volume moves through the fragmentation cascade. This
volume-propagation speed allows us to derive τc for realistic fragmentation statistics at
large We. We prove that, unlike typical fragmentation statistics, the volume-propagation
speed can be obtained independent of the time interval used for measurement. In
§ 4 we perform direct numerical simulations (DNS) of moderate- to large-We bubble
fragmentation in HIT to quantify the three fundamental time scales we address. In § 5 we
discuss new insights provided by the quantification of these time scales: τr shows hysteresis
can be neglected in PBE; and τc provides a new constraint on large-We fragmentation
models.

2. Three fundamental time scales of fragmentation

To define characteristic time scales of fragmentation, we start by examining the statistics
typically used to describe fragmentation. To model the population of bubbles within a
flow, the evolution (∂N/∂t)(a, t) is often expressed as a Boltzmann-style PBE with source
terms S describing the effect of each evolution mechanism: fragmentation, coalescence,
entrainment, etc. (Sporleder et al. 2012). For fragmentation, this source term is

Sf (a, t) = −Ω(a)N(a, t) +
∫ ∞

a
m̄(a′)β(a; a′)Ω(a′)N(a′, t) da′, (2.1)
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which includes three fragmentation statistics: Ω(a) is the fragmentation rate (units
time−1); m̄(a′) is the average number of daughter bubbles created by fragmentation of a
parent of radius a′; and β(a; a′) is the daughter-size distribution, expressed as a probability
distribution function of daughter radius a for a given parent radius a′. As volume is
conserved in an incompressible flow, it is useful to represent the daughter-size distribution
in terms of a volume ratio v∗ = (a/a′)3, giving a daughter-size distribution f ∗

V related to β

by

a′β(a; a′) = 3(v∗)2/3f ∗
V (v∗; a′). (2.2)

Applying volume conservation, the distribution must satisfy (Martínez-Bazán et al. 2010)

m̄(a′)
∫ 1

0
v∗f ∗

V (v∗; a′) dv∗ = 1. (2.3)

While there is great variety in models for m̄(a′) and β(a, a′) (Liao & Lucas 2009), models
for Ω(a) generally follow

Ω(a) = CΩ(We)ε1/3a−2/3, (2.4)

where CΩ(We) approaches a constant value CΩ,∞ as We → ∞. Dimensional analysis
shows CΩ may also depend on Reynolds number and an additional parameter, such as the
ratio between parent-bubble radius and the Kolmogorov scale, a/η, implied by Qi et al.
(2022); however, the power-law scaling in (2.4) is robust at large We (Martínez-Bazán
et al. 2010). Assuming We ∼ ∞ to neglect surface tension, this scaling can be arrived at
mechanistically by dividing the characteristic velocity of the turbulent fluctuations on the
scale of a bubble (ε1/3a1/3) by the characteristic length a bubble must deform to fragment
(a) (Garrett et al. 2000). A model for moderate to large We based on the assumption that
the rate of fragmentation is proportional to the difference between the deforming force of
turbulent fluctuations and the restoring force of surface tension is

CΩ(We) = CΩ,∞
√

1 − WeH/We, (2.5)

with CΩ,∞ ≈ 0.42 (Martínez-Bazán et al. 1999a, 2010). To relate Ω(a) to measured
quantities, let pfrag(a; T) be the probability of fragmentation over some measurement
interval T , i.e. the probability a bubble of radius a present at time t will fragment before the
next measurement at time t + T . If we assume, as is done in PBE, that the fragmentation
rate of a bubble is independent of the time since its formation, then

pfrag(a; T) = 1 − exp [−TΩ(a)] , (2.6)

and the expected lifetime τ� = 1/Ω(a).
Returning to (2.1), we examine this assumption that the statistics describing

fragmentation are independent of bubble age, which we will refer to as the no-hysteresis
assumption. This no-hysteresis assumption means that the (statistical) behaviour of a
bubble after it is created by fragmentation should be indistinguishable from a bubble that
has existed for a much longer time. Physically, this seems unlikely over short time scales,
as the young bubble must be significantly deformed from equilibrium. Regardless of the
mechanistic explanation for fragmentation (either the result of accumulation of surface
oscillations (Risso & Fabre 1998) or a single-sufficiently strong eddy (Martínez-Bazán
et al. 1999a)), we expect a young bubble to be more likely to fragment, violating
no-hysteresis.

For PBE modelling, it is desirable to assume the effect of hysteresis is negligible, as
this allows fragmentation to be treated as statistically independent events; however, as

962 A25-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

28
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.281


Fundamental time scales of bubble fragmentation in HIT

expected, the validity of this no-hysteresis assumption depends on the time scale one
uses to define fragmentation events (Solsvik, Maaß & Jakobsen 2016). As infinitely small
temporal resolution is unobtainable, a finite measurement interval T is inherent in the
measurement of fragmentation events from both experiments and simulations (Vejražka,
Zedníková & Stanovský 2018; Chan et al. 2021a). To avoid making the no-hysteresis
assumption, we will allow for measured fragmentation statistics to depend on T . We
rearrange (2.6) to define the T-dependent fragmentation rate

Ω(a; T) ≡ − ln
[
1 − pfrag(a; T)

]
/T. (2.7)

For large We where daughter bubbles will eventually fragment, it is clear that m̄ must
also depend on T , and therefore, by (2.3), so must f ∗

V . Thus, let m̄(a′; T) be the expected
number of daughters present at t + T if the bubble fragments and f ∗

V (v∗; a′, T) be the
size distribution of these daughters. The dependence of these statistics on T makes them
difficult to relate to the statistics in (2.1) (Solsvik et al. 2016). Although the physical
mechanism for the decay of hysteresis is unclear, we posit that there exists a time scale τr
characterising how long the decay takes, such that Ω(a; T � τr) = Ω(a) is independent
of T . It follows that τ� � τr is required for the no-hysteresis assumption to be valid in
PBE.

