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OPTIMAL CONTROL OF A LARGE DAM

VYACHESLAV M. ABRAMOV,∗ Monash University

Abstract

A large dam model is the object of study of this paper. The parameters Llower and Lupper

define its lower and upper levels, L = Lupper − Llower is large, and if the current level
of water is between these bounds, the dam is assumed to be in a normal state. Passage
across one or other of the levels leads to damage. Let J1 and J2 denote the damage
costs of crossing the lower and, respectively, the upper levels. It is assumed that the
input stream of water is described by a Poisson process, while the output stream is state
dependent. Let Lt denote the dam level at time t , and let p1 = limt→∞ P{Lt = Llower}
and p2 = limt→∞ P{Lt > Lupper} exist. The long-run average cost, J = p1J1 + p2J2,
is a performance measure. The aim of the paper is to choose the parameter controlling
the output stream so as to minimize J .
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1. Introduction

A large dam model is the object of study of this paper. The parameters Llower and Lupper are
respectively the lower and upper levels of the dam, and if the current level of water is between
these bounds, the dam is assumed to be in a normal state. The reason for calling the dam
large is that the difference L = Lupper − Llower is large. Assuming this property of the dam
enables us to use asymptotic analysis (as L → ∞) and obtain much simpler representations
for the desired characteristics of the model than we would were the dam not large. In turn,
these representations are then easily used to solve the appropriate control problems formulated
below.

In the literature, dam, storage, and production models are associated with state-dependent
queueing systems (see, e.g. [1], [2], [7]–[10], [12]–[14], [21], and others). The model of the
present paper is the following. We assume that units of water arriving at the dam are registered
by counter at random instants t1, t2, . . . , and that the interarrival times, τn = tn+1 − tn, are
mutually independent, exponentially distributed random variables with parameter λ. Outflow
of water is state dependent in the following sense. If the level of water is between Llower and
Lupper, then the duration of an interval between unit departures has the probability distribution
B1(x). If the level of water increases above the level Lupper, then the probability distribution
of the duration of an interval between unit departures is B2(x). It is also assumed that if the
level of water is exactly Llower, then the departure process of water is frozen, and is resumed as
soon as the level of water exceeds the value Llower. It is worth noting that policies according
to which changes in the service rate depend on the dam level are of importance in the literature
(see [1], [2], [7], [8], [21], and others). However, all of them involve performance measures
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associated with an appropriate upper level of water in a dam, and to the author’s knowledge the
known results on the performance analysis of river flows structured by both lower and upper
levels are difficult to derive and hard to apply to real-world situations even for simple models
(see, e.g. the review paper [15]). Furthermore, in most studies the explicit representations are
in terms of the Laplace–Stieltjes transforms of the initial distributions, and there is no literature
on the asymptotic analysis of large dams.

In terms of queueing theory, the problem considered in this paper can be reformulated as
follows. Consider a single-server queueing system where the arrival flow of customers is
Poisson with rate λ and the service time of a customer depends upon queue length as follows.
If, at the moment the customer’s service begins, the number of customers in the system is not
greater than L, then the service time of this customer has the probability distribution B1(x).
Otherwise (if there are more than L customers in the system at the moment the customer’s
service begins), the probability distribution of the service time of this customer is B2(x). The
analytical results for this queueing system are known (see, e.g. [3, Chapter 2]). Notice that the
lower level of the dam, Llower, corresponds to zero queue length. The dam specification of the
problem is characterized by performance criteria which, in terms of the queueing formulation,
are as follows. Let qt denote the queue length at time t . The problem is to choose the output
parameter of the system so as to minimize the functional J (L) = p1(L)J1(L) + p2(L)J2(L),
where p1(L) = limt→∞ P{qt = 0}, p2(L) = limt→∞ P{qt > L}, and J1(L) and J2(L) are the
corresponding damage costs, proportional to L. To be precise, assume that J1(L) = j1L and
J2(L) = j2L, where j1 and j2 are positive constants. Assuming that L → ∞, we shall often
write p1 and p2 (without the argument L) rather than p1(L) and p2(L). The argument L will
be often omitted in other functions; in particular, we shall freely write J , J1, and J2 without it.

