DILATIONS AND HAHN DECOMPOSITIONS FOR LINEAR MAPS

D. W. HADWIN

Suppose \mathscr{A} is a C^* -algebra and H is a Hilbert space. Let $\operatorname{CP}(\mathscr{A}, H)$ denote the set of completely positive maps from \mathscr{A} into the set B(H) of (bounded linear) operators on H. This paper studies the vector space $\mathscr{V}(\mathscr{A}, H)$ spanned by $\operatorname{CP}(\mathscr{A}, H)$, i.e., the linear maps that are finite linear combinations of completely positive maps. From another viewpoint, a map φ is in $\mathscr{V}(\mathscr{A}, H)$ precisely when it has a decomposition $\varphi = (\varphi_1 - \varphi_2) + i(\varphi_3 - \varphi_4)$ with $\varphi_1, \varphi_2, \varphi_3, \varphi_4$ in $\operatorname{CP}(\mathscr{A}, H)$; this decomposition is analogous to the Hahn decomposition for measures [8, III.4.10] (see also Theorem 20). The analogous class of maps with "completely positive" replaced by "positive" was studied by R. I. Loebl [11] and S.-K. Tsui [17], and when \mathscr{A} is commutative, this latter class coincides with $\mathscr{V}(\mathscr{A}, H)$, since every positive linear map on a commutative C^* -algebra is completely positive [16].

Completely positive maps were introduced by W. F. Stinespring [16], who showed that CP (\mathscr{A} , H) consists of precisely those maps that are compressions of (have dilations to) representations. We show that $\mathscr{V}(\mathscr{A}, H)$ consists precisely of those maps that are compressions of homomorphisms that are similar to representations. We show that a bounded homomorphism from \mathscr{A} into B(H) is in $\mathscr{V}(\mathscr{A}, H)$ if and only if it is similar to a representation.

In the case when \mathscr{A} is the C^* -algebra C(X) of continuous complex functions on a compact Hausdorff space X, R. I. Loebl [11, Theorem 4.4] has shown that the set of maps satisfying a certain "bounded variation" condition is included in $\mathscr{V}(\mathscr{A}, H)$. We provide an example that shows that the inclusion is usually proper. The set of bounded linear maps from C(X) into B(H) can be identified with certain B(H)-valued measures on X, and we show that a map is in $\mathscr{V}(\mathscr{A}, H)$ if and only if its associated measure is a linear combination of positive operator-valued measures. We also show that a bounded operator-valued measure is a linear combination of positive operator-valued measure if and only if it can be dilated to a bounded (non-self-adjoint) spectral measure.

The key new ideas are the following two relatively simple lemmas; the first is a factorization theorem for pairs of operators A, B for which AB = 1, and the second says that any two operators have dilations that are inverses of each other.

Received December 2, 1979 and in revised form July 14, 1980.

LEMMA 1. If $A, B \in B(H)$ and AB = 1, then there is an isometry V and a positive invertible operator S such that $A = V^*S^{-1}$ and B = SV.

Proof. Let *P* be the orthogonal projection of *H* onto $(\operatorname{ran} A^*)^{\perp}$, let $\epsilon = 1/(2||A||^2)$, let $t = ||BB^*||^2/\epsilon$, and let $Q = BB^* + (t + \epsilon)P$. Clearly $Q \ge 0$. We will show that *Q* is invertible by proving that $(Qf, f) \ge \epsilon$ for every unit vector *f* in *H*. Suppose $f \in H$ and ||f|| = 1. Since $B^*A^* = 1$, we know that A^* is bounded from below; thus ran A^* is closed. Write f = u + v with $u \in \operatorname{ran} A^*$ and $v \in (\operatorname{ran} A^*)^{\perp}$, and write $u = A^*h$. Note that $||u|| \le ||A^*|| ||h|| = ||A|| ||h||$ implies that $||h||^2 \ge 2\epsilon ||u||^2$. Thus

$$\begin{aligned} (Qf, f) &= (BB^*u, u) + (t + \epsilon) \|v\|^2 + 2 \operatorname{Re} (BB^*u, v) + (BB^*v, v) \\ &\ge (BB^*u, u) + (t + \epsilon) \|v\|^2 - 2 \|BB^*\| \|u\| \|v\|. \end{aligned}$$

Since

$$(BB^*u, u) = ||B^*u||^2 = ||B^*A^*h||^2 = ||h||^2 \ge 2\epsilon ||u||^2,$$

we conclude that

$$\begin{aligned} (Qf,f) &\geq 2\epsilon \|u\|^2 + (t+\epsilon) \|v\|^2 - 2\|BB^*\| \|u\| \|v\| \\ &= \epsilon(\|u\|^2 + \|v\|^2) + (\epsilon^{1/2}\|u\| - t^{1/2}\|v\|)^2 \geq \epsilon. \end{aligned}$$

Thus Q is invertible. Let S be the positive square root of Q. Then S is positive and invertible and

$$S^2A^* = (BB^* + (t+\epsilon)P)A^* = B.$$

Let $V = SA^* = S^{-1}B$. Then $V^*V = (AS)(S^{-1}B) = 1$; whence V is an isometry, and $A = V^*S^{-1}$, and B = SV. This completes the proof.

LEMMA 2. If $A, B \in B(H)$, then there is a Hilbert space $H_1 \supset H$ and an invertible operator S in $B(H_1)$ such that if P is the projection from H_1 outo H, then $PS^{-1}|H = A$ and PS|H = B.

Proof. If

$$S = \begin{pmatrix} A & 1 \\ 1 - BA & -B \end{pmatrix} \text{ then } S^{-1} = \begin{pmatrix} B & 1 \\ 1 - AB & -A \end{pmatrix}.$$

The preceding 2×2 matrix argument, which replaces the author's original 8×8 version, is due to Man-Duen Choi.