When modelling the bubble-size distribution, the equilibrium solution (∂N/∂t = 0) may
be available, such as for PBE with only a fragmentation source term (Garrett et al. 2000)
or fragmentation with power-law entrainment, where the size distribution of the bubbles
injected by entrainment follows a power law (Gaylo, Hendrickson & Yue 2021). The time,
τc, it takes to reach these equilibrium solutions is of interest: if τc is much less than the time
scale over which the flow is transient, we expect an equilibrium fragmentation cascade
(generally N(a) ∝ a−10/3) to be obtained. Gaylo et al. (2021) provide an expression for τc
which allows for arbitrary f ∗

V and m̄, but its derivation is specific to power-law entrainment.
For general fragmentation cascades, τc is characterised by the time it takes for the volume
of the largest bubble to reach the Hinze scale (Deike et al. 2016; Qi et al. 2020). This
characterisation is useful because it allows τc to be measured independent of the evolution
of N(a). Additionally, being directly related to fragmentation, it could provide a constraint
on the fragmentation statistics in PBE (Qi et al. 2020). However, current derivations of τc
from fragmentation statistics assume that bubbles break into identically sized daughters,
ignoring the effect of f ∗

V . Although Monte Carlo simulation can be used to determine what
τc is predicted by given fragmentation statistics (Qi et al. 2020), the lack of a general
analytic expression relating τc to realistic fragmentation statistics precludes the reverse –
it is unclear how a given value of τc constrains fragmentation statistics.

3. Describing τc using a Lagrangian description of fragmentation cascades

In this section, we derive a general analytic expression that relates τc to realistic
fragmentation statistics. Previous derivations of τc assume identical fragmentation and
that the life of a bubble is exactly (rather than on the average) equal to τ� so that the
cascade can be treated as a series of discrete deterministic fragmentation events (Deike
et al. 2016). While this approach provides the general physical scaling of τc, it is unable
directly relate τc to realistic fragmentation statistics. In this section we use a Lagrangian
air particle-based mathematical description of the speed at which volume moves through
fragmentation cascades to derive τc. We note that this is a ‘speed’ in the abstract sense
as it measures how quickly air moves from large bubbles to small bubbles through
the fragmentation cascade rather than through physical space. However, this description
is useful as, through this speed, τc can be related to realistic fragmentation statistics
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Figure 1. (a) Schematic of the Lagrangian description showing the path of a Lagrangian air particle p through
a sequence of fragmentations from large to small radii, a0, a1, . . . , an, of the bubble containing p; and (b) the
function ap(t) describing the evolution of this bubble radius. Describing the radius of the bubble containing p
as a function of time allows a propagation speed of p through the cascade to be defined.

and this speed is also directly accessible from volume-based bubble-tracking (Gaylo,
Hendrickson & Yue 2022). Although T-independence is obvious when τc is obtained
through the evolution of N(a), it is less clear when τc is obtained through fragmentation
statistics, which generally depend on T . We show that our approach allows fragmentation
statistics-based measurement of τc independent of T .

Throughout this section, we consider large We (We � WeH) so that we can assume that
fragmentation statistics are scale-invariant and simplify (2.5) to a Heaviside step function,

CΩ(We) = CΩ,∞H (1 − WeH/We) . (3.1)

In the following derivation, we also assume no-hysteresis, limiting applicability to time
scales much larger than τr.

3.1. A Lagrangian-based mathematical description of fragmentation
Previous work on the movement of volume in fragmentation cascades applies Eulerian
descriptions, focusing on volume flux. To find the equilibrium between entrainment and
fragmentation, Gaylo et al. (2021) balance the flux of volume in and out of the set of
bubbles of a given range of sizes. To evaluate locality, Chan et al. (2021b) study the flux
of volume from bubbles larger than a given size to those smaller. Eulerian descriptions are
useful to model the volume flow in and out of specified bubble sizes, but to derive τc we
need to understand how any specific air volume flows through the entire cascade. For this,
a Lagrangian description is more direct.

Consider how a single Lagrangian particle of air p moves through a fragmentation
cascade, illustrated in figure 1. Let ap(t) be the effective radius of the bubble that contains
p at time t. Treating the interface between fluids as zero-thickness, one bubble breaks up
into two instantaneously, thus ap(t) is a step function. From this ap(t), we have a simple
expression for τc: defining time for a particle such that ap(0) = amax, our interest is the
expected time for p to reach the Hinze scale,

τc ≡ E{min{t : ap(t) ≤ aH}}. (3.2)

We now develop a relationship between this Lagrangian description and the previous
fragmentation statistics. Incorporating the measurement interval T , we define the volume
ratio between the bubble containing p at time t and the bubble containing p at time
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t + T as

vR(t; T) ≡ [ap(t + T)/ap(t)]3. (3.3)