To specify the problem more correctly, we assume that the input parameter λ and the
probability distribution function B2(x) are given, while B1(x) ≡ B1(x, C) is a family of
probability distributions depending on the parameter C ≥ 0, which in turn is closely related to
the expectation

∫ ∞
0 x dB1(x). Then the output rate associated with the probability distribution

B1(x) can be changed so that the minimum value of the functional is associated with the choice
of the parameter C, resulting in the choice of the function B1(x, C). A verification of the
correctness of this formulation and a more concrete description of the parameter C will be
given in the sequel (see the formulations of Theorems 4.1, 4.2, 4.3, and 4.4). It is interesting
to note that the solution to the above control problem is asymptotically independent of the
explicit form of the probability distribution functions B1(x) and B2(x), and depends only on
the expectations

∫ ∞
0 x dB2(x) < 1/λ and

∫ ∞
0 x dB1(x) and the integral

∫ ∞
0 x2 dB1(x). The

details of this dependence will be explained later.
We use the notation bi = ∫ ∞

0 x dBi(x) and ρi = λbi , for i = 1, 2, and assume that
ρ2 < 1. This assumption is a standard condition for stationarity, ergodicity of the queue
length process qt , and existence of the limits p1 and p2 (independent of the initial state of
the process). In addition to this, we shall also assume the existence of the third moment:
ρ1,k = λk

∫ ∞
0 xk dB1(x) < ∞, k = 2, 3. The existence of the second moment is used in

Theorem 3.1, and the existence of the third moment of each member of the specified family of
distributions B1(x, C) is required in Theorems 4.1, 4.2, 4.3, and 4.4.

The special features of the present paper are as follows.

• We solve the control problem in which the performance criteria take into account passage
across the upper and lower levels. The formulation of the problem is not traditional, but
realistic. Other, similar control problems arising in practice can be solved by adapting
the method of this paper.
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• The presentation of the results is clear and makes them amenable to real applications.

• The mathematical methods of the paper are not traditional, but are clear and easily
understandable.

The paper is structured as follows. In Section 2 we discuss the state-dependent queue length
process and derive representations for the probabilities p1 and p2. Section 3 contains the results
on the asymptotic analysis of p1 and p2. The main result on this asymptotic behaviour is given
in Theorem 3.1. In Section 4 some additional theorems on the asymptotic behaviour of p1 and
p2 are proved and then used to solve the control problem. The main result of the paper, solution
of the control problem, is formulated in Section 5. Concluding remarks are given in Section 6.

2. The state-dependent queue and its characteristics in a busy period

In this section we discuss the main characteristics of the state-dependent queueing system
described in the introduction. Let TL, IL, and νL respectively denote the duration of a busy
period, the duration of an idle period, and the number of customers served during a busy period.
Let T (1)

L and T
(2)
L respectively denote the total times during a busy period when 0 < qt ≤ L and

qt > L, and let ν
(1)
L and ν

(2)
L respectively denote the total numbers of customers served during

a busy period when 0 < qt ≤ L and qt > L. We have the following two obvious equations:

E TL = E T
(1)
L + E T

(2)
L , (2.1)

E νL = E ν
(1)
L + E ν

(2)
L . (2.2)

According to Wald’s equation (see [11, p. 384]),

E T
(1)
L = b1 E ν

(1)
L , (2.3)

E T
(2)
L = b2 E ν

(2)
L . (2.4)

Now, the number of arrivals during a busy cycle coincides with the total number of customers
served during a busy period. Hence, by applying Wald’s equation again and taking into account
(2.1)–(2.4), we obtain

λ E TL + λ E IL = λ E TL + 1

= λ E T
(1)
L + λ E T

(2)
L + 1

= ρ1 E ν
(1)
L + ρ2 E ν

(2)
L + 1

= E ν
(1)
L + E ν

(2)
L . (2.5)

From (2.5) we have

E ν
(2)
L = 1

1 − ρ2
− 1 − ρ1

1 − ρ2
E ν

(1)
L , (2.6)

expressing E ν
(2)
L in terms of E ν

(1)
L . For example, if ρ1 = 1 then E ν

(2)
L = 1/(1 − ρ2) for any L.