Suppose $\varphi: A \to B(H)$ is a linear map. For each positive integer n let \mathfrak{M}_n denote the $n \times n$ complex matrices and let

$$\varphi^{(n)}:A \otimes \mathfrak{M}_n \to B(H) \otimes \mathfrak{M}_n$$

be the linear map defined by $\varphi^{(n)}(a \otimes b) = \varphi(a) \otimes b$. The map φ is *positive* if $\varphi(a) \ge 0$ whenever $a \in \mathscr{A}$ and $a \ge 0$. The map φ is *completely positive* if $\varphi^{(n)}$ is positive for n = 1, 2, ..., and φ is *completely bounded* if

 $\sup_n \|\varphi^{(n)}\| < \infty$. We also define $\varphi^* \colon \mathscr{A} \to B(H)$ by $\varphi^*(a) = \varphi(a^*)^*$, and we define

Re $\varphi = (\varphi + \varphi^*)/2$ and Im $\varphi = (\varphi - \varphi^*)/2i$.

We are now ready for the main results.

THEOREM 3. If $\varphi \colon \mathscr{A} \to B(H)$, then the following are equivalent: (1) $\varphi \in \mathscr{V}(\mathscr{A}, H)$;

(2) there is a positive integer n, Hilbert spaces H_i , completely positive maps $\psi_i: \mathscr{A} \to B(H_i)$, and operators $A_i: H_i \to H$, $B_i: H \to H_i$, for $i = 1, 2, \ldots, n$ such that $\varphi(a) = \sum_i A_i \psi_i(a) B_i$ for every a in \mathscr{A} ;

(3) there is a representation $\pi: \mathscr{A} \to B(H_{\pi})$, a positive invertible operator S in $B(H_{\pi})$, and an isometry $V: H \to H_{\pi}$ such that

 $\varphi(a) = V^*[S^{-1}\pi(a)S]V$

for every a in \mathcal{A} .

Proof. Clearly $(3) \Rightarrow (2)$. To prove $(2) \Rightarrow (1)$ assume that (2) holds. There is no harm in assuming n = 1, since $\mathscr{V}(\mathscr{A}, H)$ is closed under addition. Write $\varphi(\cdot) = A\psi(\cdot)B^*$ with ψ completely positive. Since $C\psi(\cdot)C^*$ is completely positive for every operator C, we can conclude $\varphi \in \mathscr{V}(\mathscr{A}, H)$ from the polarization identity.

$$\varphi(a) = \frac{1}{4} [(A + B)\psi(a)(A + B)^* - (A - B)\psi(a)(A - B)^* + i(A + iB)\psi(a)(A + iB)^* - i(A - iB)\psi(a)(A - iB)^*)$$

for every a in \mathscr{A} .

We next prove $(1) \Rightarrow (3)$. Suppose $\varphi = \alpha_1 \psi_1 + \ldots + \alpha_n \psi_n$ where $\alpha_1, \ldots, \alpha_n$ are scalars and $\psi_1, \ldots, \psi_n \in CP(\mathscr{A}, H)$. It follows from Stinespring's theorem [16] that there are Hilbert spaces H_i , representations $\pi_i: \mathscr{A} \to B(H_i)$, and operators $W_i: H \to H_i$ for $i = 1, 2, \ldots, n$ such that

$$\varphi(a) = \alpha_1 W_1^* \pi_1(a) W_1 + \ldots + \alpha_n W_n^* \pi_n(a) W_n$$

for every a in \mathscr{A} . Define $A: H \to H_1 \oplus \ldots \oplus H_n$ by

 $Ah = \alpha_1 W_1 h \oplus \ldots \oplus \alpha_n W_n h,$

and define $B: H_1 \oplus \ldots \oplus H_n \to H$ by

$$B(h_1 \oplus \ldots \oplus h_n) = W_1^*h_1 + W_2^*h_2 + \ldots + W_n^*h_n.$$

Let $\rho = \pi_1 \oplus \ldots \oplus \pi_n$. Then ρ is a representation of \mathscr{A} and $\varphi(a) = A\rho(a)B$ for every a in \mathscr{A} . Since we are trying to prove that φ can be dilated to a map that is similar to a representation, there is no harm in replacing φ by some dilation of φ . In particular, we can replace φ by a direct sum of arbitrarily many copies of φ . Thus we can assume that H and $H_1 \oplus \ldots \oplus H_{\pi}$ have the same dimension. Hence there is no harm in

assuming that $H = H_1 \oplus \ldots \oplus H_n$. Thus $A, B \in B(H)$, and, by Lemma 2, there is a Hilbert space $H_{\pi} \supset H$ and an invertible operator Tin $B(H_{\pi})$ such that $PT^{-1}|H = A$ and PT|H = B, where P is the projection from H_{π} onto H. Let T = US be the polar decomposition of T with U unitary and S positive (and invertible). Define $\pi: \mathscr{A} \to B(H_{\pi})$ by

$$\pi(a) = U^*(\rho(a) \oplus 0) U,$$

and define $V: H \to H_{\pi}$ by Vh = h. Then π is a representation, V is an isometry, and

$$\varphi(a) = V^* S^{-1} \pi(a) S V$$

for every a in \mathscr{A} . This completes the proof.

Note that the representation π in the preceding theorem is not necessarily nondegenerate. In fact, if $1 \in \mathscr{A}$, and π is nondegenerate, then $\pi(1) = 1$, which would imply that $\varphi(1) = 1$ for every map φ that is a compression of a map that is similar to π . It turns out that if $\varphi(1) = 1$, then the representation π in the preceding theorem can be chosen so that $\pi(1) = 1$.

THEOREM 4. If $\varphi \in \mathscr{V}(\mathscr{A}, H)$ and $\varphi(1) = 1$, then there is a representation $\pi: \mathscr{A} \to B(H_{\pi})$, a positive invertible operator S in $B(H_{\pi})$, and an isometry $V: H \to H_{\pi}$ such that

 $\varphi(a) = V^*[S^1\pi(a)S]V$

for every a in \mathcal{A} and such that $\pi(1) = 1$.

Proof. If we follow the proof of $(1) \Rightarrow (3)$ in the preceding theorem, we can reduce the present proof to the case when there is a representation $\pi: \mathscr{A} \to B(H)$ such that $\pi(1) = 1$ (this follows from [16]), and operators A, B in B(H) such that $\varphi(a) = A\pi(a)B$ for every a in \mathscr{A} . Since $\varphi(1) = 1 = \pi(1)$, we conclude AB = 1. Thus, by Lemma 1, there is a positive invertible operator S and an isometry V such that $A = V^*S^{-1}$ and B = SV. This completes the proof.

