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DILATIONS AND HAHN DECOMPOSITIONS 
FOR LINEAR MAPS 

D. W. HADWIN 

S u p p o s e d is a C*-algebra and H is a Hilbert space. Let CP( J^ , H) 
denote the set of completely positive maps from s/ into the set B (H) of 
(bounded linear) operators on H. This paper studies the vector space 

y(s/, H) spanned by CP (s/, H), i.e., the linear maps that are finite 
linear combinations of completely positive maps. From another view
point, a map <p is i n 7 ^ ( j ^ , H) precisely when it has a decomposition 
ç = (<pi — <PÏ) + i{<Pz — <P±) with <pu <p2, <pz, <pi in C P {s/, H); this de
composition is analogous to the Hahn decomposition for measures 
[8, 111.4.10] (see also Theorem 20). The analogous class of maps with 
''completely positive" replaced by "positive" was studied by R. I. Loebl 
[11] and S.-K. Tsui [17], and when s/ is commutative, this latter class 
coincides wi th i ^ (s/, H), since every positive linear map on a commuta
tive C*-algebra is completely positive [16]. 

Completely positive maps were introduced by W. F. Stinespring [16], 
who showed that CP (*$/, H) consists of precisely those maps that are 
compressions of (have dilations to) representations. We show that 
^(s/jH) consists precisely of those maps that are compressions of 
homomorphisms that are similar to representations. We show that a 
bounded homomorphism fromJa/ into B(H) is mi^(s/, H) if and only 
if it is similar to a representation. 

In the case when s/ is the C*-algebra C(X) of continuous complex 
functions on a compact Hausdorff space X, R. I. Loebl [11, Theorem 4.4] 
has shown that the set of maps satisfying a certain "bounded variation" 
condition is included m^{s/, H). We provide an example that shows 
that the inclusion is usually proper. The set of bounded linear maps 
from C(X) into B(H) can be identified with certain B (H) -valued 
measures on X, and we show that a map is m^(stf, H) if and only if 
its associated measure is a linear combination of positive operator-valued 
measures. We also show that a bounded operator-valued measure is a 
linear combination of positive operator-valued measures if and only if 
it can be dilated to a bounded (non-self-adjoint) spectral measure. 

The key new ideas are the following two relatively simple lemmas; 
the first is a factorization theorem for pairs of operators A, B for which 
AB = 1, and the second says that any two operators have dilations that 
are inverses of each other. 
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LEMMA 1. IfA,B Ç B(H) and AB = 1, then there is an isometry Vand 
a positive invertible operator S such that A = V*S~1 and B = SV. 

Proof. Let P be the orthogonal projection of H onto (ran A*)1-, let 
6 = l/(2| |i4| |2), let t= \\BB*\\2/e, and let Q = BB* + (t + e)P. 
Clearly Q ^ 0. We will show that Q is invertible by proving that 
((?/>/) = e f° r every unit vector / in H. Suppose f £ H and | | / || = 1. 
Since B*A* = 1, we know that A* is bounded from below; thus ran A* 
is closed. Wr i t e / = u + v with u G ran A* and v G (ran A*)1-, and write 
u = A*h. Note that ||w|| S \\A*\\\\h\\ = \\A\\\\h\\ implies that \\h\\2 S 
2e\\u\\2. Thus 

(Of J) = (BB*u} u) + (t + e) \\v\\2 + 2 Re (55*^, v) + (BB*v, v) 

è (BB*u,u) + (t + e)|MI2 - 21155*11 |H | |M|. 

Since 

(BB*u,u) = | |5*^ | | 2 = ||5*,4*/*||2 = ||/*||2 è 2e||w||2, 

we conclude that 

(QfJ) è 26||«||» + (* + Olkll2 - 2H2ÎS-II ||«|| \\v\\ 

= e(||«||» + IIHI2) + («1/2||«|| -tU2\\v\\r^ e. 

Thus Q is invertible. Let S be the positive square root of Q. Then S is 
positive and invertible and 

S2A* = (BB* + (t + e)P)A* = B. 

Let V = 5 ^ * = 5 - J 5 . Then F*F = (^5)(5~15) = 1; whence V is an 
isometry, and A = F*5_1, and 5 = SF. This completes the proof. 

LEMMA 2. If A, B G B(H), then there is a Hilbert space Hi D H and 
an invertible operator S in B(Hi) such that if P is the projection from Hi 
outo H} then PS'l\H = A and PS\H = 5 . 