If the bubble containing p at time t does not fragment over the measurement interval T ,
then vR = 1. If the bubble does fragment, then vR depends on the size of the daughter
bubble that p ends up in. Noting that the probability p ends up in a given daughter
is equivalent to v∗, the ratio of the volume of the daughter to that of the parent, the
probability distribution function for vR given that fragmentation occurs, fVR|frag, is related
to the previous fragmentation statistics through

fVR|frag(vR; t, T) = m̄(ap(t); T) vR f ∗
V (vR; ap(t), T). (3.4)

We assume these statistics are scale invariant and introduce the non-dimensional parameter
T∗ = Tε1/3ap(t)−2/3. This gives

fVR|frag(vR; T∗) = m̄(T∗) vR f ∗
V (vR; T∗), (3.5)

and any moment n of the distribution is given by

E{[vR(T∗)]n | frag} = m̄(T∗)
∫ 1

0
v∗n+1f ∗

V (v∗; T∗) dv∗. (3.6)

3.2. Defining the volume-propagation speed in a fragmentation cascade
To obtain τc, we derive a metric that measures the speed at which Lagrangian air
particles move through fragmentation cascades. To derive a speed, we must first define
the ‘location’, x(t), of a Lagrangian air particle p within the cascade. In this case location
refers to some scalar bubble-size metric within the cascade rather than a physical spatial
coordinate. We define x(t) to describe the location of p within the fragmentation cascade
such that the associated speed s(t) ≡ ẋ(t) is constant for ap(t) > aH . A constant speed is
necessary for many of the properties that will follow and, as a result of the scaling in (2.4),
is achieved only by x(t) ∝ ap(t)2/3. We choose

x(t) ≡ −ε−1/3ap(t)2/3, (3.7)

which has dimensions of time, so that, in addition to being constant, the time derivative of
x(t),

s(t) = −2
3
ε−1/3ap(t)−1/3 d

dt
ap(t), (3.8)

is also positive and non-dimensional.
Because ap(t) is a step function, the derivative in (3.8) is ill-behaved. Thus, to evaluate

s(t) we consider its time-averaged value over a measurement interval T ,

〈s(t)〉T ≡ 1
T

∫ t+T

t
s(t′) dt′. (3.9)

This gives

〈s(t)〉T = x(t + T) − x(t)
T

= ε−1/3ap(t)2/3

T
(1 − [vR(t; T)]2/9), (3.10)

where (3.3) defines the volume ratio vR(t; T). Furthermore, we perform an ensemble
average to get E{〈s(t)〉T}, the expected time-averaged speed for an ensemble of
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(independent) Lagrangian air particles. Noting that 〈s(t)〉T = 0 if no fragmentation occurs
over the interval T ,

E {〈s(t)〉T} = pfrag(ap(t); T)

ε1/3ap(t)−2/3T
(1 − E{[vR(t; T)]2/9 | frag}). (3.11)

The no-hysteresis assumption, along with (2.4), gives

E {〈s(t)〉T} = CΩ(We)
1 − exp[−Ω(ap(t))T]

Ω(ap(t))T
(1 − E{[vR(t; T)]2/9 | frag}). (3.12)

Recalling that, by assumption, these statistics are scale invariant, we introduce T∗ and
apply (3.6) to obtain

E {〈s(t)〉T∗} = CΩ,∞
1 − exp[−CΩ,∞ T∗]

CΩ,∞ T∗

[
1 − m̄(T∗)

∫ 1

0
v∗11/9f ∗

V (v∗; T∗) dv∗
]

.

(3.13)
The limit T∗ → 0 gives the expected instantaneous speed,

s̄ ≡ lim
T∗→0

E {〈s(t)〉T∗} = CΩ,∞

[
1 − m̄

∫ 1

0
v∗11/9f ∗

V (v∗) dv∗
]

, (3.14)

where m̄ and f ∗
V (v∗) describe the fragmentation statistics for T∗ → 0 and are equivalent to

those in (2.1).
Hereafter, we refer to s̄ as the volume-propagation speed of a fragmentation cascade.

Although the size locations of individual Lagrangian air particles in the cascade follow
step functions, by commuting time averaging and ensemble averaging, we are able to
obtain an average instantaneous speed for particles in the cascade. This speed s̄ can
be related to fragmentation statistics measured over finite intervals T (3.13), or the
instantaneous statistics used by PBE (3.14). The relationship between the two is explored
in § 3.4. In § 3.3 we use s̄ to provide τc.

3.3. Describing convergence time, τc

As intended, our choice of the definition of location within the cascade, x(t), makes s̄
constant for ap(t) > aH . This constant speed means that, despite x(t) being a step function,
after a sufficient number of steps, we can treat fragmentation as a continuous process
and apply the approximation x(t) ≈ ts̄ with reasonable (statistical) accuracy. Thus, we can
approximate τc as the distance in x between amax and aH divided by this speed,

τc =
(
ε−1/3amax

2/3) − (
ε−1/3aH

2/3)
s̄

. (3.15)

Non-dimensionalising τ ∗
c = τc ε1/3amax

−2/3 and defining Wemax to be the We associated
with amax,

τ ∗
c = Cτ [1 − (Wemax/WeH)−2/5]; Cτ ≡ 1/s̄. (3.16a,b)

Despite the approximation used to derive (3.15) from s̄ in (3.14), (3.16) is expected to be
valid for We∗ = Wemax/WeH not small (where multiple fragmentation events are generally
necessary to reach aH). This is confirmed by Monte Carlo simulations of prescribed
fragmentation statistics (figure 2).
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Figure 2. The effect of We∗ on τ ∗
c as modelled by (3.16) (solid line) compared with Monte Carlo simulations

of daughter distributions: •, A; +, blue, B; ×, yellow, C; �, red, D; ◦, green, E; ◦, violet, F (see table 1), where
(3.1) is used to model the Hinze scale. The 95 % confidence interval on all τ ∗

c is < 1 %.

