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Abstract

Here we derive a recursive formula for even-power moments of Kloosterman sums or equivalently for
power moments of two-dimensional Kloosterman sums. This is done by using the Pless power-moment
identity and an explicit expression of the Gauss sum for Sp(4, q).
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1. Introduction

Let χ1 be the canonical additive character of the finite field Fq with q = 2r , and let m
be a positive integer.

The m-dimensional Kloosterman [7] sum Km(a) is given by

Km(a)= Km(χ1; a)=
∑

x1,...,xm∈F∗q

χ1(x1 + · · · + xm + ax−1
1 · · · x

−1
m ) (a ∈ F∗q).

In particular, if m = 1, then K1(a) := K (a) is called the Kloosterman sum. The
Kloosterman [5] sum was introduced in 1926 to give an estimate for the Fourier
coefficients of modular forms.

Let h be a nonnegative integer, and let

M K h
m :=

∑
a∈F∗q

Km(a)
h

denote the hth moment of the m-dimensional Kloosterman sum Km(a). Furthermore,
M K h

1 is simply denoted by M K h . The power moments of Kloosterman sums over
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finite fields of characteristic 2 have been studied in an estimate for the Kloosterman
sums and have been used in solving a variety of problems from coding theory.

Carlitz obtained M K h for h ≤ 4 in [1], and Moisio computed M K 6 in [11]. Lately,
Moisio [9] evaluated M K h , for h ≤ 10, by connecting moments of Kloosterman sums
and the frequencies of weights in the binary Zetterberg code of length q + 1, which
were known by the work of Schoof and Van der Vlugt in [12].

In this paper, we adopt Moisio’s idea to show the following theorem giving a
recursive formula for the even-power moments of Kloosterman sums. To do that, we
construct the codes C(Sp(4, q)) associated with finite symplectic groups Sp(4, q),
and express the power moments in terms of the frequencies of weights in the code. We
could construct the codes C(Sp(2, q)) associated with Sp(2, q)= SL(2, q) and get a
recursive formula producing power moments of Kloosterman sums. But this case has
been treated already in [4].

Thanks to the previous result on the explicit expression of ‘Gauss sum’ for the
symplectic groups (see [3]), we can represent the weight of each codeword in the dual
C⊥(Sp(4, q)) of C(Sp(4, q)) in terms of two-dimensional Kloosterman sums. Then
we get the following recursive formula from the Pless power-moment identity.

THEOREM 1.1. For any positive integer h, the even-power moments M K 2h of the
Kloosterman sum K (a) are given by

q4h M K 2h
=

h−1∑
i=0

(−1)i+h+1
(

h

i

)
(N − q7

+ q5)h−i q4i M K 2i

+ q
min{N ,h}∑

i=0

(−1)i+hCi

h∑
t=i

t !S(h, t)2h−t
(

N − i

N − t

)
.

Here
N = |Sp(4, q)| = q4(q2

− 1)(q4
− 1), (1.1)

and S(h, t) indicates the Stirling number of the second kind given by

S(h, t)=
1
t !

t∑
j=0

(−1)t− j
(

t

j

)
jh . (1.2)

In addition, {Ci }
N
i=0 denotes the weight distribution of the code C = C(Sp(4, q))

given by

Ci =
∑(

q9
− q6

− q5

ν0

) ∏
β∈F∗q

(
nβ
νβ

)
, (1.3)

where nβ = q4K (χ1; β
−1)+ q9

− q7
− q6

− q5 and the sum runs over all the set
of nonnegative integers {νβ}β∈Fq satisfying

∑
β∈Fq

νβ = i and
∑
β∈Fq

νββ = 0 (an
identity in Fq ).

We obtain an alternative recursive formula from Carlitz [2, Theorem 2.6].
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COROLLARY 1.2. For any positive integer h, we have the following recursive formula
for the moments M K h

2 of the two-dimensional Kloosterman sums,

q4h M K h
2 =

h−1∑
i=0

(−1)i+h+1
(

h

i

)
(N − q7)h−i q4i M K i

2

+ q
min{N ,h}∑

i=0

(−1)i+hCi

h∑
t=i

t !S(h, t)2h−t
(

N − i

N − t

)
where Ci is the weight distribution of the code C = C(Sp(4, q)) given by (1.3), and
S(h, t) indicates the Stirling number of the second kind given by (1.2).