Proof. If 

S = (l - ^ -5) t h e n 5 _ 1 = ( l -AB -A)' 

The preceding 2 X 2 matrix argument, which replaces the author's 
original 8 X 8 version, is due to Man-Duen Choi. 

Suppose cp:A —>B(H) is a linear map. For each positive integer n 
let %Jln denote the n X n complex matrices and let 

<pW:A ® Wn-*B(H) ® Tln 

be the linear map defined by (p(n)(a ® 6) = <p(a) ® &. The map <p is 
positive if <p(a) ^ 0 whenever a G ̂  and c è O . The map <p is completely 
positive if <p(w) is positive for w = 1 , 2 , . . . , and <p is completely bounded if 
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supjv>(w) || < oo . We also define <p* : j/-+B(H) by <p*(a) = *(a*)*, and 
we define 

Re <p = (<£ + <£>*)/2 and Im cp = (<p — <p*)/2i. 

We are now ready for the main results. 

THEOREM 3. If <p:s/ —> B(H), then the following are equivalent: 

(2) there is a positive integer n, Hilbert spaces Hit completely positive 
maps \p t: s/ —> B (H\), and operators Ai'. Hi—* H, Bt:H —> Hu for 
i = 1, 2, . . . , n such that (p(a) = ^ i A {^i(a)B i for every a ins/; 

(3) there is a representation w :&/ —> B(Hr), a positive invertible operator 
S in BiH-x), and an isometry V:H —* HT such that 

ip (a) = F*[5-17r(a)5]F 

for every a ins/. 

Proof. Clearly (3) =» (2). To prove (2) =* (1) assume that (2) holds. 
There is no harm in assuming n = 1, since ^ (J</, H) is closed under 
addition. Write <p(-) = A\p(-)B* with \p completely positive. Since 
C\l/(-)C* is completely positive for every operator C, we can conclude 
(f G ^ {s/, H) from the polarization identity. 

<p(a) = \[{A + B)t(a)(A + By - (A - B)*(a)(A - B)* 

+ i(A + iB)f(a)(A + iB)* - i(A - iB)f(a)(A - iB)*) 

for every a ms/. 
We next prove (1) => (3). Suppose cp = a^i -\- . . . -\- an\j/n where 

«i, . . . , an are scalars and f, . . . , î B G CP (s/, H). It follows from 
Stinespring's theorem [16] that there are Hilbert spaces Hu representa
tions iTi'.s/ —* B(Hi), and operators Wi'.H —> Ht for i = 1, 2, . . . , n 
such that 

<p(a) = a1W^ir1(a)W1 + • • • + anWn*irn(a)Wn 

for every a in s/. Define A\H —>HX © . . . © Hn by 

4̂fc = aiT^ifc © . . . © anWnh, 

and define B:Hx® . . . ® Hn-*Hby 

BQi! © . . . © hn) = Wfhi + W2*h2 + . . . + W»*A». 

Let p = 7Ti © . . . © Trn. Then p is a representation of s/ and <p(a) = 
Ap{a)B for every a ms/. Since we are trying to prove that <p can be 
dilated to a map that is similar to a representation, there is no harm in 
replacing <p by some dilation of <p. In particular, we can replace <p by a 
direct sum of arbitrarily many copies of <p. Thus wre can assume that H 
and Hi © . . . © HT have the same dimension. Hence there is no harm in 
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assuming that H = Hx ® . . . © Hn. Thus A,B € B(H), and, by 
Lemma 2, there is a Hilbert space HT D H and an invertible operator T 
in B(H^) such that PT~l\H = ,4 and P r | # = 5 , where P is the projec
tion from Hv onto H. Let 7" = CAS be the polar decomposition of T with 
U unitary and S positive (and invertible). Define ir'.szf —> B(HV) by 

TT (a) = U*(p(a) ©0)C7, 

and define V : H —> ifT by Ffe = A. Then 7r is a representation, F is an 
isometry, and 

ç {a) = V*S-lir{a)SV 

for every a in s/. This completes the proof. 

Note that the representation -K in the preceding theorem is not neces
sarily nondegenerate. In fact, if 1 G se, and -K is nondegenerate, then 
7r(l) = 1, which would imply that <p(l) = 1 for every map <p that is a 
compression of a map that is similar to T. It turns out that if <p(l) = 1, 
then the representation w in the preceding theorem can be chosen so that 
x( l ) = 1. 

