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1. Introduction

In this paper we study open mappings of the sphere, Sn, onto itself.
In particular, sufficient conditions are given that such a mapping be a
homeomorphism. For the cases n 5S 2 many of the results could be obtained
from the work of G. T. Whyburn [7], [8], and [10]. For the cases n ^ 3
the useful results of A. V. Cernavskii, [1], [4], proved to be sufficient. An
application is made concerning a finite to one open mapping of one n cell
onto itself. It is interesting to note that for n ^ 2 that we could use similar
proofs to show that certain quasi-monotone mappings of Sn onto Sn are
necessarily monotone mappings.

2. Notation

A mapping / will always mean a continuous function from the space X
to the space Y, where X and Y are spheres or cells of the same dimension.
The mapping / is open provided that the image of every open set is also an
open set and light if the inverse image of each point is totally disconnected.
The mapping / is said to be monotone if all point inverses are compact and
connected. Following Hemmingsen and Church [2] the set of all points at
which the mapping fails to be a local homeomorphism is denoted by Bf.
The multiplicity function of /, M, assigns to each point x eX the number
of points in /^/(a?) if this set is finite and is +oo otherwise. A mapping /
is said to have bounded multiplicity if M has a finite upper bound. By a
region U is meant an open connected subset and the frontier of U, denoted
by FrU, is U-U.

3. Main results

A mapping / is said to be quasi-monotone provided that for any con-
tinuum K in the range space with non-vacuous interior f~x(K) has a finite
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number of components and each of these map onto K under /. This definition
is due to A. D. Wallace [5] as well as the following characterization of
quasi-monotone mappings. A mapping of one locally connected continuum
A onto another such continuum B is quasi-monotone if and only if each
component of the inverse of any region R in B maps onto R under /. On
locally connected continua quasi-monotone mappings are equivalent to the
quasi-open mappings of G. T. Whyburn [6]. The first theorem is just a very
special case of a theorem in [7].

THEOREM 3.1. Let f{X) = Y be an open mapping where X and Y are
one-dimensional spheres. If there is a point xxe X for which / ^ / ( ^ I ) = {a^},
then f is a homeomorphism.

PROOF. Let z eY, z ^ /(a^), and let C be a component of X—f~1(z).
Since / is an open mapping f(C) = Y—{z}. Thus f~1f{x1) C C so that C is
the only component of X—f~1{z). Consequently f-1{z) is connected and by
openness of /, f~x(z) is degenerate. Therefore / i s 1 — 1 and necessarily a
homeomorphism.

THEOREM 3.2. Let f(X) = Y be a quasi-monotone mapping, where X and
Y are one-dimensional spheres. If there is a point xxeX for which f~1f{x1)
is connected, then f is monotone.

PROOF. The proof is similar to that of 3.1 using the characterization of
quasi-monotone mappings mentioned earlier.

Before proving the corresponding theorems in the case of 2-spheres the
following lemma is needed. A more general form of this lemma was proved
by G. T. Whyburn in [10].

LEMMA 3.3. Let Rx, R2, and Rs be pairwise disjoint regions in the plane
or on a 2-sphere. There do not exist three distinct points which are accessible
from each region.

THEOREM 3.4. Let f(X) = Y be a light-open mapping, where X and Y
are 2-spheres. If there exist three distinct points xlt x2, and xs such that
f~1f{xi) = xit i — 1, 2, 3, then f is a homeomorphism.

PROOF. Let z eY, z ^ /(#,), * = 1, 2, 3, and let S1 be a simple closed
curve in Y containing z, /(a^), f(x2), and f(x3). Let i?x and R2 be the two
regions of Y—S1. By openness of / each component C of /^(i?,), i = 1, 2,
maps onto R{ and {x1, x2, x3} C FrC. Since / is a light open mapping each
such C has property S so that each of xlt x2, and x3 is accessible from C.
By 3.3 and the proof up to this point /^1(i?1) and /-1(i?2) are connected.
Each component of /^(S1) must map onto S1 so that /"•'(S1) is connected
and Frf-^RJ = f-^S1) = Frf-^R^) since / is open.
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We now show /^(S1) is a simple closed curve by showing no point
separates it while every pair of distinct points do separate it. Suppose there
is a point x1 e /"'(S1) such that f^1(S1)—f~1f(x1) = A u B is a separation.
The mapping fl(f~1(S1)—f^1f(x1)) is an open and closed mapping of
/ -HS 1 ) - / - 1 /^ 1 ) o n t o ^ - / ( z ) . Thus f{A) is open and closed in S 1 - / ^ 1 ) ,
so that f(A) = S1-/(x1). Similarly f(B) = S1-f(x1). The point f{xl) is
at most one of the three points f(xx), f(x2), of f(x3), thus each of A and B
contains at least two of x1, x2, x3 and this is contradictory. Suppose now that
x', x" are distinct points of j~x{Sx). There is a simple arc (x', x") spanning
f~l(Ri) a n d a simple arc (x1, x") spanning f^1(R2). The union of these two
simple arcs is a simple closed curve J that meets /^1(S1) precisely in the
points x' and x". Let Mx and M2 be the two regions of X~J. Each of M1

and M2 contain points of /^(RJ and f~1(R2) and hence each contains points
of /^(S1). Therefore each pair of points of /"^(S1) separates /^(S1).

The mapping ///-1 (S1) is an open mapping satisfying the conditions of
3.1 so that it is necessarily a homeomorphism. Now f"1 (z) is a single point
which in turn implies / i s 1 — 1.

There is an alternate proof for 3.4 which can be obtained by using the
characteristic equation of /, see reference [7], p. 98 or [8], p. 202.