2. Preliminaries

The following notation will be used throughout this paper:

(i) q = 2r (r ∈ Z>0);
(ii) Sp(2n, q)= the symplectic group over Fq defined by

{g ∈ GL(2n, q) | t g Jg = J }, with J =
[ 0 In
−In 0

]
;

(iii) N = qn2 ∏n
j=1(q

2 j
− 1) the order of Sp(2n, q);

(iv) Tr(g)= the matrix trace for g ∈ Sp(2n, q);
(v) tr(x)= x + x2

+ · · · + x2r−1
the trace function Fq → F2;

(vi) χ1(x)= (−1)tr(x) the canonical additive character of Fq ;
(vii) χa(x)= χ1(ax) an additive character of Fq (a ∈ Fq).

Let g1, g2, . . . , gN be a fixed ordering of the elements in Sp(4, q). Let C =
C(Sp(4, q)) be the binary linear code of length N defined by

C = {u ∈ FN
2 | u · v = 0},

where v = (Tr(g1), . . . , Tr(gN )) ∈ FN
q .

THEOREM 2.1 (Delsarte [8]). Let B be a linear code over Fq , then

(B |F2)
⊥
= tr(B⊥).

From Delsarte’s theorem, the next result follows immediately.

THEOREM 2.2. The dual C⊥ = C⊥(Sp(4, q)) of C = C(Sp(4, q)) is given by

C⊥ = {c(a)= (tr(aTr(g1)), . . . , tr(aTr(gN ))) | a ∈ Fq}.

We need the next theorem about the Gauss sum for Sp(2n, q).

THEOREM 2.3 (Kim [3]). For any nontrivial additive character χa(a ∈ F∗q) of Fq ,
the Gauss sum over Sp(2n, q) ∑

g∈Sp(2n,q)

χa(Tr(g))
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is given by

qn2
−1
[n/2]∑
r=0

qr(r+1)
[

n
r

]
q

r∏
i=1

(q2i−1
− 1)

[(n−2r+2)/2]∑
l=1

ql K (χa; 1)n−2r+2−2l

×

∑ l−1∏
ν=1

(q jν − 1)

where the innermost sum is over all integers j1, . . . , jl−1 satisfying 2l − 3≤ j1 ≤
n − 2r − 1, 2l − 5≤ j2 ≤ j1 − 2 , . . . , 1≤ jl−1 ≤ jl−2 − 2.

Here, for integers n, r with 0≤ r ≤ n, the q-binomial coefficients are given by[
n
r

]
q
=

r−1∏
j=0

(qn− j
− 1)/(qr− j

− 1).

We need the case, n = 2, of Theorem 2.3.

COROLLARY 2.4. For any a ∈ F∗q ,∑
g∈Sp(4,q)

χa(Tr(g))= q4
{K (χa; 1)2 + q3

− q}. (2.1)

The following result is easy to verify.

LEMMA 2.5. For any a ∈ F∗q , the Kloosterman sum K (χa; 1) is equal to K (χ1; a).

THEOREM 2.6 (Carlitz [2]).

K2(χ1; a)= K (χ1; a)
2
− q.

So, from Lemma 2.5 and Theorem 2.6, we have the following alternative description
of (2.1).

COROLLARY 2.7. For any a ∈ F∗q ,∑
g∈Sp(4,q)

χa(Tr(g)) = q4
{K (χ1; a)

2
+ q3

− q} (2.2)

= q4
{K2(χ1; a)+ q3

}. (2.3)

PROPOSITION 2.8. For β ∈ F∗q ,∑
a∈F∗q

χ1(−aβ)
∑

g∈Sp(4,q)

χ1(aTr g) (2.4)

=

{
q8
− q7

− q4 if β = 0,
q5K (χ1; β

−1)− q7
− q4 if β 6= 0.