THEOREM 4. If <p £ i^ (se', H) and <p(l) = 1, then there is a representa
tion ir'.s/ —-> B(Hr), a positive invertible operator S in B(HV), and an 
isometry V : H —» i ^ swcfe /fea/ 

*>(a) = F*[517r(a)5]F 

/or ey£ry a in s/ and such that 7r(l) = 1. 

Proof. If we follow the proof of (1) => (3) in the preceding theorem, 
we can reduce the present proof to the case when there is a representation 
ir'.s/ —> B(H) such that 7r(l) = 1 (this follows from [16]), and operators 
A, B in B(H) such that <p(a) = AT(ZL)B for every a in J^. Since <p(l) = 
1 = 7r(l), we conclude AB = 1. Thus, by Lemma 1, there is a positive 
invertible operator 5 and an isometry V such that A = V*S~1 and 
B = SV. This completes the proof. 

In [1, Theorem 1.2.3] W. Arveson proved that if £f is a norm closed 
self-adjoint linear subspace of se with 1 £ 5^, and if <p £ CP (5^, £T), 
then <p = ^ | 5 ^ for some \p in CP ( J^ / , H). Clearly Arveson's extension 
theorem implies its analogue iori^ (s$, H). 

LEMMA 5. If¥ is a normed closed self-adjoint linear subspace ofs/ with 
1 6 y 7 , and if <p G F (y7, # ) , /fee» <? = f\Sfor some $ inY' (stf', H). 

The next lemma shows that the class of maps that are finite linear 
combinations of completely positive maps is closed under composition. 

LEMMA 6. If <p G Y (se, H), Hi is a Hilbert space, and 

ttr(C*(<p(sf)),Hx), 
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then 

Proof. It follows from the preceding lemma that we can assume that 
yp € ^ ( B ( f f ) , i ? i ) . Write 

<P = (<Pi — V2) + i(<Pz — (PA) and \f/ = (^1 — ^2) + ityz — W 

where ^ G CP ( J / , if) and f, G CP ( £ ( # ) , # 0 for j = 1,2,3, 4. 
Clearly \p o ^ is a linear combination of the completely positive maps 
^ 0 9 * (1 £j,k g 4). 

COROLLARY 7. Suppose <p \sé —» B(H) is a bounded linear map and 

*\C*(<p(s/))-*B(HT) 

is a one to one *-homomorphism. Then (p G 7 ^ ( s / , H) if and only if 

Proof. This follows from Lemma 6 and the fact that ç = 7r_1 O (T O tp). 

The following example shows that ^V (s/, H) is generally not closed 
under norm limits (and a posteriori limits in the standard notions of 
pointwise convergence). This example relies on the observation of Loebl 
[11] that every map i n 7 ^ ( s / , H) is completely bounded. 

Example 8. Let 

e 
^ = E 3R» = {{An}:\\An\\-»0,Ane Wln torn ^ 1}. 

n 

Let 4̂ % denote the transpose of a complex matrix A. Define cp \S$ —>s# by 

<p({An}) = {AnW*}. 

For each positive integer k define <pk\S$ —>s$f by 

^({^„}) = {£„} 

where 

(An'/n1'2 if 1 ^ » ^ * 
n U n / n 1 / 2 if n > *. 

If J / Ç B(H), then clearly ^ £ ^ ( j / , £T) for * = 1, 2, Since 
\\<Pk — <p\\ —>0 (since ||<^ — <£>|| =g 2/k1/2 for fe = 1, 2, . . .), we know 
that <pk —» <p in all of the familiar (point-norm, point-strong, point-weak) 
topologies. However, ç (t i^ (s/, H) because <p is not completely bounded. 
To see this, note that Arveson [1, p. 144] shows that if k is a positive 
integer and ^:2KW -> Wln is defined by \P(A) = A\ then ||̂ <*>|| è fe. Thus 
(by looking at feth coordinates) 

||^(*)|| ^ | | ^ ) /^ i /2 | | ^ fci/2 for ife = 1, 2 
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In spite of the preceding example we define a norm || \\f on ̂ V (se, H) 
that makes i^(sé ,H) into a Banach space. First note that if \p Ç 
CP (s/,H) and r is a non-negative number, then r\p £ CP (s/,H). 
Thus if Ei, . . . , zn are scalars and \f/\, . . . , \f/n G CP ( J ^ , iJ) , then we can 
w r i t e 

ZX\pi + . . . + Zn\l/n = Xi |3i |^i + . . . + XnIZn!^n 

where |Xi| = . . . = |Xn| = 1. 
We define the norm |[ | | r o n ^ ( j / , if) by 

\\<pL = mi\jt 11^11:̂ = Z \ ^ ; * i fcÉCP(j/,fl); 

IXil = . . . = |Xn| = 1}. 

