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1. Introduction

In this paper we study open mappings of the sphere, S*, onto itself.
In particular, sufficient conditions are given that such a mapping be a
homeomorphism. For the cases #» = 2 many of the results could be obtained
from the work of G. T. Whyburn [7], [8], and [10]. For the cases n = 3
the useful results of A. V. Cernavskii, [1], [4], proved to be sufficient. An
application is made concerning a finite to one open mapping of one # cell
onto itself. It is interesting to note that for » < 2 that we could use similar
proofs to show that certain quasi-monotone mappings of S™ onto S™ are
necessarily monotone mappings.

2. Notation

A mapping f will always mean a continuous function from the space X
to the space Y, where X and Y are spheres or cells of the same dimension.
The mapping f is open provided that the image of every open set is also an
open set and light if the inverse image of each point is totally disconnected.
The mapping f is said to be monotone if all point inverses are compact and
connected. Following Hemmingsen and Church [2] the set of all points at
which the mapping fails to be a local homeomorphism is denoted by B,.
The multiplicity function of f, M, assigns to each point z € X the number
of points in f~!f(z) if this set is finite and is + oo otherwise. A mapping f
is said to have bounded multiplicity if M has a finite upper bound. By a
region U is meant an open connected subset and the frontier of U, denoted
by FrU,is U—U.

3. Main results

A mapping f is said to be quasi-monotone provided that for any con-
tinuum X in the range space with non-vacuous interior /~1(K) has a finite
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number of components and each of these map onto K under f. This definition
is due to A. D. Wallace [5] as well as the following characterization of
quasi-monotone mappings. A mapping of one locally connected continuum
A onto another such continuum B is quasi-monotone if and only if each
component of the inverse of any region R in B maps onto R under f. On
locally connected continua quasi-monotone mappings are equivalent to the
quasi-open mappings of G. T. Whyburn [6]. The first theorem is just a very
special case of a theorem in [7].

THEOREM 3.1. Let f(X) =Y be an open mapping where X and Y are
one-dimensional spheres. If there is a point x, € X for which {7 f(x,) = {x,},
then f is a homeomorphism.

Proor. Let 2eY, 2z +~ f{x;), and let C be a component of X —f1(z).
Since f is an open mapping f(C) = Y —{z}. Thus f1f(z,) C C so that C is
the only component of X—f1(z). Consequently f1(z) is connected and by
openness of f, f~1(z) is degenerate. Therefore f is 1—1 and necessarily a
homeomorphism.

THEOREM 3.2. Let {(X) = Y be a quasi-monotone mapping, where X and
Y are one-dimensional spheres. If there is a point x; € X for which {7f(z,)
is connected, then f is monotone.

ProoF. The proof is similar to that of 3.1 using the characterization of
quasi-monotone mappings mentioned earlier.

Before proving the corresponding theorems in the case of 2-spheres the
following lemma is needed. A more general form of this lemma was proved
by G. T. Whyburn in [10].

LemMA 3.3. Let Ry, R,, and R, be pairwise disjoint regions in the plane
or on a 2-sphere. There do not exist three distinct points which are accessible
from each region.

THEOREM 3.4. Let f(X) =Y be a light-open mapping, where X and Y
are 2-spheres. If there exist three distinct points x,, x,, and xy such that
[ (x) ==, i =1, 2,3, then f is a homeomorphism.

Proor. Let z€ Y, z £ f(z,), 1 = 1, 2, 3, and let S? be a simple closed
curve in Y containing z, f(#,), f(z,), and f(z;). Let R, and R, be the two
regions of Y —St. By openness of f each component C of f1(R,), ¢ =1, 2,
maps onto R, and {z,, z,, x;} C FrC. Since f is a light open mapping each
such C has property S so that each of x,, z,, and =, is accessible from C.
By 3.3 and the proof up to this point f1(R,) and f1(R,) are connected.
Each component of f71(S!') must map onto S* so that f1(S') is connected
and Frf1(R,) = {(SY) = Frf~'(R,) since f is open.
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We now show f~1(S') is a simple closed curve by showing no point
separates it while every pair of distinct points do separate it. Suppose there
is a point x! € f~1(S7) such that f1(S*)—f1f(x') = 4 u B is a separation.
The mapping f/(f*(S')—f1f(«x')) is an open and closed mapping of
f(SY)—f1f(z') onto S*—f(x). Thus f(4) is open and closed in S'—f(x1),
so that f(4) = S'—f(x!). Similarly f(B) = S'—f(2'). The point f(z!) is
at most one of the three points f(x;), f(x,), of f(x;), thus each of 4 and B
contains at least two of z,, %,, x; and this is contradictory. Suppose now that
z', '’ are distinct points of f~1(S'). There is a simple arc (z’, 2”’) spanning
{7 (R;) and a simple arc (z’, ") spanning f1(R,). The union of these two
simple arcs is a simple closed curve J that meets /~1(S?) precisely in the
points " and #”. Let M, and M, be the two regions of X —J. Each of M,
and M, contain points of {~1(R;) and f~!(R,) and hence each contains points
of /~1(S*). Therefore each pair of points of f~1(S) separates /~1(S?).