(2.5)
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PROOF. Using (2.3), (2.4) is equal to

q4
∑
a∈F∗q

χ1(−aβ){K2(χ1; a)+ q3
}

= q4
∑
a∈F∗q

χ1(−aβ)K2(χ1; a)+ q7
∑
a∈F∗q

χ1(−aβ)

= q4
{∑

a∈F∗q

χ1(−aβ)
∑

x1,x2∈F∗q

χ1(x1 + x2 + ax−1
1 x−1

2 )

}
+ q7

{∑
a∈Fq

χ1(−aβ)− 1
}

= q4
{ ∑

x1,x2∈F∗q

χ1(x1 + x2)
∑
a∈F∗q

χ1(a(x
−1
1 x−1

2 − β))

}
+ q7

∑
a∈Fq

χ1(−aβ)− q7

= q4
{ ∑

x1,x2∈F∗q

χ1(x1 + x2)
∑
a∈Fq

χ1(a(x
−1
1 x−1

2 − β))−
∑

x1,x2∈F∗q

χ1(x1 + x2)

}
+ q7

∑
a∈Fq

χ1(−aβ)− q7

= q4
{

q
∑

x1,x2∈F∗q
x−1

1 x−1
2 =β

χ1(x1 + x2)+ (−1)3
}
+ q7

∑
a∈Fq

χ1(−aβ)− q7

=

{
q8
− q7

− q4 if β = 0,
q5K (χ1; β

−1)− q7
− q4 if β 6= 0.

2

PROPOSITION 2.9. Let nβ = |{g ∈ Sp(4, q) | Tr(g)= β}|, for each β ∈ Fq . Then

nβ =

{
q9
− q6

− q5 if β = 0,
q4
{K (χ1; β

−1)+ q5
− q3

− q2
− q} if β 6= 0.

PROOF.

qnβ =
∑

g∈Sp(4,q)

∑
a∈Fq

χa(Tr g)χa(β)

=

∑
a∈Fq

χa(β)
∑

g∈Sp(4,q)

χa(Tr g)

= |Sp(4, q)| +
∑
a∈F∗q

χa(β)
∑

g∈Sp(4,q)

χa(Tr g).

Our results now follow from (1.1) and (2.5). 2

The following corollary is immediate from the above proposition.

COROLLARY 2.10. Tr : Sp(4, q)→ Fq is surjective.
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PROOF. From Proposition 2.9 and using the Weil bound |K (χ1; a)| ≤ 2
√

q(a ∈ F∗q),
we see that

nβ = |{g ∈ Sp(4, q) | Tr(g)= β}|> 0 for all β ∈ Fq . 2

THEOREM 2.11. 9 : Fq → C⊥(Sp(4, q)) with 9(a)= c(a) is an F2-linear isomor-
phism.

PROOF. It is F2-linear and surjective. Let a be in Ker9. Then tr(aTr(g))= 0, for all
g ∈ Sp(4, q). In view of Corollary 2.10, tr(aβ)= 0, for all β ∈ Fq . Since the trace
map tr : Fq → F2 is surjective, a = 0. 2

PROPOSITION 2.12. For a ∈ F∗q , the Hamming weight of the codeword

c(a)= (tr(aTr(g1)), . . . , tr(aTr(gN )))

is given by

w(c(a)) = 1
2 (N − q4

{K (χ1; a)
2
+ q3

− q}) (2.6)

=
1
2 (N − q4

{K2(χ1; a)+ q3
}). (2.7)

PROOF.

w(c(a)) =
1
2

N∑
i=1

(1− (−1)tr(aTr(gi )))

=
1
2

(
N −

N∑
i=1

χ1(aTr(gi ))

)
. 2

Our results now follow from (1.1) and (2.2)–(2.3).