For We ∼ ∞ we recover the same τc ∝ ε−1/3amax
2/3 scaling as previous work which

assumes identical fragmentation (Deike et al. 2016). This scaling of τc is like τ�,
demonstrating that the fragmentation rate is a dominant factor in determining τc. Our
propagation speed-based analysis provides the scaling constant Cτ which quantifies the
contribution of fragmentation rate, as well as fragmentation statistics m̄ and f ∗

V (v∗). For
large-but-finite We, (3.16) captures the effect of the We-driven separation between amax
and aH on the value of τc; however, we note that the scaling or τc with We will be more
complex for small We (We ∼ WeH) as we have not incorporated the effect of finite-We on
fragmentation rate, such as modelled by (2.5), into our propagation speed-based analysis.
In § 4.5, DNS shows for what sufficiently large We this effect is negligible.

Although primarily driven by fragmentation rate, τc is also related to the fragmentation
statistics m̄ and f ∗

V (v∗) (Qi et al. 2020), which is now quantified by the scaling constant Cτ .
To describe these relationships, we follow Gaylo et al. (2021) and isolate the effect of f ∗

V
from m̄ through a daughter-distribution constant Cf , defined as the ratio between Cτ and
a Cτ found using the same m̄ but identical fragmentation, f ∗

V (v∗) = δ(v∗ − 1/m̄), where δ

is the Dirac delta function. This gives

Cτ = Cf /CΩ,∞
1 − m̄−2/9 ; Cf = 1 − m̄−2/9

1 − m̄
∫ 1

0 v∗11/9f ∗
V (v∗) dv∗ . (3.17a,b)

In table 1 we compare this Cf for general fragmentation cascades to the similar constant
(hereafter denoted as Cf

�) derived by Gaylo et al. (2021) for the special case of power-law
entrainment. The values are nearly equivalent, and, noting that (9/2)(ln m̄)−1 ≈ (1 −
m̄−2/9)−1, (3.17) predicts similar τc as Gaylo et al. (2021) for their special case.

3.4. Measurement-interval independence of volume-propagation speed
A consequence of s̄ being constant for ap(t) > aH is that the time-averaged value and the
instantaneous speed are equal, E{〈s(t)〉T} = s̄, so long as ap(t + T) > aH . Thus, to obtain
s̄ we must choose a T such that Pr{a(t + T) > aH} ≈ 1. For measurements of an initial
parent-bubble radius a = ap(t), we define an upper bound TU as the interval we expect
ap(t + TU) ∼ aH and require T � TU . Through the same arguments used to derive τc,
this upper bound is

T � ε−1/3a2/3Cτ [1 − (We/WeH)−2/5], (3.18)

or simply T � τc for a = amax. From Monte Carlo simulations of prescribed
fragmentation statistics measuring initial bubbles a = amax, figure 3 confirms that E{〈s〉T}

962 A25-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

28
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.281


D.B. Gaylo, K. Hendrickson and D.K.P. Yue

Label Daughter distribution m f ∗
V (v∗) Cf Cf

�

A Valentas, Bilous & Amundson (1966) 2 δ(v∗ − 1/2) 1 1
B Martínez-Bazán, Montañés & Lasheras (1999b) 2 (v∗)2/9(1 − v∗)2/9 1.348 1.314
C Tsouris & Tavlarides (1994) 2 21/3 − (v∗)2/3 − (1 − v∗)2/3 2.432 2.255
D Martínez-Bazán et al. (2010) 2 (v∗)−4/9(1 − v∗)−4/9 1.782 1.712
E Diemer & Olson (2002) 3 (v∗)1/4(1 − v∗)3/2 1.269 1.253
F Diemer & Olson (2002) 4 (v∗)1/2(1 − v∗)7/2 1.190 1.185

Table 1. Daughter distributions used in Monte Carlo simulations and corresponding daughter-distribution
constants Cf defined by (3.17) versus Cf

� defined by Gaylo et al. (2021, (4.3)). Note, a constant to ensure∫
f ∗
V (v∗) dv∗ = 1 is omitted for brevity.

10–2 10–1 100

T/τc

0

0.5

1.0

E{
〈s〉

T}
/
s̄

Figure 3. Measurements of E{〈s〉T } from Monte Carlo simulations of daughter distributions A–F (see table 1)
at a range of T/τc, normalised by s̄ calculated using (3.14). Colours based on We∗: green, 2; red, 50; blue,
100; magenta, 200, where (3.1) is used to model the Hinze scale. The 95 % confidence interval on E{〈s〉T } for
T/τc < 1 is < 3 %.

gives an exact, T-independent measurement of s̄ for T � τc. TU provides an upper bound
on T for experiments or simulations, although we point out that it is an a posteriori
measure because Cτ is derived from s̄.