In [1, Theorem 1.2.3] W. Arveson proved that if \mathscr{S} is a norm closed self-adjoint linear subspace of \mathscr{A} with $1 \in \mathscr{S}$, and if $\varphi \in CP(\mathscr{S}, H)$, then $\varphi = \psi | \mathscr{S}$ for some ψ in CP (\mathscr{A}, H) . Clearly Arveson's extension theorem implies its analogue for $\mathscr{V}(\mathscr{A}, H)$.

LEMMA 5. If \mathscr{S} is a normed closed self-adjoint linear subspace of \mathscr{A} with $1 \in \mathscr{S}$, and if $\varphi \in V(\mathscr{S}, H)$, then $\varphi = \psi | S$ for some ψ in $\mathscr{V}(\mathscr{A}, H)$.

The next lemma shows that the class of maps that are finite linear combinations of completely positive maps is closed under composition.

LEMMA 6. If $\varphi \in \mathscr{V}(\mathscr{A}, H)$, H_1 is a Hilbert space, and $\psi \in \mathscr{V}(C^*(\varphi(\mathscr{A})), H_1)$,

830 then

 $\psi \circ \varphi \in \mathscr{V}(\mathscr{A}, H_1).$

Proof. It follows from the preceding lemma that we can assume that $\psi \in \mathscr{V}(B(H), H_1)$. Write

$$\varphi = (\varphi_1 - \varphi_2) + i(\varphi_3 - \varphi_4)$$
 and $\psi = (\psi_1 - \psi_2) + i(\psi_3 - \psi_4)$

where $\varphi_j \in CP(\mathscr{A}, H)$ and $\psi_j \in CP(B(H), H_1)$ for j = 1, 2, 3, 4. Clearly $\psi \circ \varphi$ is a linear combination of the completely positive maps $\psi_j \circ \varphi_k$ $(1 \leq j, k \leq 4)$.

COROLLARY 7. Suppose $\varphi: \mathscr{A} \to B(H)$ is a bounded linear map and

$$\pi: C^*(\varphi(\mathscr{A})) \to B(H_\pi)$$

is a one to one *-homomorphism. Then $\varphi \in \mathscr{V}(\mathscr{A}, H)$ if and only if $\pi \circ \varphi \in \mathscr{V}(\mathscr{A}, H_{\pi})$.

Proof. This follows from Lemma 6 and the fact that $\varphi = \pi^{-1} \circ (\pi \circ \varphi)$.

The following example shows that $\mathscr{V}(\mathscr{A}, H)$ is generally not closed under norm limits (and a posteriori limits in the standard notions of pointwise convergence). This example relies on the observation of Loebl [11] that every map in $\mathscr{V}(\mathscr{A}, H)$ is completely bounded.

Example 8. Let

$$\mathscr{A} = \sum_{n=1}^{\oplus} \mathfrak{M}_{n} = \{\{A_{n}\} \colon ||A_{n}|| \to 0, A_{n} \in \mathfrak{M}_{n} \text{ for } n \geq 1\}.$$

Let A^{t} denote the transpose of a complex matrix A. Define $\varphi: \mathscr{A} \to \mathscr{A}$ by

$$\varphi(\{A_n\}) = \{A_n^{t}/n^{1/2}\}.$$

For each positive integer k define $\varphi_k : \mathscr{A} \to \mathscr{A}$ by

 $\varphi_k(\{A_n\}) = \{B_n\}$

where

$$B_n = \begin{cases} A_n^{t}/n^{1/2} & \text{if } 1 \leq n \leq k \\ A_n/n^{1/2} & \text{if } n > k. \end{cases}$$

If $\mathscr{A} \subseteq B(H)$, then clearly $\varphi_k \in \mathscr{V}(\mathscr{A}, H)$ for $k = 1, 2, \ldots$. Since $\|\varphi_k - \varphi\| \to 0$ (since $\|\varphi_k - \varphi\| \leq 2/k^{1/2}$ for $k = 1, 2, \ldots$), we know that $\varphi_k \to \varphi$ in all of the familiar (point-norm, point-strong, point-weak) topologies. However, $\varphi \notin \mathscr{V}(\mathscr{A}, H)$ because φ is not completely bounded. To see this, note that Arveson [1, p. 144] shows that if k is a positive integer and $\psi: \mathfrak{M}_n \to \mathfrak{M}_n$ is defined by $\psi(A) = A^t$, then $\|\psi^{(k)}\| \geq k$. Thus (by looking at kth coordinates)

$$\|\varphi^{(k)}\| \ge \|\psi^{(k)}/k^{1/2}\| \ge k^{1/2}$$
 for $k = 1, 2, \dots$

In spite of the preceding example we define a norm $\| \|_{\mathscr{V}}$ on $\mathscr{V}(\mathscr{A}, H)$ that makes $\mathscr{V}(\mathscr{A}, H)$ into a Banach space. First note that if $\psi \in CP(\mathscr{A}, H)$ and r is a non-negative number, then $r\psi \in CP(\mathscr{A}, H)$. Thus if z_1, \ldots, z_n are scalars and $\psi_1, \ldots, \psi_n \in CP(\mathscr{A}, H)$, then we can write

$$z_1\psi_1 + \ldots + z_n\psi_n = \lambda_1|z_1|\psi_1 + \ldots + \lambda_n|z_n|\psi_n|$$

where $|\lambda_1| = \ldots = |\lambda_n| = 1$.

We define the norm $\| \|_{\mathscr{V}}$ on $\mathscr{V}(\mathscr{A}, H)$ by

$$\|\varphi\|_{\mathscr{V}} = \inf \left\{ \sum_{j=1}^{n} \|\psi_{j}\| \colon \varphi = \sum_{j=1}^{n} \lambda_{j}\psi_{j}; \psi_{1}, \ldots, \psi_{n} \in \operatorname{CP}(\mathscr{A}, H); \\ |\lambda_{1}| = \ldots = |\lambda_{n}| = 1 \right\}.$$

It is easily seen that $\| \|_{\mathscr{V}}$ is indeed a norm on $\mathscr{V}(\mathscr{A}, H)$ that dominates $\| \|$. Furthermore, it is clear that $\| \varphi \| = \| \varphi \|_{\mathscr{V}}$ for every φ in CP (\mathscr{A}, H) .