3. Proof of main results

THEOREM 3.1 (Pless Power Moment Identity [8]). Let B be a q-ary [n,k] code, and
let Bi (respectively B⊥i ) denote the number of codewords of weight i in B (respectively
in B⊥). Then, for h = 0, 1, . . . ,

n∑
i=0

ih Bi =

min{n,h}∑
i=0

(−1)i B⊥i

h∑
t=i

t !S(h, t)qk−t (q − 1)t−i
(

n − i

n − t

)
,

where S(h, t) denotes the Stirling number of the second kind defined by

S(h, t)=
1
t !

t∑
j=0

(−1)t− j
(

t

j

)
jh .
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THEOREM 3.2 (Lachaud and Wolfman [6]). Let q = 2r , with r ≥ 2. Then the range R
of K (χ1; a), as a varies over F∗q , is given by

R = {t ∈ Z | |t |< 2
√

q, t ≡−1(mod 4)}.

In addition, each value t ∈ R is attained exactly H(t2
− q) times, where H(d) is the

Kronecker class number of d.

Let u = (u1, . . . , uN ) ∈ FN
q , with νβ 1s in the coordinate places where Tr(g j )= β,

for each β ∈ Fq . Then we see from the definition of the code C = C(Sp(4, q)) that
u is a codeword with weight i if and only if

∑
β∈Fq

νβ = i and
∑
β∈Fq

νββ = 0 (an

identity in Fq ). As there are
∏
β∈Fq

(nβ
νβ

)
many such codewords with weight i , we

obtain the following theorem.

THEOREM 3.3. Let {Ci }
N
i=0 be the weight distribution of the code C = C(Sp(4, q)).

Then, for 0≤ i ≤ N,

Ci =
∑(

q9
− q6

− q5

ν0

) ∏
β∈F∗q

(
nβ
νβ

)
, (3.1)

where nβ = q4
{K (χ1; β

−1)+ q5
− q3

− q2
− q} and the sum runs over all the sets

of nonnegative integers {νβ}β∈Fq satisfying
∑
β∈Fq

νβ = i and
∑
β∈Fq

νββ = 0.

COROLLARY 3.4. Assume that r ≥ 2, and that {Ci }
N
i=0 is the weight distribution of

the code C = C(Sp(4, q)). Then, for 0≤ i ≤ N,

Ci =
∑(

m0

ν0

) ∏
|t |<2

√
q

with t≡−1(mod 4)

∏
K (χ1;β

−1)=t

(
mt

νβ

)
,

where
m0 = n0 = q9

− q6
− q5,

and
mt = q4(q5

− q3
− q2

− q + t),

for all t ∈ Z satisfying |t |< 2
√

q, and t ≡−1(mod 4).

We are now ready to prove Theorem 1.1, which is the main result of this paper.

PROOF OF THEOREM 1.1. We apply the Pless power moment identity with B =
C⊥(Sp(4, q)). Then, with {C⊥i }

N
i=0 the weight distribution of C⊥(Sp(4, q)), we have

N∑
i=0

ihC⊥i =
min{N ,h}∑

i=0

(−1)i Ci

h∑
t=i

t !S(h, t)2r−t
(

N − i

N − t

)
. (3.2)
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The left-hand side of (3.2) is given by

N∑
i=0

ihC⊥i =
∑
a∈F∗q

w(c(a))h (By Theorem 2.11)

=
1
2h

∑
a∈F∗q

(N − q4
{K (χ1; a)

2
+ q3

− q})h (By (9))

=
1
2h

h∑
i=0

(−1)i
(

h

i

)
(N − q7

+ q5)h−i q4i M K 2i

=
1
2h (−1)hq4h M K 2h

+
1
2h

h−1∑
i=0

(−1)i
(

h

i

)
(N − q7

+ q5)h−i q4i M K 2i .

On the other hand, the right-hand side of (3.2) is given by

q

2h

min{N ,h}∑
i=0

(−1)i Ci

h∑
t=i

t !S(h, t)2h−t
(

N − i

N − t

)
.

Here the frequencies Ci of codewords with weight i in C = C(Sp(4, q)) are given
by (3.1).

Now, Corollary 1.2 follows from (2.7).
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