Finally, T-independence means dE{〈s(t)〉T}/ dT = 0. As can been seen by taking the
derivative of (3.13) with T∗, this bounds how scale-invariant fragmentation statistics
m̄(T∗) and f ∗

V (v∗; T∗) can depend on T∗ and provides insight into the relationship between
m̄(T∗) and f ∗

V (v∗; T∗) measured at large T∗ versus the theoretical T∗ → 0 limiting case
used in PBE. This is useful because a finite relaxation time τr implies a lower bound (T >

τr) for measuring fragmentation statistics that are compatible with the PBE no-hysteresis
assumption.

4. Quantification of fundamental time scales using DNS

We perform DNS of populations of bubbles fragmenting in HIT to measure the relaxation
time τr and bubble lifetime τ�, validate the T-independence of measurements of s̄, and
provide a value of Cτ along with the minimum We above which this value is valid. A
summary of the DNS performed is provided in table 2.

4.1. Methodology
For DNS, we solve the three-dimensional, incompressible, immiscible, two-phase,
Navier–Stokes equations using a second-order finite-volume scheme on a uniform
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Fundamental time scales of bubble fragmentation in HIT

WeT We Δ/η WeΔ Δ/aH Nsims Nfrag CΩ Cτ

400 101–142 1.1 0.66 0.71 7 213 1.64 ± 0.42 8.9 ± 1.9

200 50 – 71 2.2 0.66 0.93 7 106 0.60 ± 0.13 16.1 ± 2.9
1.5 0.44 0.62 7 189 1.21 ± 0.34 10.2 ± 2.5
1.1 0.33 0.47 7 208 1.64 ± 0.44 9.8 ± 2.8
0.7 0.22 0.31 5 187 1.77 ± 0.26 10.3 ± 2.1

100 25–36 1.1 0.16 0.31 7 218 1.50 ± 0.27 10.0 ± 2.3

50 13–18 1.1 0.08 0.20 7 174 0.93 ± 0.13 15.2 ± 2.9

25 6.3–8.9 1.1 0.04 0.13 7 113 0.44 ± 0.12 27.1 ± 5.5

Table 2. Summary of HIT simulations performed and values measured using T/t� = 0.4, including 95 %
confidence interval. Here Nsims is the number of simulations (each with different initial bubble populations)
and Nfrag is the total number of fragmentation events. Here aH is calculated using WeH ≈ 7 from § 4.4.

Cartesian grid. Phases are captured by the conservative volume-of-fluid method
(Weymouth & Yue 2010), and surface tension is calculated using a height-function-based
continuous-surface-force method (Popinet 2009). More detail on the DNS solver is
provided by Campbell (2014) and Yu et al. (2019). During the simulation, normals-based
informed component labelling (Hendrickson, Weymouth & Yue 2020) identifies bubbles,
the air volumes of which are then tracked using Eulerian label advection (ELA) (Gaylo
et al. 2022).

To develop the initial turbulent velocity field for the simulation, we use a linear
forcing method (Lundgren 2003; Rosales & Meneveau 2005) on a triply periodic cubic
domain, length L = 5.28, to develop single-phase HIT with a (non-dimensionalised)
characteristic turbulent dissipation rate ε = 1, velocity fluctuation urms = 1 and Reynolds
number ReT = u4

rms/ενw = 200. Using the single-phase HIT as the initial velocity field,
we perform simulations with an ensemble of different initial air–water bubble populations
(density ratio ρw/ρa = 1000, viscosity ratio μw/μa = 100, void fraction 1 %) at a range
of turbulent Weber numbers, WeT = ρwu5

rms/εσ . Although the abrupt introduction of
bubbles to single-phase HIT is non-physical, numerical simulations rapidly adjust (Yu
et al. 2019; Rivière et al. 2021). Populations are created by randomly distributing (without
overlap) spherical bubbles with radii between 3L/256 and 15L/256 following N(a) ∝
a−10/3. By repeating the random generation and distribution of bubble populations in the
initial HIT velocity field, unique but statistically similar initial bubble populations are
generated to provide statistical variation between our ensemble simulations.

During the evolution, linear forcing is applied to regions of water to maintain ε ≈ 1
(Rivière et al. 2021). Figure 4 shows the evolution of a sample simulation and figure 5
shows the evolution of the ensemble bubble-size distribution both for WeT = 100. We note
that, with our focus on bubbles a > aH , the transition to a distinct a power-law regime for
N(a < aH) is not captured (Deane & Stokes 2002). Over a measurement interval tn to
tn+1 = tn + T , ELA provides the unique, volume-conservative volume-tracking matrix,
where each element aij describes the volume that moved from a parent bubble j that is
identified at tn to a bubble i identified at tn+1 (Gaylo et al. 2022). From volume-tracking
matrices, fragmentation statistics E{〈s〉T} and pfrag(a; T) can easily be computed. We
study fragmentation statistics for parent bubbles of radii a0 < a < 1.2a0, where a0 =
7L/256 provides a balance between the number of observed fragmentation events per
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(a) (b) (c)

Figure 4. Volume-of-fluid f = 0.5 isosurface for one of the WeT = 100 simulations at (a) t/t� = 0;
(b) t/t� = 1; (c) t/t� = 3.