A similar equation holds for E T
(2)
L : from (2.4) and (2.6) we obtain

E T
(2)
L = ρ2

λ(1 − ρ2)
− ρ2(1 − ρ1)

λ(1 − ρ2)
E T

(1)
L . (2.7)
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Equations (2.6) and (2.7) enable us to obtain the stationary probabilities p1 and p2. By applying
first the renewal reward theorem (see, e.g. [17, p. 78]) and then (2.5) and (2.6), for p1 we obtain

p1 = E I

E T
(1)
L + E T

(2)
L + E I

= 1

E ν
(1)
L + E ν

(2)
L

= 1 − ρ2

1 + (ρ1 − ρ2) E ν
(1)
L

. (2.8)

Analogously,

p2 = E T
(2)
L

E T
(1)
L + E T

(2)
L + E I

= ρ2 E ν
(2)
L

E ν
(1)
L + E ν

(2)
L

= ρ2 + ρ2(ρ1 − 1) E ν
(1)
L

1 + (ρ1 − ρ2) E ν
(1)
L

. (2.9)

3. Asymptotic analysis of p1 and p2 as L increases to infinity

By sample path analysis and the property of the lack of memory of exponential distributions,
it follows that the random variable ν

(1)
L coincides in distribution with the number of customers

served during a busy period of the M/GI/1/L queueing system (the parameter L denotes the
number of customers in the system excluding the customer at the server). Specifically, we
use the fact that during a busy period the number of times service begins when the number
of customers in the system does not exceed L coincides with the number of arrivals when the
number of customers in the system does not exceed L+1. We also use the fact that the residual
interarrival time after a service completion has an exponential distribution with parameter λ.

Therefore, the known results for M/GI/1/L queueing systems can be used. It is known (see,
e.g. [3] and [4]) that E ν

(1)
L is determined by the convolution-type recurrence relation

E ν
(1)
L =

L∑
j=0

E ν
(1)
L−j+1

∫ ∞

0
e−λx (λx)j

j ! dB1(x), E ν
(1)
0 = 1,

where E ν
(1)
n , n = 1, 2, . . . , denotes the expectation of the number of customers served during

a busy period in an M/GI/1/n queue.
The probabilities p1(L) and p2(L) are expressed explicitly in terms of E ν

(1)
L , and their

asymptotic behaviours (as L → ∞) can be obtained from the following known results. Let
Q0 > 0 be an arbitrary real number and, for n ≥ 0, let

Qn =
n∑

j=0

rjQn−j+1,

where r0 > 0, rj ≥ 0, and r0 + r1 + · · · = 1. Let r(z) = ∑∞
j=0 rj z

j , |z| ≤ 1, be a generating
function and let γm = limz↑1 r(m)(z), where r(m)(z) is the mth derivative of r(z). Notice that
the sequence {Qn} is increasing and that

∞∑
n=0

Qnz
n = Q0r(z)

z − r(z)
(3.1)

(see [16, Section 25] and [20, pp. 22–23]).

Lemma 3.1. ([20, pp. 22–23].) If γ1 < 1 then

lim
n→∞ Qn = Q0

1 − γ1
.
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If γ1 = 1 and γ2 < ∞ then

lim
n→∞

Qn

n
= 2Q0

γ2
.

If γ1 > 1 then

lim
n→∞

[
Qn − Q0

σn(1 − r ′(σ ))

]
= 1

1 − γ1
,

where σ is the root of the functional equation z = r(z) that is least in absolute value.

From this lemma we can derive the asymptotic behaviours of the probabilities p1 and p2. For
Re(s) ≥ 0, denote by B̂1(s) the Laplace–Stieltjes transform of B1(x). We have the following
theorem.