It is useful to compare $\| \|_{\mathscr{V}}$ with some other numerical quantities that arise naturally from the preceding characterizations of the elements of $\mathscr{V}(\mathscr{A}, H)$. Define functions $\alpha, \beta, \gamma: \mathscr{V}(\mathscr{A}, H) \to [0, \infty)$ by

$$\alpha(\varphi) = \inf \left\{ \sum_{j=1}^{4} \|\varphi_j\| \colon \varphi = (\varphi_1 - \varphi_2) + i(\varphi_3 - \varphi_4); \\ \varphi_1, \dots, \varphi_4 \in \operatorname{CP}(\mathscr{A}, H) \right\},\$$

 $\beta(\varphi) = \inf \{ \|A\| \|B\| : \varphi(\cdot) = A\pi(\cdot)B \text{ for some representation } \pi \text{ of } \mathscr{A} \},\$

$$\gamma(\varphi) = \inf \{ \|S\| \|S^{-1}\| : \varphi(\cdot) = V^* S^{-1} \pi(\cdot) SV \text{ for some isometry } V \\ \text{and some representation } \pi \text{ of } \mathscr{A}, \text{ and } S \text{ invertible} \}.$$

The following lemma is based on very crude estimates involving the proofs of Lemma 2 and Theorem 3. The main significance of these estimates is contained in the corollary and in Theorem 11.

LEMMA 9. For each φ in $\mathscr{V}(\mathscr{A}, H)$ we have (1) $\|\varphi\|_{\mathscr{V}} \leq \alpha(\varphi) \leq 2 \|\varphi\|_{\mathscr{V}}$, (2) $\beta(\varphi) \leq \|\varphi\|_{\mathscr{V}} \leq 4\beta(\varphi)$, (3) $\beta(\varphi) \leq \gamma(\varphi) \leq 4(1 + \beta(\varphi))^2$.

Proof. (1) is obvious.

A key idea in the proofs of (2) and (3) is that the added restriction ||A|| = ||B|| in the definition of $\beta(\varphi)$ does not alter $\beta(\varphi)$.

(2). The inequality $\beta(\varphi) \leq \|\varphi\|_{\mathscr{V}}$ follows from the proof of $(1) \Rightarrow (3)$ in Theorem 3. The inequality $\|\varphi\|_{\mathscr{V}} \leq 4\beta(\varphi)$ follows from the proof of $(2) \Rightarrow (1)$ in Theorem 3.

(3). The inequality $\beta(\varphi) \leq \gamma(\varphi)$ is obvious. The inequality $\gamma(\varphi) \leq 4(1 + \beta(\varphi))^2$ follows from the proof of Lemma 2.

COROLLARY 10. Suppose $\{\varphi_n\}$ is a net in $\mathscr{V}(\mathscr{A}, H)$. If one of the nets $\{\|\varphi_n\|_{\mathscr{V}}\}, \{\alpha(\varphi_n)\}, \{\beta(\varphi_n)\}, \{\gamma(\varphi_n)\}\}$ is bounded, then so are the others.

In view of Example 8, the following theorem seems a little surprising.

THEOREM 11. If $\{\varphi_n\}$ is a $|| \parallel_{\mathscr{V}}$ -bounded net in $\mathscr{V}(\mathscr{A}, H)$ and $\varphi_n(a) \rightarrow \varphi(a)$ in the weak operator topology for every a in \mathscr{A} , then $\varphi \in \mathscr{V}(\mathscr{A}, H)$.

Proof. Since $\{\alpha(\varphi_n)\}$ is bounded, we can find $\| \|$ -bounded nets $\{\varphi_{n1}\}, \{\varphi_{n2}\}, \{\varphi_{n3}\}, \{\varphi_{n4}\}$ in CP (\mathcal{A}, H) such that, for each n, we have

 $\varphi_n = (\varphi_{n1} - \varphi_{n2}) + i(\varphi_{n3} - \varphi_{n4}).$

By replacing $\{\varphi_n\}$ by an appropriate subnet if necessary, we can assume that there are maps $\psi_1, \psi_2, \psi_3, \psi_4$ in CP (\mathscr{A}, H) such that $\varphi_{nk}(a) \rightarrow \psi_k(a)$ in the weak operator topology for k = 1, 2, 3, 4 and every a in \mathscr{A} . Hence $\varphi \in \mathscr{V}(\mathscr{A}, H)$ since $\varphi = (\psi_1 - \psi_2) + i(\psi_3 - \psi_4)$.

COROLLARY 12. Suppose $\varphi: A \to B(H)$, \mathcal{D} is a dense subset of \mathcal{A} , and D is a dense subset of H. Then $\varphi \in \mathcal{V}(\mathcal{A}, H)$ if and only if there is a positive number M such that for each $\epsilon > 0$, each finite subset \mathcal{F} of \mathcal{A} , and each finite subset F of H there is a representation $\pi: \mathcal{A} \to B(H_{\pi})$ and operators $A, B: H \to H_{\pi}$ such that

 $||A|| ||B|| \leq M$ and $|(A^*\pi(a)Bf, g) - (\varphi(a)f, g)| < \epsilon$

for each a in \mathcal{F} and each f, g in F.

THEOREM 13. With the norm $|| \mid|_{\mathbf{r}}$ the space $\mathscr{V}(\mathscr{A}, H)$ is a Banach space. Furthermore, $\mathscr{V}(B(H), H)$ is a Banach algebra with composition as multiplication.