101

a/Δ

101

102

103

N (a)

104

Figure 5. Average bubble-size distribution N(a) for WeT = 100 simulations at times: red, t/t� = 0; blue,
t/t� = 1; green, t/t� = 3. Here N(a) ∝ a−10/3 is provided for reference over the range of initialised spherical
bubbles (dashed line) and the range of measured parent bubbles, a0 < a < 1.2a0 (solid line).

simulation and resolution of the daughter bubbles. While this simulation is inherently
transient, figure 5 illustrates that for this range of bubbles a quasisteady period exists.
By initialising the bubbles to follow an equilibrium fragmentation cascade N(a) ∝ a−10/3

(Garrett et al. 2000), the fragmentation of bubbles a > a0 maintains the population of
bubbles a ∼ a0 for t/t� < 3, where t� = (0.42)−1ε−1/3a0

2/3 is an a priori estimate of
τ� (Martínez-Bazán et al. 1999a). To exclude the fragmentation of the initial set of
spherical bubbles (see figure 4), we study fragmentation over 1 < t/t�. Thus, by measuring
fragmentation statistics over 1 < t/t� < 3, we measure a quasisteady population of parent
bubbles that are realistically formed by a fragmentation cascade.

4.2. Grid independence
The choice of cell size, Δ, is driven by resolving the relevant scales of turbulence and
surface tension. For turbulence, we compare the grid with the Kolmogorov microscale,
η ∼ ε−1/4νw

3/4, where Δ/η � 1 ensures turbulence is resolved. For surface tension, we
consider the cell Weber number WeΔ = ρwu2

rmsΔ/4πσ , which estimates the ratio between
the grid and the minimum characteristic radius of curvature of an interface deformed
by inertial turbulence. Here WeΔ < 1 ensures surface tension forces are resolved by the
grid (Popinet 2018). We also consider Δ/aH , comparing the grid to the Hinze scale: with
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Fundamental time scales of bubble fragmentation in HIT

101

a/Δ

101

102

103

N (a)

104

Figure 6. Average bubble-size distribution N(a > 2Δ) for WeT = 200 at time t/t� = 3 from simulations
with grids: magenta, L/Δ = 128; green, L/Δ = 192; black, L/Δ = 256; blue, L/Δ = 384. Horizontal axis
is normalised by Δ = L/256 and N(a) ∝ a−10/3 is provided for reference over the range of initialised spherical
bubbles (dashed line) and the range of measured parent bubbles, a0 < a < 1.2a0 (solid line).

ε and urms fixed WeΔ
3/5 ∝ Δ/aH . Based on these metrics we find L/Δ = 256 resolves

turbulence and surface tension for our entire range of WeT (see table 2).
With no clear lower limit to the ratio between the daughter-bubble and parent-bubble

volume (v∗), grid resolution limitations require us to filter out daughter bubbles of radius
a < 2Δ. Figure 6 shows that the bubble-size distribution of filtered bubbles, N(a > 2Δ), is
grid-independent. For L/Δ = 256 and parent bubbles a0 = 7L/256, a < 2Δ corresponds
to v∗ < 0.02. While this filter prevents us from measuring the full range of possible
daughter bubbles, especially sub-Hinze daughters, we expect this to have little effect on the
statistics of interest for two reasons. First, sub-Hinze bubble production by fragmentation
happens concurrently with the production of large daughter bubbles (Rivière et al. 2022),
so excluding small daughters should not affect the measured rate of fragmentation used
to obtain τr and τ�. Second, for τc, the integral of the daughter-size distribution in
(3.17) weights local daughter production (v∗ ∼ 1/m̄) over non-local daughter production
(v∗ � 1), making the contribution of the excluded small daughters small. This is related
conceptually to locality, which suggests v∗ � 1 can be neglected when modelling the
cascade (Chan et al. 2021b,c).

To confirm that we resolve turbulence and surface tension, that the filter has a negligible
effect, and (more broadly) that the statistics we measure are independent of the grid, we
perform a convergence study for WeT = 200 using three additional grids, L/Δ = 128, 192
and 384. The results of this convergence study (see figure 7) show that our measurements
of fragmentation statistics E{〈s〉T} and pfrag(a; T) (from which the time scales will be
calculated) are grid independent for L/Δ ≥ 256.

4.3. Estimating relaxation time, τr

For each simulation, we use six instances of ELA with different measurement intervals T .
Using (2.4) and (2.7), we calculate CΩ(We; T) from each pfrag(a; T). Figure 8(a) shows
how T affects the measured value of CΩ , where we use T/t� = 0.4 as a reference value for
each We. If the no-hysteresis assumption were valid for all T , CΩ would be a constant for
each We. Figure 8(a), however, shows a strong dependence on small T . We observe that
this dependence is approximately exponential, which provides an empirical definition of
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Figure 7. Grid-convergence study for (a) fragmentation rate constant CΩ and (b) convergence constant Cτ

based on simulations of WeT = 200 (parent bubbles We = 50–71) with different grids, measured using T/t� =
0.4. Error bars indicate 95 % confidence interval.
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Figure 8. Measured (a) fragmentation-rate constant CΩ normalised by (CΩ)ref , the value measured using
T/t� = 0.4 and (b) the convergence constant Cτ for We of (◦) 101–142; (×) 50–71; (�) 25–36; (�) 13–18;
(�) 6.3–8.9. In (a), variance-weighted least-squares fit of all data to (4.1) (dashed line) gives Cr = 0.11 and
A = 2.2 (R2 = 0.954). In (b), error bars indicate 95 % confidence interval and the estimated large-We value of
Cτ = 9 (dashed line) is included for reference.