Theorem 3.1. If ρ1 < 1 then
lim

L→∞ p1(L) = 1 − ρ1, (3.2)

lim
L→∞ p2(L) = 0. (3.3)

If ρ1 = 1 then

lim
L→∞ Lp1(L) = ρ1,2

2
, (3.4)

lim
L→∞ Lp2(L) = ρ2

1 − ρ2

ρ1,2

2
. (3.5)

If ρ1 > 1 then

lim
L→∞

p1(L)

ϕL
= (1 − ρ2)[1 + λB̂ ′

1(λ − λϕ)]
ρ1 − ρ2

, (3.6)

where ϕ is the root of the functional equation z = B̂1(λ − λz) that is least in absolute value,
and

lim
L→∞ p2(L) = ρ2(ρ1 − 1)

ρ1 − ρ2
. (3.7)

Proof. The proof of this theorem follows by application of Lemma 3.1. Straightforward ap-
plication of the aforementioned lemma to the recurrence relation for E ν

(1)
L yields the following.

If ρ1 < 1 then

lim
L→∞ E ν

(1)
L = 1

1 − ρ1
. (3.8)

If ρ1 = 1 then

lim
L→∞

E ν
(1)
L

L
= 2

ρ1,2
. (3.9)

If ρ1 > 1 then

lim
L→∞

[
E ν

(1)
L − 1

ϕL(1 + λB̂ ′
1(λ − λz))

]
= 1

1 − ρ1
. (3.10)

Upon substitution of (2.8) and (2.9) into the expressions given in the theorem, the further
substitution of (3.8)–(3.10) (as appropriate to the value of ρ1) into the new expressions completes
the proof.
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4. Further asymptotic analysis of p1 and p2

Let us first discuss the statements of Theorem 3.1. Under the assumption that ρ1 < 1,
we have (3.2) and (3.3). The probability p1 is positive in the limit, while the probability p2
vanishes. Under the assumption that ρ1 > 1, we have (3.6) and (3.7). According to these
relations, the probability p1 vanishes while p2 is positive in the limit. This means that if
both J1 and J2 take large, positive values proportional to L, then so too will the functional J .
Specifically, in the case in which ρ1 < 1 we have J ≈ (1 − ρ1)J1, and in the case ρ1 > 1 we
have J ≈ [ρ2(ρ1 − 1)/(ρ1 − ρ2)]J2.

In the case in which ρ1 = 1, both p1 and p2 vanish at the rate L−1, and J therefore converges
to the limit as L → ∞. Thus, ρ1 = 1 is a possible solution to the control problem, while the
cases ρ1 < 1 and ρ1 > 1 are irrelevant. Specifically, for J ≡ J (L) we obtain the following:

lim
L→∞ J (L) = j1

ρ1,2

2
+ j2

ρ2

1 − ρ2

ρ1,2

2
. (4.1)

In order now to find the optimal solution, consider the following two cases, in both of which
δ → 0 as L → ∞: (i) ρ1 = 1 + δ; (ii) ρ1 = 1 − δ.

In case (i) we have the following two theorems.

Theorem 4.1. Assume that ρ1 = 1 + δ, δ > 0, and that Lδ → C > 0 as δ → 0 and L → ∞.
Assume that ρ1,3 ≡ ρ1,3(δ) is a bounded function of the parameter δ for 0 ≤ δ < 1, and that
the limit ρ̃1,2 = limδ→0 ρ1,2(δ) exists. Then

p1 = δ

e2C/ρ̃1,2 − 1
+ o(δ), (4.2)

p2 = δρ2e2C/ρ̃1,2

(1 − ρ2)(e2C/ρ̃1,2 − 1)
+ o(δ). (4.3)

Proof. The proof of this theorem is similar to that of [5, Theorem 3.4] and [6, Theorem 4.4].
Under the conditions of the theorem, the following expansion was shown in [18, p. 326]:

ϕ = 1 − 2δ

ρ̃1,2
+ O(δ2). (4.4)

Then, by virtue of (4.4), after some algebra we have

1 + λB̂ ′
1(λ − λϕ) = δ + O(δ2). (4.5)

Substituting (4.4) and (4.5) into (3.10) yields

E ν
(1)
L = e2C/ρ̃1,2 − 1

δ
+ O(1), (4.6)

and from (4.6), (2.8), and (2.9) we obtain the statement of the theorem.