The mapping f/f~1(S!) is an open mapping satisfying the conditions of
3.1 so that it is necessarily a homeomorphism. Now f71(z) is a single point
which in turn implies fis 1—1.

There is an alternate proof for 3.4 which can be obtained by using the
characteristic equation of f, see reference [7], p. 98 or [8], p. 202,

Assuming the hypotheses of theorem 3.4 and applylng theorem 1. 1
p. 98, [7], one obtains the characteristic equation ky(Y)—y(X) = kr—n,
where % is the degree of f, » is the number of singular points of f on Y and
n is the number of inverse points in X of these 7 singular points. Since X
and Y are 2-spheres the Euler Characteristic y(X) = x(Y) = 2. Let
41,92, * * *, g, be the singular points of f in Y and #, the number of points
in f(g,). It can be assumed that ¢, = f(x,), ¢, = [(z,), and g3 = f(z3)
so that the characteristic equation becomes

2k—2 = 3k—3+ Y (k—n,).
4
This reduces to

1 =k+ é (k_”i)»
4

and since the last term is non-negative, it then follows that 2 =1 and
hence f is a homeomorphism. Furthermore in case there are two points with
unique inverses a similar type of argument proves that no other point of
Y can be a singular point. This method of proof was communicated to me
by G. T. Whyburn.

THEOREM 3.5. Let {(X) = Y be a quasi-monotone, where X and Y are
2-spheres. If there exist three distinct points x,, x,, and x5, such that f1f(x;),
1 =1, 2, 3, is a continuum, then f is monotone.
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Proor. Forally e Y, f~*(y) does not separate X, for if C, is a component
of X—f(y), then f(C,;) is open and f(C,) is closed in Y —{y}, thus
HCy) = Y—{y}. Each such C, must contain at least two of the three
continua f1f(z,), # = 1, 2, 3, which in turn implies Y —f~1(y) is connected.
It now follows that no component of f~'(y) can separate X.

Let f = Lm be the unique monotone light factorization of f and let M
be the middle space. It is well known [9], [3] that L is light-open and f
generates an upper semi-continuous decomposition of X into continua
which do not separate X and consequently M is a topological 2-sphere.
We can now apply 3.4 to the light-open mapping L(M) = Y since there
are at least three distinct points z for which LZ'L(z) = 2 and obtain the
result that L is a homeomorphism. This now implies that f is necessarily a
monotone mapping.

In order to treat the higher dimensional case, we need the following
result of A. V. Cernavskii [1] which was also proved by J. Viisila [4] using
more elementary methods.

THEOREM 3.6. Let M and N be connected n-manifolds without boundary
and f(M) = N a finite to one open and closed mapping. Then | has bounded
multiplicity, the wmultiplicity function takes ifs wmaximum value on
M —f1{(B,), where it is constant, and dim [~1f(B;) < n—2.

. THEOREM 3.7. Let {(X) =Y be finite to one open mapping, where X
and Y are n-spheres. If C is an (n—1) dimensional set in X for which x € C
implies [1f(x) is a single point, then f is a homeomorphism.

ProoF. By (3.6) dim f1f(B,) <n—2 so that (X—f1f(B,)) n C 0.
Since the multiplicity function is constant on X —f-1/(B,), it must take on
the value one. Consequently f is 1—1 on X —f~1f(B,) and therefore by the
openness of f 1—1 on the closure of X—/~1f(B,) which is X itself.

It is possible to construct simple examples of finite to one open
mappings of the n-sphere, » > 1, onto itself for which the dimension of
f1H(B,) is n—2. It is not known whether a light-open mapping of an
n-sphere, n > 2, onto itself is necessarily finite to one. In fact the latter is
not even known for the case when f in addition to being light and open also
preserves the dimension of all closed subsets.

We use 3.7 and a simple construction to solve a conjecture of G. T.
Whyburn [11], which can be stated as follows. ‘If f is a finite to one open
mapping on a 3-cell X with boundary B such that fis 1—1 on B and f(B)
is disjoint from f(X — B), then f is a homeomorphism’. The following tech-
nique reduces the problem for n-cells to an application of 3.7 and gives an
affirmative answer. Consider the boundary B of the #n-cell X to be such that
X is the set of all points on the unit sphere S* in E"*1 with last coordinate
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non-positive and B to be all the points of X with last coordinate zero.
Extend the mapping f to a light open mapping F of S™ onto S" in the

following manner. Suppose f has coordinate functions f,, f;, ', f, and
z2eS" 2= (x, ", &,), £, > 0.
Define F(z) as follows.
F(Z‘) = (fO(xOI Ty, _xn): .fl(xO) R A I —x"), Y
fn—l(xo’ PR ‘xn)’ _fn(xo: R A _xn))

The mapping F of S* onto S™ thus defined is a finite to one open mapping
and it is at least 1—1 on the #—1 dimensional set B, so by theorem 3.7 F
is a homeomorphism and consequently f is a homeomorphism.

THEOREM 3.8. Let {(X) = Y be a finite to one open mapping of an n-cell
onto an n-cell. If B s the boundary of X and {(B) = B, {1f(B) = B, and
fIB is 1—1, then f is a homeomorphism.
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