Proof. The only part of the proof that is not completely elementary involves completeness. To this end suppose that $\{\varphi_n\}$ is a sequence in $\mathscr{V}(\mathscr{A}, H)$ such that $\sum_n \|\varphi_n\|_{\mathscr{V}} < \infty$. Since $\sum_n \alpha(\varphi_n) < \infty$, we can find sequences $\{\varphi_{n1}\}, \{\varphi_{n2}\}, \{\varphi_{n3}\}, \{\varphi_{n4}\}$ in CP (\mathscr{A}, H) such that

$$\varphi_{\pi} = (\varphi_{n1} - \varphi_{n2}) + i(\varphi_{n3} - \varphi_{n4})$$
 for $n = 1, 2, ...$ and
 $\sum_{n} \|\varphi_{nk}\| < \infty$ for $k = 1, 2, 3, 4.$

Since $\| \|$ and $\| \|_{\mathscr{V}}$ agree on CP (\mathscr{A}, H) , it follows that $\sum_{n} \varphi_{nk}$ is $\| \|_{\mathscr{V}}$ -convergent for k = 1, 2, 3, 4. Thus $\sum_{n} \varphi_{n}$ is $\| \|_{\mathscr{V}}$ -convergent. Hence $\mathscr{V}(\mathscr{A}, H)$ is complete.

The question of R. V. Kadison [10] that asks whether every bounded unital homomorphism from a C^* -algebra \mathscr{A} into B(H) is similar to a *-homomorphism is still unanswered, although significant progress has been made [5], [6], [2], [7], [18]. (Theorem 16 shows that the answer is

832

affirmative whenever the homomorphism is in $\mathscr{V}(\mathscr{A}, H)$). We first need two lemmas; the first is due to Sarason [15], and the second is probably well known.

LEMMA 14. Suppose \mathscr{S} is a unital subalgebra of B(H) and P is a projection in B(H) such that the mapping $S \to PSP$ is a homomorphism on \mathscr{S} . If Q is the smallest \mathscr{S} -invariant projection (i.e., $(1 - Q)\mathscr{S}Q = 0)$ whose range contains ran P, then Q - P is an \mathscr{S} -invariant projection.

LEMMA 15. Suppose $\pi: \mathscr{A} \to B(H)$ is a unital representation of the C*-algebra \mathscr{A} and $\pi = \pi_1 \oplus \pi_2$ relative to $H = H_1 \oplus H_2$. Suppose Mis a (closed) subspace of H such that $M \cap H_1 = 0$ and $M + H_1 = H$. Let P be the non-orthogonal projection of H onto M along H_1 , and define $\rho: \mathscr{A} \to B(M)$ by $\rho(a) = P\pi(a)|M$. Then there is an invertible operator $S: H_2 \to M$ such that $\rho(a) = S\pi_2(a)S^{-1}$ for every a in \mathscr{A} .

Proof. Actually, the required operator S is $P|H_2$. Since ker $P = H_1$, we can write $P = \begin{pmatrix} 0 & A \\ 0 & 1 \end{pmatrix}$ relative to $H = H_1 \oplus H_2$. If $T = \begin{pmatrix} 1 & A \\ 0 & 1 \end{pmatrix}$, then $T^{-1} = \begin{pmatrix} 1 & -A \\ 0 & 1 \end{pmatrix}$. Clearly, $T|H_2 = P|H_2$. Let $S = T|H_2$. Since $T(H_2) = P(H_2) = M$, it follows that $S^{-1} = T^{-1}|M$. A simple matrix calculation shows that

$$T\pi(a)T^{-1}P = P\pi(a)P$$
 for every a in \mathscr{A} .

Thus

$$S\pi_{2}(a)S^{-1} = S(\pi(a)|H_{2})S^{-1} = T\pi(a)T^{-1}|M$$

= $P\pi(a)|M = \rho(a)$ for every *a* in *A*.

THEOREM 16. Suppose $\rho: A \to B(H)$ is a bounded unital homomorphism. Then ρ is similar to a *-homomorphism if and only if $\rho \in \mathcal{V}(\mathcal{A}, H)$.

Proof. First suppose that $\rho \in \mathscr{V}(\mathscr{A}, H)$. It follows from Theorem 4 that there is a Hilbert space $H_{\pi} \supset H$, an invertible operator S in $B(H_{\pi})$, and a *-homomorphism $\pi : \mathscr{A} \to B(H_{\pi})$ such that if P is the projection of H_{π} onto H, then

$$\rho(a) = PS^{-1}\pi(a)S|H$$
 for every a in \mathscr{A} .

It follows from Lemma 14 that there is a subspace M of H_{π} that contains H such that M and $M \ominus H$ are invariant for $S^{-1}\pi(\mathscr{A})S$. There is no harm in assuming that $M = H_{\pi}$, since the mapping $a \to S^{-1}\pi(a)S|M$ is similar to the mapping $a \to \pi(a)|S(M)$, which is a *-homomorphism (because S(M) is $\pi(\mathscr{A})$ -invariant and thus $\pi(\mathscr{A})$ -reducing). Thus we can assume that $H^{\perp} = H_{\pi} \ominus H$ is invariant for $S^{-1}\pi(\mathscr{A})S$. Let $H_1 = S(H^{\perp})$ and $H_2 = H_1^{\perp}$, and let $Q = SPS^{-1}$. Since H^{\perp} is invariant for $S^{-1}\pi(\mathscr{A})S$, we know that H_1 is invariant for (and thus reduces) $\pi(\mathscr{A})$.

Write $\pi = \pi_1 \oplus \pi_2$ relative to $H_{\pi} = H_1 \oplus H_2$. Clearly Q is the nonorthogonal projection of H_{π} onto S(H) along H_1 . It follows from Lemma 15 that π_2 is similar to the map $a \to Q\pi(a)|S(H)$, which is clearly similar to ρ . Thus ρ is similar to a *-homomorphism. The other half of the theorem follows from Theorem 3. This completes the proof.

COROLLARY 17. Suppose $\rho: \mathscr{A} \to B(H)$ and $\tau: C^*(\rho(\mathscr{A})) \to B(H_1)$. If ρ and τ are both similar to *-homomorphisms, then so is $\tau \circ \rho$. If τ is a one to one *-homomorphism and $\tau \circ \rho$ is similar to a *-homomorphism, then so is ρ .