the relaxation time τr as well as the hysteresis strength A:

CΩ(We; T)/CΩ(We; T ∼ ∞) = 1 + A exp[−T/τr]. (4.1)

We observe that τr scales like τ� rather than, say, bubble natural period, We−1/2ε−1/3a2/3.
Thus, we define the scaling constant Cr and write τr = Crε

−1/3a2/3. This scaling suggests
that, for We > WeH , the physical mechanisms for the decay of hysteresis are not related
to surface tension. Future, more detailed, studies of the dynamics of individual bubbles
are necessary to understand hysteresis and identify the mechanisms for its decay. For
our statistical study, our concern is to determine when hysteresis can be neglected.
Least-squares regression of the combined data for all We gives Cr ≈ 0.11. Hereafter, we
measure all results with T/t� = 0.4 (corresponding to T/τr ≈ 8), which guarantees that
effect of hysteresis on our estimation of τ� and τc is negligible.

4.4. Estimating bubble lifetime, τ�

We now seek the expected bubble lifetime, τ�. Figure 9(a) shows our measurements
of CΩ(We) and their fit to (2.5). We find the Hinze-scale WeH = 6.9, similar to
WeH = 4.7 measured by Martínez-Bazán et al. (1999a) and WeH = 2.7–7.8 by Risso
& Fabre (1998). However, we obtain CΩ,∞ = 1.4, greater than CΩ,∞ = 0.42 measured
by Martínez-Bazán et al. (1999a) and CΩ,∞ = 0.95 from HIT simulations by Rivière
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(a)
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Figure 9. (a) Fragmentation rate constant CΩ and (b) convergence constant Cτ as functions of We, measured
using T/t� = 0.4. Error bars indicate 95 % confidence interval. In (a), variance-weighted least-squares fit to
(2.5) (dashed line) gives WeH = 6.9 and CΩ,∞ = 1.4 (R2 = 0.890). In (b), the estimated large-We value of
Cτ = 9 (dashed line) is included for reference.

et al. (2021). An important distinction between our fragmentation rate measurements
and previous experimental and numerical measurements is that we measure bubbles
that have been formed as the daughters of previous fragmentation, so the bubbles are
already distorted by fragmentation. The effect of this distinction can be demonstrated by
measuring the fragmentation statistics over an earlier time in our simulation, 0 < t/t� < 1,
when (as opposed to the later time 1 < t/t� < 3) many parent bubbles which started
spherical have not yet fragmented. When we measure this earlier time range (denoted
by (·)t<t�), we obtain a similar (WeH)t<t� = 7.0 but an appreciably smaller (CΩ,∞)t<t� =
0.88 (R2 = 0.974). As our interest is bubbles within fragmentation cascades, our value of
CΩ,∞ ≈ 1.4 is more relevant for bubbles formed by fragmentation. Note that 1/CΩ,∞
is an order of magnitude larger than Cr (i.e. τ� � τr), which confirms that the PBE
no-hysteresis assumption is reasonable when modelling fragmentation cascades.

4.5. Estimating convergence time, τc

We now seek the convergence time, τc. As shown in § 3, the time-averaged speed E{〈s〉T},
available from ELA, gives a T-independent measurement of Cτ so long as (3.18) is
satisfied. Figure 9(b) shows the value of Cτ we obtain over a range of We. We find that
the model developed in § 3, which as a result of large-We assumptions predicts a constant
Cτ , is accurate for We � WeH , or more specifically We > 30, where we measure Cτ ≈ 9.
To validate that our measurement is T-independent, we also measure Cτ using a range of
T for We = 50–71 (figure 8b). As expected, for T � τr we see a dependence on T due to
hysteresis, but for T � τr Cτ is independent of T . Using Cτ = 9, (3.18) gives T/TU < 0.2
for We > 30, so we do not expect any effect of the Hinze scale driven upper bound on
T-independence described in § 3.4.

5. Discussion

We now examine how the relaxation time τr, bubble lifetime τ� and convergence time τc
inform the study of fragmentation. For τr, our results suggest that the physical mechanism
for the decay of hysteresis with bubble age is independent of surface tension for We > WeH
and that τr scales like τ�. The respective scaling constants we estimate from DNS of HIT
differ by an order of magnitude (Cr � 1/CΩ,∞), suggesting that τr � τ� is always true for
We > WeH . Although the physical mechanism for the decay of hysteresis is unclear, this
shows that hysteresis can be assumed negligible when modelling fragmentation, validating
an essential assumption of PBE. More practically, knowledge of τr also informs the choice
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of measurement interval in experiments and simulations. Here T � τr makes the effect of
hysteresis on measurements negligible, ensuring that the measured fragmentation statistics
are compatible with PBE.