It is easily seen that || ||^ is indeed a norm on ^ (s/, H) that domi
nates || ||. Furthermore, it is clear that ||<p|| = \\<p\\ir for every p in 
CP (s/,H). 

It is useful to compare || \\f with some other numerical quantities that 
arise naturally from the preceding characterizations of the elements of 
i^(stf,H). Define functions a, 0, y\V(s/, H) -> [0, oo ) by 

a(<p) = inf i 22 H ^ l ' : ^ = (^i ~" ^2) + i(^3 — ^4); 

^ , . . . , ^ 4 G C P « # ) } , 

/3(<p) = inf { m || | |£| | :<£>(•) = 4̂ ir(-)B for some représentations of s/}, 

7 W = inf {||5|| HS^11| :*>(•) = F*5- 1 TT( - )5Ffo r some isometry F 
and some representation -K ois/, and S invertible}. 

The following lemma is based on very crude estimates involving the 
proofs of Lemma 2 and Theorem 3. The main significance of these esti
mates is contained in the corollary and in Theorem 11. 

LEMMA 9. For each <p inl^ (se\ H) we have 
(1) | M | r ^ a(<p) ̂  2\\<p\\r, 
(2) 0(<p) ̂  \\<p\\r ^ 4/3(<p), 
(3)0(*>) ^ T W ^4( l+ /3 (*>) ) 2 . 

Proof. (1) is obvious. 
A key idea in the proofs of (2) and (3) is that the added restriction 

\\A\\ = \\B || in the definition of (}(<p) does not alter fi(<p). 
(2). The inequality 0(<p) ̂  \W\W follows from the proof of (1) => (3) 

in Theorem 3. The inequality \\(p\\ir S 4/3 (<p) follows from the proof of 
(2) =» (1) in Theorem 3. 
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(3). The inequality /3(̂ >) S y(<p) is obvious. The inequality y((p) ^ 
4(1 + 13(cp))2 follows from the proof of Lemma 2. 

COROLLARY 10. Suppose {<pn} is a net ini^{s$, H). If one of the nets 
{IWW» {a(<pn)}, {fi((Pn)}, {y(<Pn)} is bounded, then so are the others. 

In view of Example 8, the following theorem seems a little surprising. 

THEOREM 11. If {(pn) is a || ^-bounded net ini^\sé', H) and <pn(a) —> 
<p(a) in the weak operator topology for every a in s/, then <p £ 7 ^ ( s / , H). 

Proof. Since \a(<pn)} is bounded, we can find || ||-bounded nets {<pni}, 
{<Pn2}> {<Pnz}, {<Pni} in CP (s/, H) such that, for each n, we have 

By replacing {(pn\ by an appropriate subnet if necessary, we can assume 
that there are maps ^i , ^2, ^3, ̂ 4 in CP ($/ ,H) such that <pnk(a) —>\l/k(a) 
in the weak operator topology for k = 1, 2, 3, 4 and every a ins/. Hence 
ç e V(sé, H) since <p = (i£i - \[/2) + i(fa - ^ 4 ) . 

COROLLARY 12. Suppose p:A —> B(H), 2 is a dense subset of'se\ and 
D is a dense subset of H. Then ç Ç ^(s/', H) if and only if there is a 
positive number M such that for each e > 0, each finite subset &~ of se, and 
each finite subset F of H there is a representation ir'.s/ -^ B(HV) and 
operators A, B:H —> H^ such that 

\\A\\ \\B\\ S M and \(A*ir(a)Bf, g) - (<p(a)f, g)\ < e 

for each a in Ĵ ~ and each / , g in F. 

THEOREM 13. With the norm || ||^ the space *V(s/, H) is a Banach 
space. Furthermore, ^(B(H), H) is a Banach algebra with composition 
as multiplication. 

Proof. The only part of the proof that is not completely elementary 
involves completeness. To this end suppose that {$*) is a sequence in 
i^(s/, H) such that Ylm \\<Pn\\v < °° • Since ^2na((pn) < 00 , we can find 
sequences {<pni}, {^n2}, {^3}, {^4} in CP (s/, H) such that 

fir = (<pn\ — <Pnï) + ^(^n3 ~ <Pn±) for n = 1, 2, . . . and 
2 » Iknfcll < °° for k = 1, 2, 3,4. 