Theorem 4.2. Under the conditions of Theorem 4.1, assume that C = 0. Then

lim
L→∞ Lp1(L) = ρ1,2

2
, (4.7)

lim
L→∞ Lp2(L) = ρ2

1 − ρ2

ρ1,2

2
. (4.8)
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Proof. The statement of the theorem follows by expanding the main terms of the asymptotic
relations (4.2) and (4.3) for small C.

Notice that (4.7) and (4.8) respectively coincide with (3.4) and (3.5).
In case (ii) we have the following.

Theorem 4.3. Assume that ρ1 = 1 − δ, δ > 0, and that Lδ → C > 0 as δ → 0 and L → ∞.
Assume that ρ1,3 ≡ ρ1,3(δ) is a bounded function of the parameter δ for 0 ≤ δ < 1, and that
the limit ρ̃1,2 = limδ→0 ρ1,2(δ) exists. Then

p1 = δeρ̃1,2/2C + o(δ), (4.9)

p2 = δ
ρ2

1 − ρ2
(eρ̃1,2/2C − 1) + o(δ). (4.10)

Proof. From (3.1) we have

∞∑
n=0

E ν(1)
n zn = B̂1(λ − λz)

B̂1(λ − λz) − z
.

The sequence {E ν
(1)
n } is increasing, and, for ρ1 = 1, from the Tauberian theorem of Hardy and

Littlewood (see, e.g. [16], [18], [19], and [20, p. 203]) we obtain

lim
L→∞

E ν
(1)
L

L
= lim

z↑1
(1 − z)2 B̂1(λ − λz)

B̂1(λ − λz) − z
.

(It is not difficult to check that (3.9) then follows.) Thus, in the case in which ρ1 = 1 − δ and
Lδ → C as L → ∞, according to the same Tauberian theorem of Hardy and Littlewood, the
asymptotic behaviour of E ν

(1)
L can be found from the asymptotic expansion of

(1 − z)
B̂1(λ − λz)

B̂1(λ − λz) − z
, (4.11)

as z ↑ 1.
From the Taylor expansion of the denominator of (4.11), we obtain

1 − z

B̂1(λ − λz) − z

 1 − z

1 − z − ρ1(1 − z) + (ρ̃1,2/2)(1 − z)2 + O((1 − z)3)


 1

δ + (ρ̃1,2/2)(1 − z) + O((1 − z)2)


 1

δ[1 + (ρ̃1,2/2δ)(1 − z) + O((1 − z)2)]

 1

δ exp((ρ̃1,2/2δ)(1 − z))
(1 + o(1)). (4.12)

Therefore, assuming that z = (L−1)/L → 1 as L → ∞, from (4.12) we obtain the asymptotic
behaviour of E ν

(1)
L as L → ∞. We have

E ν
(1)
L = 1

δeρ̃1,2/2C
(1 + o(1)). (4.13)

By now substituting (4.13) into (2.8) and (2.9), we obtain the desired statements of the theorem.
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Theorem 4.4. Under the conditions of Theorem 4.3, assume that C = 0. Then we obtain (4.7)
and (4.8).

Proof. The statement of the theorem follows by expanding the main terms of the asymptotic
relations (4.9) and (4.10) for small C.

5. Solution of the control problem

In this section we formulate the theorem characterizing the solution to the control problem.
For J ≡ J (L) we have the following limiting relation:

lim
L→∞ J (L) = lim

L→∞[p1(L)J1(L) + p2(L)J2(L)]
= j1 lim

L→∞ Lp1(L) + j2 lim
L→∞ Lp2(L). (5.1)

By substituting (4.2) and (4.3) into the right-hand side of (5.1) and taking into account the fact
that Lδ → C, we obtain

J upper = lim
L→∞ J (L)

=
[
j1

1

e2C/ρ̃1,2 − 1
+ j2

ρ2e2C/ρ̃1,2

(1 − ρ2)(e2C/ρ̃1,2 − 1)