COROLLARY 18. Suppose $\rho: \mathscr{A} \to B(H)$ is a bounded homomorphism, $\{\pi_n\}$ is a net of representations of \mathscr{A} , and $\{A_n\}$, $\{B_n\}$ are bounded nets of operators such that $A_n\pi_n(a)B_n \to \rho(a)$ in the weak operator topology for each a in \mathscr{A} . Then ρ is similar to a *-homomorphism.

Note that the preceding corollary implies Theorem 7 in [10].

Stinespring's theorem [16] can be viewed as an extension of a theorem of Naimark [13] about dilating certain positive operator-valued measures to self-adjoint spectral measures. Accordingly, our results show that certain operator-valued measures can be dilated to non-self-adjoint spectral measures.

Suppose that X is a compact Hausdorff space. A B(H)-valued measure on X is a map E from the Borel sets of X into B(H) that is countably additive with respect to the weak operator topology on B(H). A B(H)valued measure E is

(a) bounded if $||E|| = \sup \{ ||E(M)|| : M \text{ a Borel set} \} < \infty$,

(b) regular if the complex measure $E_{f,g}$ defined by $E_{f,g}(M) = (E(M)f, g)$ is regular for every f, g in H,

(c) self-adjoint if $E(M)^* = E(M)$ for every Borel set M,

(d) positive if $E(M) \ge 0$ for every Borel set M,

(e) spectral if $E(M \cap N) = E(M)E(N)$ for all Borel sets M and N.

Let meas (X, B(H)) denote the set of all bounded regular B(H)-valued measures on X. If E is a B(H)-valued measure on X, define the measure E^* by $E^*(M) = E(M)^*$. Each measure E in meas (X, B(H)) uniquely determines a bounded linear mapping $\Phi_E: C(X) \to B(H)$ defined by

 $(\Phi_E(\varphi)f, g) = \int_X \varphi dE_{f,g}$

for φ in C(X) and f, g in H.

The author was unable to find the following proposition in the literature. The main ideas of the proof (which is omitted) appear in [8, VI.7., XVII.2.5] and [3, Theorem 19].

PROPOSITION 19. Suppose X is a compact Hausdorff space. The mapping

 $E \to \Phi_E$ from meas (X, B(H)) to the set of linear operators from C(X) to B(H) is a Banach space isomorphism. In addition

- (1) $||E|| \leq ||\Phi_E|| \leq 4 ||E||$ for every E in meas (X, B(H)),
- (2) $\Phi_{E^*} = \Phi_E^*$ for every E in meas (X, B(H)),
- (3) Φ_E is (completely) positive if and only if E is positive.

Thus bounded linear mappings from C(X) to B(H) correspond to measures in meas (X, B(H)), and self-adjoint (completely positive) mappings correspond to self-adjoint (positive) measures. Furthermore, bounded homomorphisms from C(X) to B(H) correspond to spectral measures in meas (X, B(H)) [8, XV.6.2]; if the homomorphism is a *-homomorphism, then the measure is self-adjoint. The theorem of Naimark [13] mentioned earlier says that a positive measure E in meas (X, B(H)) with $||E|| \leq 1$ can be dilated to a self-adjoint spectral measure. (Note that we do not require that E(X) = 1.) Naimark's theorem is a special case of Stinespring's theorem [16], which says that completely positive maps can be dilated to *-homomorphisms. In the same circle of ideas, the following theorem is a reformulation of Theorem 3 in the case when $\mathscr{A} = C(X)$.

THEOREM 20. Suppose X is a compact Hausdorff space and $E \in \text{meas}(X, B(H))$. The following are equivalent.

(1) E has a Hahn decomposition $E = (E_1 - E_2) + i(E_3 - E_4)$ where E_1, E_2, E_3, E_4 are positive measures in meas (X, B(H)),

(2) $\Phi_E \in \mathscr{V}(C(X), H),$

(3) there is a Hilbert space H_1 containing H and a spectral measure F in meas (X, B(H)) such that if P is the orthogonal projection of H_1 onto H, then PF(M)|H = E(M) for every Borel subset M of X.

Note that it follows from Theorem 4 that if E(X) = 1 in the preceding theorem, then the measure F can be chosen so that F(X) = 1. Note also that the measure F in the preceding theorem is (see Theorem 3) similar to a self-adjoint spectral measure. In fact, every spectral measure in meas (X, B(H)) is similar to a self-adjoint spectral measure [8, XV.6.2]; perhaps Theorem 16 can be used to reprove this result by showing that every spectral measure in meas (X, B(H)) has a Hahn decomposition.

Each measure E in meas (X, B(H)) can be uniquely written as a sum Re E + i Im E where Re E and Im E are Hermitian-valued measures. The condition that a measure E in meas (X, B(H)) have a Hahn decomposition is a sort of bounded variation condition in that it is clearly equivalent to the condition that there is a positive measure F in meas (X, B(H)) such that $\pm \text{Re } E$, $\pm \text{Im } E \leq F$. Unfortunately, the existence of such an F does not seem to lead to the existence of some canonically defined total variation measure for E. In [11] R. I. Loebl defines a notion of bounded variation for linear maps; i.e., a linear map $\varphi: \mathscr{A} \to$ B(H) has finite total variation if

$$\sup\left\{\left|\left|\sum_{i=1}^{n} |\varphi(a_i)|\right|\right|: n \ge 1, 0 \le a_1, \ldots, a_n \in \mathscr{A}, \sum_i a_i \le 1\right\} < \infty.$$

(Here $|A| = (A^*A)^{1/2}$.)

Loebl [11, Theorem 4.4] proved that if $E \in \text{meas}(X, B(H)), E = E^*$, and Φ_E has finite total variation, then $\Phi_E \in \mathscr{V}(C(X), H)$. The following example shows that the converse of this result is false.