Since || || and || ||^ agree on CP (s/, H), it follows that ^ n ipnk is 
|| 11^-convergent for fe = 1, 2, 3, 4. Thus ^ w <pn is || ||V-convergent. 
Hence *V ( J / , if) is complete. 

The question of R. V. Kadison [10] that asks whether every bounded 
unital homomorphism from a C*-algebra se into B (H) is similar to a 
*-homomorphism is still unanswered, although significant progress has 
been made [5], [6], [2], [7], [18]. (Theorem 16 shows that the answer is 
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affirmative whenever the homomorphism is in i^ (se, H)). We first need 
two lemmas; the first is due to Sarason [15], and the second is probably 
well known. 

LEMMA 14. Suppose S^ is a unital subalgebra of B(H) and P is a projec
tion in B(H) such that the mapping S —» PSP is a homomorphism onff. If 
Q is the smallest y-invariant projection (i.e., (1 — Q)^Q = 0) whose 
range contains ran P, then Q — P is an <9*-invariant projection. 

LEMMA 15. Suppose TT:S/—>B(H) is a unital representation of the 
C*-algebra se and IT = TI © T2 relative to H = Hi © H2. Suppose M 
is a (closed) subspace of H such that M C\ H\ = 0 and M + H\ = H. Let 
P be the non-orthogonal projection of H onto M along Hi, and define 
p'.s/ —> B(M) by p(a) = Pw(a)\M. Then there is an invertible operator 
S:H2-+ M such that p(a) = Sw2(a)S~1 for every a ins/. 

Proof. Actually, the required operator S is P\H2. Since ker P = Hi, 

we can write P = I 1 1 relative to H = Hi © H2. If T = I I, 

then T~l = ( J " A \ Clearly, T\H2 = P\H2. Let S = T\H2. Since 

T(H2) = P(H2) = M, it follows that S"1 = T~l\M. A simple matrix 
calculation shows that 

Tir(a)T~lP = Pir(a)P for every a in se. 

Thus 

S>K2{a)S-1 = S{j(a)\H2)S~-1 = Tfc{a)T-l\M 

= Pir(a)\M = p(a) for every a in s/. 

THEOREM 16. Suppose p\A —> 5(i7) is a bounded unital homomorphism. 
Then p is similar to a ^-homomorphism if and only if p (E ^ (s/, H). 

Proof. First suppose that p £ i^ (s/, H). It follows from Theorem 4 
that there is a Hilbert space Hv D H, an invertible operator 5 in B(HX), 
and a *-homomorphism wis/ —> B(HT) such that if P is the projection 
of Hr onto if, then 

p{a) = PS-1w(a)S\H for every a in J / . 

It follows from Lemma 14 that there is a subspace M of Hx that contains 
i J such that M and M Q H are invariant for S - ^ J ^ S . There is no 
harm in assuming that M = Hr, since the mapping a —^S~"17r(a)S\AI is 
similar to the mapping a —» 7r(a)|5(M), which is a *-homomorphism 
(because 5 (ikf) is w(s/)-invariant and thus TT(S/)-reducing). Thus we 
can assume that H1- = HT Q H is invariant for S~1ir(s/)S. Let iJi = 
SiH-L) and # 2 - ifr1, and let Q = 5P5" 1 . Since ff1 is invariant for 
S~1ir(s/)S, we know that # i is invariant for (and thus reduces) ir(s/). 
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Wri te 7T = 7Ti © 7T2 relative to Hr = Hi ® H2. Clearly Q is the non-
orthogonal projection of Hr onto S(H) along Hi. It follows from Lemma 
15 that 7T2 is similar to the map a —> Qw(a)\S(H), which is clearly similar 
to p. Thus p is similar to a *-homomorphism. The other half of the theorem 
follows from Theorem 3. This completes the proof. 

COROLLARY 17. Suppose p\$? -*B(H) and r:C*(p(s/)) - » 5 ( i f i ) . / / 
p and T are both similar to *-homomorphisms, then so is r o p. If r is a 
one to one *-homomorphism and r o p is similar to a *-homomorphism, then 
so is p. 

COROLLARY 18. Suppose p\sé—> B(H) is a bounded homomorphism, 
{irn\ is a net of representations of'se', and {An), {Bn\ are bounded nets of 
operators such that Anirn(a)Bn-^ p(a) in the weak operator topology for 
each a in s/. Then p is similar to a *-homomorphism. 