]
lim

L→∞ Lδ

= C

[
j1

1

e2C/ρ̃1,2 − 1
+ j2

ρ2e2C/ρ̃1,2

(1 − ρ2)(e2C/ρ̃1,2 − 1)

]
. (5.2)

By substituting (4.9) and (4.10) into the right-hand side of (5.1) and taking into account the fact
that Lδ → C, we in turn obtain

J lower = C

[
j1eρ̃1,2/2C + j2

ρ2

1 − ρ2
(eρ̃1,2/2C − 1)

]
. (5.3)

Let us now study the functionals J upper and J lower given by (5.2) and (5.3). Notice that (5.2)
involves the constants j1, j2, and ρ2. Let us assume that these constants are such that

j1 = j2
ρ2

1 − ρ2
. (5.4)

Then C = 0 is the parameter value minimizing the functional J upper. Indeed, in this case

J upper = j1C

[
1

e2C/ρ̃1,2 − 1
+ e2C/ρ̃1,2

e2C/ρ̃1,2 − 1

]

= j1C

[
1

e2C/ρ̃1,2 − 1
+ (e2C/ρ̃1,2 − 1) + 1

e2C/ρ̃1,2 − 1

]

= j1C

[
1 + 2

e2C/ρ̃1,2 − 1

]
.

Therefore, we have limC→0 J upper = j1ρ̃1,2, and to the right of the point C = 0 the function
J upper is increasing in C. Hence, (5.4) is the condition for C = 0 to minimise J upper.

Next, consider

d

dC

[
C

e2C/ρ̃1,2 − 1

]
= e2C/ρ̃1,2 − 1 − (2C2/ρ̃1,2)e2C/ρ̃1,2

(e2C/ρ̃1,2 − 1)2
(5.5)
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and

d

dC

[
Ce2C/ρ̃1,2

e2C/ρ̃1,2 − 1

]
= d

dC

[
C

e2C/ρ̃1,2 − 1

]
e2C/ρ̃1,2 + 2

ρ̃1,2

[
C

e2C/ρ̃1,2 − 1

]
e2C/ρ̃1,2 . (5.6)

Clearly (5.6) is not smaller than (5.5), and they are equal when C = 0. Therefore, if the
right-hand side of (5.4) is greater than the left-hand side of (5.4), then C = 0 remains the value
minimizing the functional J upper. A similar result holds for the functional J lower given in (5.3).
Specifically, if the right-hand side of (5.4) is not greater than the left-hand side of (5.4), then
C = 0 is the value minimizing the functional J lower.

Thus, the solution to the control problem is given in the following theorem.

Theorem 5.1. If the parameters λ and ρ2 are given, then the optimal solution to the control
problem is as follows.

• If

j1 = ρ2

1 − ρ2
j2

then the optimal solution to the control problem is achieved for ρ1 = 1.

• If

j1 >
ρ2

1 − ρ2
j2

then the optimal solution to the control problem is a minimization of the functional J upper.
The optimal solution is achieved for ρ1 = 1+δ, where δ(L) is a small, positive parameter
and Lδ(L) → C, the nonnegative parameter minimizing (5.2).

• If

j1 <
ρ2

1 − ρ2
j2

then the optimal solution to the control problem is a minimization of the functional J lower.
The optimal solution is achieved for ρ1 = 1−δ, where δ(L) is a small, positive parameter
and Lδ(L) → C, the nonnegative parameter minimizing (5.3).

6. Concluding remarks

In this paper we have posed and solved a control problem for a large dam. The main
specification of the problem is that the performance criteria take into account passage across
the lower and upper levels. The solution to the control problem is asymptotically independent
of the explicit form of the probability distribution functions B1(x) and B2(x), and, under the
assumption that the parameters λ and ρ2 are given, depending on the performance criteria the
parameter ρ1 must take the form ρ1 = 1, ρ1 = 1 + δ(L), or ρ1 = 1 − δ(L), where δ(L) > 0
and, as L → ∞, δ(L) vanishes and Lδ(L) → C.
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