Example 21. Let $X = \{n/n!: n = 0, 1, ...\}$, and let $\{e_1, ...\}$ be an orthonormal basis for H. Let $A_0 = B_0 = 0$, and for n = 1, 2, ..., define operators A_n and B_n on H by

$$A_n f = (1/n)[(f, e_1)e_n + (f, e_n)e_1] \text{ and} B_n f = (1/n^2)(f, e_1)e_1 + (f, e_n)e_n \text{ for } f \text{ in } H$$

A matrix calculation shows that $E(\{n/n!\}) = A_n$ defines a self-adjoint measure E in meas (X, B(H)). Since $\sum_n |A_n|$ does not converge in the weak operator topology, it is clear that Φ_E does not have finite total variation in the sense of Loebl. However, $F(\{n/n!\}) = B_n$ defines a positive operator-valued measure F in meas (X, B(H)) such that $\pm \operatorname{Re} E, \pm \operatorname{Im} E \leq F$. To see this, note that for $n \geq 0$, we have $B_n \pm A_n$ has rank 1 and positive trace; whence $B_\pi \pm A_\pi \geq 0$ for $n \geq 0$. Thus $\Phi_E \in \mathscr{V}(C(X), H)$ (because E has a Hahn decomposition), although Φ_E does not have finite total variation.

Complete boundedness is also related to this discussion. In [11] Loebl proved that every map in $\mathscr{V}(\mathscr{A}, H)$ is completely bounded, and this author knows of no example of a completely bounded linear map from a C^* -algebra \mathscr{A} into B(H) that is not in $\mathscr{V}(\mathscr{A}, H)$. The following example gives an idea of some of the relationships involved.

Example 22. Let X be as in Example 21. Suppose $E(\{n/n\}\}) = D_n$ defines a measure in meas (X, B(H)) and that Φ_E is completely bounded. Claim: $\sum_n D_n * D_n$ converges weakly to a bounded operator. To prove this, let a_n be the (continuous) characteristic function of $\{n/n\}$ for $n = 1, 2, \ldots$. Let $\varphi = \Phi_E$ and let

 $s = \sup \{ \|\varphi^{(n)}\| : n = 1, 2, \ldots \}.$

For each positive integer *n*, define T_n in $C(X) \otimes \mathfrak{M}_n$ by

$$T_n = \begin{pmatrix} a_1 & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ a_n & 0 & & 0 \end{pmatrix}.$$

Then $||T_n|| = 1$ implies that

$$\left\| \sum_{k=1}^{n} D_{k}^{*} D_{k} \right\|^{1/2} = \left\| \varphi^{(n)}(T_{n}) \right\| \leq s \quad \text{for } n \geq 1.$$

Thus $\sum_{k} D_{k}^{*} D_{k} \leq s^{2}$. This proves the claim. Note that the claim does not imply that $\Phi_{E} \in \mathscr{V}(C(X), H)$.

Let CB (\mathscr{A}, H) denote the set of completely bounded linear maps from \mathscr{A} into B(H). The space CB (\mathscr{A}, H) is a Banach space with the norm ||| ||| defined by

 $|||\varphi||| = \sup_n \|\varphi^{(n)}\|.$

Conjecture I. $CB(\mathscr{A}, H) = \mathscr{V}(\mathscr{A}, H)$ and the norms ||| ||| and $|||_{\mathscr{V}}$ are equivalent.

To prove the preceding conjecture one needs to consider only certain finite-dimensional cases.

Conjecture II. If $\varphi: \mathscr{A} \to \mathfrak{M}_n$ is a bounded linear map, then $\beta(\varphi) \leq ||\varphi^{(n)}||$.

To see that Conjecture II implies Conjecture I, assume that Conjecture II is true and suppose that $\varphi \in CB(\mathscr{A}, H)$. Let $\{P_n\}$ be a net of finite rank projections in B(H) that converges strongly to 1. For each n define $\varphi_n : \mathscr{A} \to B(H)$ by

 $\varphi_n(a) = P_n \varphi(a) P_n.$

It follows from Conjecture II that $\sup_n \beta(\varphi_n) \leq |||\varphi|||$. Since $\varphi_n(a) \rightarrow \varphi(a)$ in the weak operator topology for every a in \mathscr{A} , it follows from Theorem 11 that $\varphi \in \mathscr{V}(\mathscr{A}, H)$. It follows from the proof of Theorem 11 that

 $\alpha(\varphi) \leq 4 \limsup_{n \in \alpha(\varphi_n)} \alpha(\varphi_n);$

thus, by Lemma 9, $\|\varphi\|_{\mathscr{V}} \leq 8 |||\varphi|||$ since $\|\varphi^{(k)}\| \leq \beta(\varphi^{(k)}) \leq \beta(\varphi)$ for $k = 1, 2, \ldots$. Thus the norms $\|\|\varphi\|$ and $\|\|\|\|$ are equivalent.

It is clear from the preceding argument that Conjecture I is equivalent to the statement:

 $\sup \{\beta(\varphi) : \varphi : A \to \mathfrak{M}_n \text{ linear, } |||\varphi||| = 1\} < \infty.$

We next prove Conjecture II in the case when n = 1.

LEMMA 23. If φ is a continuous linear functional on \mathscr{A} , then there is a representation $\pi: \mathscr{A} \to B(H_{\pi})$ and vectors $f, g \in H_{\pi}$ such that $||f|| ||g|| = ||\varphi||$ and $\varphi(a) = (\pi(a)f, g)$ for every a in \mathscr{A} .

Proof. It follows from Proposition 1.17.1 in [14] that $\varphi \in \mathscr{V}(\mathscr{A}, H)$. It follows from Theorem 3 that there is a representation $\rho: \mathscr{A} \to B(H_{\rho})$ and vectors $u, v \in H_{\rho}$ such that $\varphi(a) = (\rho(a)u, v)$ for every a in \mathscr{A} . Clearly we can assume that ρ is unitarily equivalent to $\rho \oplus \rho \oplus \ldots$. Thus $\rho(\mathscr{A})$ has "property C" as defined in [9]. Thus $\rho(\mathscr{A})$ has "property D(1)" as defined in [9]. Hence there are sequences $\{u_n\}$, $\{v_n\}$ in H_{ρ} such that

$$||u_n|| = ||v_n|| \le (||\varphi|| + 1/n)^{1/2}$$
 for $n = 1, 2, ...$

and such that $\varphi(a) = (\rho(a)u_n, v_n)$ for all a in \mathscr{A} and for $n = 1, 2, \ldots$. We define H_{π} to be a "Berberian space" [4] obtained from H_{ρ} by first defining a sesquilinear functional \langle , \rangle on the space X of all bounded sequences in H_{ρ} by