Note that the preceding corollary implies Theorem 7 in [10]. 
Stinespring's theorem [16] can be viewed as an extension of a theorem 

of Naimark [13] about dilating certain positive operator-valued measures 
to self-adjoint spectral measures. Accordingly, our results show that cer
tain operator-valued measures can be dilated to non-self-ad joint spectral 
measures. 

Suppose that X is a compact Hausdorff space. A B(H)-valued measure 
on X is a map E from the Borel sets of X into B (H) that is countably 
additive with respect to the weak operator topology on B{H). A B(H)-
valued measure E is 

(a) bounded if ||E|| = sup {\\E(M) \\ :M a Borel set} < oo , 
(b) regular if the complex measure EftÇ defined by Eft0(M) = 

(E(M)f, g) is regular for every/, g in H, 
(c) self-adjoint if E(M)* = E(M) for every Borel set M, 
(d) positive if E(M) ^ 0 for every Borel set M, 
(e) spectral if E(M H N) = E(M)E(N) for all Borel sets M and N. 
Let meas (X,B(H)) denote the set of all bounded regular B(H)-

valued measures on X. If £ is a B (H) -valued measure on X, define the 
measure E* by E*(M) = E(M)*. Each measure E in meas (X, B(H)) 
uniquely determines a bounded linear mapping $#: C(X) —> B(H) 
defined by 

(*B(<p)f,g) = fx<fdEftg 

for ip in C(X) and / , g in H. 
The author was unable to find the following proposition in the litera

ture. The main ideas of the proof (which is omitted) appear in [8, VI.7., 
XVII.2.5] and [3, Theorem 19]. 

PROPOSITION 19. Suppose X is a compact Hausdorff space. The mapping 
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E —» ^E from meas (X, B(H)) to the set of linear operators from C(X) to 
B(H) is a Banach space isomorphism. In addition 

(1) | |£| | ^ \\$E\\ S 4:\\E\\ for every Ein meas (X, B(H))} 

(2) $E* = $E* for every E in meas (X, B(H)), 
(3) $E is (completely) positive if and only if E is positive. 

Thus bounded linear mappings from C(X) to B(H) correspond to 
measures in meas (X, B(H))y and self-adjoint (completely positive) 
mappings correspond to self-adjoint (positive) measures. Furthermore, 
bounded homomorphisms from C(X) to B(H) correspond to spectral 
measures in meas (X,B(H)) [8, XV.6.2]; if the homomorphism is a 
*-homomorphism, then the measure is self-adjoint. The theorem of 
Naimark [13] mentioned earlier says that a positive measure E in 
meas (X, B(H)) with | |£| | ^ 1 can be dilated to a self-adjoint spectral 
measure. (Note that we do not require that E(X) = 1.) Naimark's 
theorem is a special case of Stinespring's theorem [16], which says that 
completely positive maps can be dilated to *-homomorphisms. In the 
same circle of ideas, the following theorem is a reformulation of Theorem 
3 in the case whenJ^ = C(X). 

THEOREM 20. Suppose X is a compact Hausdorff space and E £ meas 
(X, B(H)). The following are equivalent. 

(1) E has a Hahn decomposition E = (E\ — E2) + i(E^ — JE4) where 
El, E2> Ez, Ei are positive measures in meas (X, B(H)), 

(2) < ^ £ ^ ( C ( X ) , t f ) , 
(3) there is a Hilbert space Hi containing H and a spectral measure F in 

meas (X, B(H)) such that if P is the orthogonal projection of Hi onto H, 
then PF{M)\H = E(M) for every Borel subset M of X. 

Note that it follows from Theorem 4 that if E(X) = 1 in the preceding 
theorem, then the measure F can be chosen so that F(X) = 1. Note also 
that the measure F in the preceding theorem is (see Theorem 3) similar 
to a self-adjoint spectral measure. In fact, every spectral measure in 
meas (X, B(H)) is similar to a self-adjoint spectral measure [8, XV.6.2]; 
perhaps Theorem 16 can be used to reprove this result by showing that 
every spectral measure in meas (X, B(H)) has a Hahn decomposition. 