The insight that the convergence time τc provides into the evolution of the bubble-size
distribution in fragmentation-dominated bubbly flows has been discussed by Qi et al.
(2020) and Deike et al. (2016), and we have now quantified τc directly. For large We where
the effect of surface tension on fragmentation rates is negligible, we find

τc = Cτ ε
−1/3amax

2/3[1 − (Wemax/WeH)−2/5], (5.1)

where Wemax is the Weber number of the largest bubble in the cascade (radius amax) and we
estimate Cτ ≈ 9 and WeH ≈ 6.9 from DNS. In addition, as we can now express τc in terms
of realistic fragmentation statistics for We > 30, τc also informs large-We fragmentation
models. Inspired by (2.3), we rearrange (3.17) to provide a new bound on a moment of the
daughter-size distribution f ∗

V :

m̄
∫ 1

0
v∗11/9f ∗

V (v∗) dv∗ = 1 − (Cτ CΩ,∞)−1, (5.2)

where our estimations of Cτ ≈ 9 and CΩ,∞ = 1.4 from DNS give 0.92 for the right-hand
side of (5.2). For a physical interpretation, (2.3) bounds the relationship between
daughter-size distributions and m̄ to guarantee volume conservation, while (for We > 30)
(5.2) bounds the relationship to match the empirical value of τc.

Many existing fragmentation models assume binary breakup (m̄ = 2). To evaluate how
well these meet (5.2), we focus on the proposed daughter-size distributions through
Cf , which includes the integral in (5.2). With m̄ = 2, Cτ ≈ 9 and CΩ,∞ = 1.4, we
obtain Cf ≈ 1.8. Because Cf indicates how much longer τc is compared with the case
of identical fragmentation, this shows that τc is 1.8 times longer for fragmentation
in HIT than what would be predicted if one assumes identical binary-fragmentation.
Comparing with more realistic binary daughter-distributions (B–D in table 1), we see
good agreement with the distribution proposed by Martínez-Bazán et al. (2010). We
also compare with the binary daughter-distribution model by Qi et al. (2020, eq. (7)),
which uses an experimentally constrained fitting parameter ω = 0.3 designed to tune
the value of τc. For their daughter-distribution model, (3.17) gives Cf = 1.741, in good
agreement with our value of Cf ≈ 1.8. Although we assume m̄ = 2 here for illustration,
this analysis is applicable to any m̄. Rather than attempting to compare the details of
disparate fragmentation models, relating τc to the fragmentation statistics specified by
these models allows us to directly compare the physical predictions each model makes
regarding the evolution of the bubble-size distribution through a simple scalar quantity.

6. Conclusion

For air–water bubbly flows under HIT at moderate to large Weber numbers, we describe
three fundamental time scales characterising the statistics of the evolution of the
bubble-size distribution by fragmentation and the resulting fragmentation cascade. The
prevalence of the observation of a −10/3 power-law in bubble-size distributions in bubbly
flow for moderate and large We demonstrates the importance of fragmentation cascades to
the bubble-size distribution, and these time scales directly support statistical modelling of
fragmentation. Although our focus here is on statistical descriptions of fragmentation, the
results here also help inform mechanistic study of fragmentation.
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One fundamental time scale is the relaxation time τr which characterises the time
after fragmentation over which hysteresis cannot be neglected. From DNS measurements,
we provide an empirical definition of τr based on when measured fragmentation rates
become independent of the measurement interval T . We find that τr = Crε

−1/3a2/3, where
Cr ≈ 0.11 independent of moderate/large We. This We-independence suggests the physical
mechanism causing τr at these We is unrelated to surface tension. Although understanding
hysteresis and its decay is an area of future work, by providing τr we identify the time
scales over which hysteresis can be neglected.

A second fundamental time scale is the expected lifetime τ� of a bubble from formation
by fragmentation to further fragmentation. For τ� � τr, τ� = [CΩ(We)]−1ε−1/3a2/3 is
the inverse of the fragmentation rate. Fitting our DNS results for bubbles within the
fragmentation cascade to the square-root model of We-dependence by Martínez-Bazán
et al. (1999a) (2.5), we find the Hinze-scale WeH ≈ 6.9, in agreement with previous
experiments, but measure a smaller τ� corresponding to a higher scaling constant (at
large We) CΩ,∞ ≈ 1.4 (compared with CΩ,∞ ≈ 0.42 reported by Martínez-Bazán et al.
(1999a)). We show that this higher value of CΩ,∞ is related to formation of the bubbles
by a fragmentation cascade. For modelling fragmentation cascades, this higher CΩ,∞ is
likely more relevant. In either case, we find τr � τ� for all We, validating the use of the
no-hysteresis assumption in modelling fragmentation.

Finally, we consider the fundamental time scale τc = Cτ [1 − (Wemax/

WeH)−2/5]ε−1/3a2/3
max, which measures the time for a Lagrangian air particle to go from

the largest bubble to the Hinze scale. This also characterises the time for fragmentation
cascades to reach equilibrium. For large We, we derive τc based on the (constant) expected
speed s̄ at which a Lagrangian air particle moves through the cascade. We show that,
Cτ = 1/s̄ and can thus be measured independent of T . This result is valid for τr �
T � τc, which provides a bound on the choice of T in experiments and simulations.
The T-independence of Cτ is confirmed by DNS measurements, which give Cτ ≈ 9 for
We > 30, which agrees well with the values obtained from the fragmentation model of
Martínez-Bazán et al. (2010) and an experimentally constrained fragmentation model of
Qi et al. (2020). The relationship between Cτ and fragmentation statistics in PBE provides
new constraints on these statistics, at large We, limiting the possible forms of fragmentation
models. Further, by quantifying Cτ , we obtain the convergence time of fragmentation
cascades τc, beyond which a quasisteady model of fragmentation would be appropriate.
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