$$\langle f_n, g_n \rangle = \text{glim} (f_n, g_n)$$

where "glim" denotes a Banach limit. If

$$M = \{h \in X : \langle h, h \rangle = 0\},\$$

then M is a linear subspace of X and \langle , \rangle induces an inner product (,) on X/M. We define H_{π} to be the completion of X/M with respect to this induced inner product. For each a in \mathscr{A} , the mapping on X that sends a sequence $\{h_n\}$ to the sequence $\{\rho(a)h_n\}$ induces an operator $\pi(a)$ on H_{π} . Clearly $\pi:\mathscr{A} \to B(H_{\pi})$ is a representation. Let f, g be the respective images of $\{u_n\}, \{v_n\}$ in H_{π} . Then

$$\|f\| = \|g\| = \|\varphi^{1/2}\| \text{ and}$$

($\pi(a)f, g$) = glim ($\rho(a)u_n, v_n$) = $\varphi(a)$ for every a in \mathscr{A} .

COROLLARY 24. If $\varphi: \mathscr{A} \to B(H)$ is a bounded linear map and $\varphi(\mathscr{A})$ is finite-dimensional, then $\varphi \in \mathscr{V}(\mathscr{A}, H)$.

Proof. If $\{S_1, \ldots, S_n\}$ is a linear basis for $\varphi(\mathscr{A})$, then there are continuous linear functionals $\varphi_1, \ldots, \varphi_n$ on \mathscr{A} such that

 $\varphi(a) = \varphi_1(a)S_1 + \ldots + \varphi_n(a)S_n$

for each a in \mathscr{A} . The preceding lemma implies that $\varphi_1, \ldots, \varphi_n \in \mathscr{V}(\mathscr{A}, H)$. Thus, by Theorem 3, $\varphi \in \mathscr{V}(\mathscr{A}, H)$.

Another consequence of Conjecture II is a Hahn-Banach theorem type theorem whose validity (or lack of it) could be used to test the validity of Conjecture II.

LEMMA 25. Suppose Conjecture II is true. If \mathscr{A}_1 is a unital C*-subalgebra of $\mathscr{A}, \epsilon > 0$, and $\varphi : \mathscr{A}_1 \to \mathfrak{M}_n$ is a bounded linear map, then φ can be extended to a linear map $\psi : \mathscr{A} \to \mathfrak{M}_n$ such that $\|\psi\| \leq \|\varphi^{(n)}\| + \epsilon$.

Proof. It follows from Conjecture II that there is a representation π of \mathscr{A}_1 and operators A, B such that $||A|| ||B|| \leq ||\varphi^{(n)}|| + \epsilon$ and $\varphi(a) = A\pi(a)B$ for every a in \mathscr{A}_1 . We can extend π to a completely positive map ρ on \mathscr{A} with $||\rho|| = 1$. Define $\psi: \mathscr{A} \to \mathfrak{M}_n$ by $\psi(a) = A\rho(a)B$.

Another consequence of Conjecture II is that $|||\varphi||| = ||\varphi^{(n)}||$ for every bounded linear map $\varphi: \mathscr{A} \to \mathfrak{M}_n$ and $n = 1, 2, \ldots$, which was conjectured by Loebl [12].

The author wishes to express his deepest gratitude to Man-Duen Choi for simplifying the proof of Lemma 2, for offering many helpful suggestions, and mainly for pointing out a serious error in the original version of this paper that incorrectly purported to prove that characterizing the maps in $\mathscr{V}(\mathscr{A}, H)$ could be reduced to the case when \mathscr{A} is commutative.

Addendum. The author has recently learned the Uffe Haagerup has proved that every completely bounded homomorphism from \mathscr{A} into B(H) is similar to a *-homomorphism. His results therefore subsume most of our results on bounded homomorphisms. Also Haagerup has proved that every bounded homomorphism from \mathscr{A} into B(H) that has a cyclic vector is similar to a *-homomorphism.

References

- 1. W. Arveson, Subalgebras of C*-algebras, Acta Math. 123 (1969), 141-224.
- B. A. Barnes, The similarity problem for representations of a B*-algebra, Michigan Math. J. 22 (1975), 25-32.
- 3. S. K. Berberian, Notes on spectral theory, Van Nostrand, Math. Studies No. 5 (Princeton, 1966).
- 4. Approximate proper vectors, Proc. AMS 13 (1962), 111-114.
- 5. J. W. Bunce, Representations of strongly amenable C*-algebras, PAMS 32 (1972), 241-246.
- 6. The similarity problem for representations of C*-algebras, preprint (1980).
- 7. E. Christensen, On non self-adjoint representations of C*-algebras, preprint (1980).
- 8. N. Dunford and J. T. Schwartz, *Linear operators I, II, III* (Wiley, Interscience, New York).
- 9. D. W. Hadwin and E. A. Nordgren, Subalgebras of reflexive algebras, preprint (1980).
- 10. R. V. Kadison, On the orthogonalization of operator representations, Amer. J. Math. 77 (1955), 600-620.
- 11. R. I. Loebl, A Hahn decomposition for linear maps, Pacific J. Math. 65 (1976), 119–133.
- 12. Contractive linear maps on C*-algebras, Michigan Math. J. 22 (1975), 361-366.
- 13. M. A. Naimark, On a representation of operator set functions, Doklady Akad Nauk SSSR (N.S.) 41 (1943), 359-361.
- 14. S. Sakai, C*-algebras and W*-algebras, Ergebn. Math. Grenzgeb. 60 (Springer, Berlin, 1971).
- D. E. Sarason, On spectral sets having connected complement, Acta. Sci. Math. (Szeged) 26 (1965), 289–299.
- 16. W. F. Stinespring, Positive functions on C*-algebras, PAMS 6 (1955), 211-216.
- 17. S.-K. Tsui, Decompositions of linear maps, TAMS 230 (1977), 87-112.
- S. Wright, On orthogonalization of C*-algebras, Indiana Univ. Math. J. 27 (1978), 383-399.

University of New Hampshire, Durham, New Hampshire