Each measure E in meas (X, B(H)) can be uniquely written as a sum 
Re E + i Im E where Re E and Im E are Hermitian-valued measures. 
The condition that a measure E in meas (X, B(H)) have a Hahn de
composition is a sort of bounded variation condition in that it is clearly 
equivalent to the condition that there is a positive measure F in meas 
(X,B(H)) such that ± R e E, =blm E S F. Unfortunately, the exis
tence of such an F does not seem to lead to the existence of some canoni-
cally denned total variation measure for E. In [11] R. I. Loebl defines a 
notion of bounded variation for linear maps; i.e., a linear map <p\s/ —» 
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sup ' 

B (H) has finite total variation if 

{ É \<p(at)\\\:n è 1, 0 ^ ah . . . , an G J / , X) ^ ^ I f < oo. 

(Here | 4 | = (4*4)1 / 2 . ) 
Loebl [11, Theorem 4.4] proved that if E G meas (X, B(H)), E = £*, 

and $# has finite total variation, then $E £ 7^(C(X), ff). The following 
example shows that the converse of this result is false. 

Example 21. Let X = {n/n\\n = 0, 1, . . .}, and let {<?i, . . .} be an 
orthonormal basis for H. Let AQ = B0 = 0, and for n — 1, 2, . . . , 
define operators An and f>n on H by 

4 f f/ = ( l /w)[( / , ei)en + (/, en)ei] and 

Bnf = ( l /w 2 ) ( / , ejei + (/ , e„K f o r / i n JÏ. 

A matrix calculation shows that E({n/n\)) — An defines a self-adjoint 
measure E in meas (X, B(H)). Since ^2n \An\ does not converge in the 
weak operator topology, it is clear that $E does not have finite total 
variation in the sense of Loebl. However, F([n/n\}) = Bn defines a 
positive operator-valued measure F in meas (X, B(H)) such that 
± R e £ , dblm E S F. To see this, note that for n ^ 0, we have 
Bn zt An has rank 1 and positive trace; whence Bv d= AT ^ 0 for n ^ 0. 
Thus $E £y(C(X), H) (because E has a Hahn decomposition), 
although $E does not have finite total variation. 

Complete boundedness is also related to this discussion. In [11] Loebl 
proved that every map mi^{s/,H) is completely bounded, and this 
author knows of no example of a completely bounded linear map from a 
C*-algebra s/ into B(H) that is not i n ^ ( j / , H). The following example 
gives an idea of some of the relationships involved. 

Example 22. Let X be as in Example 21. Suppose E({n/n\)) = Dn 

defines a measure in meas (X, B(H)) and that $E is completely bounded. 
Claim: ]T^ Dn*Dn converges weakly to a bounded operator. To prove 
this, let an be the (continuous) characteristic function of {n/n\\ for 
n = 1 , 2 , . . . . Let <p = $E and let 

s = sup {||p(n)||:« = 1,2, . . .}. 

For each positive integer n, define Tn in C(X) ® Wn by 

TnM ° •• °\ 
\an 0 0 / 

Then ||JTM[| = 1 implies that 

(1/2 

Z zw * - l 
^ n , ( r n ) l l ^ s for» â 1. 
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Thus ^2k Dk*Dk ^ s2. This proves the claim. Note that the claim does 
not imply that $E G V(C{X), H). 

Let CB (<$/, H) denote the set of completely bounded linear maps 
from s/ into B(H). The space CB {stf, H) is a Banach space with the 
norm ||| ||| defined by 

IIMII = s u p , |M W ) | | . 

Conjecture I. C B ( J / , H) = V(s/, H) and the norms ||| ||| and || \W 
are equivalent. 

To prove the preceding conjecture one needs to consider only certain 
finite-dimensional cases. 

Conjecture II. If <p\s^ —> 9J?n is a bounded linear map, then /3(p) ^ 

un-
To see that Conjecture II implies Conjecture I, assume that Con

jecture II is true and suppose that tp G CB (s/, H). Let {Pn} be a net 
of finite rank projections in B(H) that converges strongly to 1. For each 
n define <pn \s/ —-> B (H) by 

<Pn(&) = ?n<P (a) P ri-

lt follows from Conjecture II that supn/3(<pn) ^ HMII- Since (pn(a) —> 
<p(a) in the weak operator topology for every a in s/, it follows from 
Theorem 11 that <p G 7 ^ ( J / , iJ) . It follows from the proof of Theorem 11 
that 

a(<p) ̂  élimsupna(<pn); 

thus, by Lemma 9, ||^)|| r S 8|IM|| since | | ^ w | | S (3(<p{k)) S PM for 
k = 1 , 2 , . . . . Thus the norms || ||y and ||| ||| are equivalent. 

It is clear from the preceding argument that Conjecture I is equivalent 
to the statement: 

sup {p(<p) :<p:A —> 9W„ linear, | | |p| | | = 1} < oo. 

We next prove Conjecture II in the case when n = 1. 

LEMMA 23. If <p is a continuous linear functional ons/, then there is a 
representation IT'.*$/—* B(HT) and vectors / , g G H* such that \\f \\ \\g\\ = 
\\<p\\ and <p(a) = (/ir(a)f1 g) for every a instf. 

Proof. It follows from Proposition 1.17.1 in [14] that <p G ^(s/t H). 
It follows from Theorem 3 that there is a representation p\S$ —> B{HP) 
and vectors u,v G Hp such that <p(a) = (p(a)u,v) for every a in s/. 
Clearly we can assume that p is unitarily equivalent to p © p © 
Thus p(s&) has "property C" as defined in [9]. Thus p(sf) has "property 
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-D(l)" as defined in [9]. Hence there are sequences {un}, \vn) in Hp such 
that 

\\un\\ = H l̂l S (\W\\ + l /n ) 1 / 2 for» = 1 , 2 , . . . 

and such that <p(a) = (p(a)un, vn) for all a ins/ and for n = 1, 2, . . . . 
We define Hv to be a "Berberian space" [4] obtained from Hp by first 
defining a sesquilinear functional ( , ) on the space X of all bounded 
sequences in Hp by 

</n, gn> = glim (/n, gn) 

where "glim" denotes a Banach limit. If 

M = {h G X:(h,h) = 0}, 

then M is a linear subspace of X and ( , ) induces an inner product ( , ) 
on X/M. We define HT to be the completion of X/M with respect to this 
induced inner product. For each a in s/, the mapping on X that sends a 
sequence {hn} to the sequence {p(a)hn\ induces an operator ir(a) on Hv. 
Clearly T'.S/ —» B{Hir) is a representation. Let / , g be the respective 
images of [un\, {vn) in HT. Then 

11/11 = ||g|| = | | ^ | | and 

U(a)/ , g) = g l i m (p(^)w„, wn) = p(a) for every a in J2^. 

COROLLARY 24. i j <p'.&f -+ B(H) is a bounded linear map and <p(s/) 
is finite-dimensional, then <p £ ^ (s/, H). 

Proof. If {Si, . . . , Sn\ is a linear basis for <p(s/), then there are con
tinuous linear functionals (pi, . . . , <pnon*$/ such that 

ç?(a) = <pi(a)Si + . . . + <Pn(a)Sn 

for each a in J^. The preceding lemma implies that <pi, . . . , cpn £ 
^ ( j / , i f) . Thus, by Theorem 3, <p G ^ W , if) . 

Another consequence of Conjecture II is a Hahn-Banach theorem 
type theorem whose validity (or lack of it) could be used to test the 
validity of Conjecture II. 

LEMMA 25. Suppose Conjecture II is true. If s/1 is a united C*-sub-
algebra of se, e > 0, and <p :s/i —> Wln is a bounded linear map, then <p can 
be extended to a linear map \p:s/ —» 3Jtn such that ||^|| ^ \\<p{n) || + e. 

Proof. It follows from Conjecture II that there is a representation 
7T of J / I and operators A,B such that \\A\\ \\B\\ ^ \\v{n)\\ + c and 
<p(a) = Air(a)B for every a in se\. We can extend ?r to a completely 
positive map p on J / with ||p|| = 1. Define \p\s/ ~>Wn by \p(a) = 
Ap(a)B. 
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Another consequence of Conjecture II is that |||^||| = ||<p(n)|| for every 
bounded linear map <p:j/ —> 9Jîn and n = 1, 2, . . . , which was con
jectured by Loebl [12]. 

The author wishes to express his deepest gratitude to Man-Duen Choi 
for simplifying the proof of Lemma 2, for offering many helpful sugges
tions, and mainly for pointing out a serious error in the original version 
of this paper that incorrectly purported to prove that characterizing the 
maps in i^ (s$ , H) could be reduced to the case when s/ is commutative. 

Addendum. The author has recently learned the Uffe Haagerup has 
proved that every completely bounded homomorphism from se into 
B (H) is similar to a *-homomorphism. His results therefore subsume most 
of our results on bounded homomorphisms. Also Haagerup has proved 
that every bounded homomorphism iroms/ into B(H) that has a cyclic 
vector is similar to a *-homomorphism. 
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