Assuming the hypotheses of theorem 3.4 and applying theorem 1.1,
p. 98, [7], one obtains the characteristic equation k%(Y)—x{X) = kr—n,
where k is the degree of /, r is the number of singular points of / on Y and
n is the number of inverse points in X of these r singular points. Since X
and Y are 2-spheres the Euler Characteristic %(X) = %(Y) = 2. Let
1i> ?2> ' ' •> 1r be the singular points of / in Y and ni the number of points
in Z"1 (?,-). It can be assumed that qx = f{x1), q2 = f{x2), and q3 = f[x3)
so that the characteristic equation becomes

This reduces to

and since the last term is non-negative, it then follows that k = 1 and
hence / is a homeomorphism. Furthermore in case there are two points with
unique inverses a similar type of argument proves that no other point of
Y can be a singular point. This method of proof was communicated to me
by G. T. Whyburn.

THEOREM 3.5. Let f(X) = Y be a quasi-monotone, where X and Y are
2-spheres. If there exist three distinct points xx, x2, and x3, such that f~lf{Xi),
i = 1, 2, 3, is a continuum, then f is monotone.
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PROOF. For all y eY, f~l(y) does not separate X, for if C1 is a component
of X—f^d/), then /(Cx) is open and /(Cj) is closed in Y—{y}, thus
f(Cx) = Y — {«/}. Each such C1 must contain at least two of the three
continua f~1f[xi), i = 1, 2, 3, which in turn implies Y—f~1(y) is connected.
It now follows that no component of /~J (y) can separate X.

Let / = Lm be the unique monotone light factorization of / and let M
be the middle space. It is well known [9], [3] that L is light-open and /
generates an upper semi-continuous decomposition of X into continua
which do not separate X and consequently M is a topological 2-sphere.
We can now apply 3.4 to the light-open mapping L(M) = Y since there
are at least three distinct points z for which L~1L(z) = z and obtain the
result that L is a homeomorphism. This now implies that / is necessarily a
monotone mapping.

In order to treat the higher dimensional case, we need the following
result of A. V. Cernavskii [1] which was also proved by J. Vaisala [4] using
more elementary methods.

THEOREM 3.6. Let M and N be connected n-manifolds without boundary
and f(M) = N a finite to one open and closed mapping. Then f has bounded
multiplicity, the multiplicity function takes its maximum value on
M~f~1f(Bf), where it is constant, and dim f~1f{Bf) 5g n—2.

THEOREM 3.7. Let f(X) = Y be finite to one open mapping, where X
and Y are n-spheres. If C is an (»—1) dimensional set in X for which x e C
implies f~1f{x) is a single point, then f is a homeomorphism.

PROOF. By (3.6) d im/" 1 /^ , ) ^ w - 2 so that (X—/^/(-B,)) r\ C ^ 0.
Since the multiplicity function is constant on X—f~1f{Bf), it must take on
the value one. Consequently / is 1 — 1 on X—f~1f(Bf) and therefore by the
openness of / 1 — 1 on the closure of X—f~1f(Bf) which is X itself.

It is possible to construct simple examples of finite to one opsn
mappings of the w-sphere, n > 1, onto itself for which the dimension of
f~1f(Bf) is n—2. It is not known whether a light-open mapping of an
w-sphere, n > 2, onto itself is necessarily finite to one. In fact the latter is
not even known for the case when / in addition to being light and open also
preserves the dimension of all closed subsets.

We use 3.7 and a simple construction to solve a conjecture of G. T.
Whyburn [11], which can be stated as follows. 'If / is a finite to one open
mapping on a 3-cell X with boundary B such that / is 1 — 1 on B and f(B)
is disjoint from f(X—B), then / is a homeomorphism'. The following tech-
nique reduces the problem for w-cells to an application of 3.7 and gives an
affirmative answer. Consider the boundary B of the w-cell X to be such that
X is the set of all points on the unit sphere Sn in En+1 with last coordinate
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non-positive and B to be all the points of X with last coordinate zero.
Extend the mapping / to a light open mapping F of S" onto 5" in the
following manner. Suppose / has coordinate functions /0,/i> " • ',fn and
z e Sn, z = (x0, • • •, xn), xn > 0.

Define F(x) as follows.

r (x) = \fo{xo, • • -, xn_1, xn), fi(x0, • • •, xn_1, xn), • • •,

ln-l{X0> ' ' '> Xn-X> —Xn)> fn\X0' ' ' "> Xn-l> Xn))

The mapping F of 5" onto Sn thus defined is a finite to one open mapping
and it is at least 1 — 1 on the n—l dimensional set B, so by theorem 3.7 F
is a homeomorphism and consequently / is a homeomorphism.

THEOREM 3.8. Let f[X) = Y be a finite to one open mapping of an n-cell
onto an n-cell. If B is the boundary of X and f(B) = B, f~1f{B) = B, and
f/B is 1 — 1, then f is a homeomorphism.

References

[1] Cernavskii, a. V., 'Finite to one open mappings on manifolds', Mat. Sb. (NS) 65 (107)
(1964), 357—369.

[2] Church, P. T. and Hemmingsen, E., 'Light open maps on «-manifolds', Duke Math. J. 27
(1960), 527—536.

[3] Moore, R. L., 'Concerning upper semi-continuous collections of continua'. Trans. Amer.
Math. Soc. 27 (1925), 416—428.

[4] Vaisala, Jussi, 'Discrete open mappings on manifolds', Ann. Acad. Sci. Fenn. A I 392
(1966), 1—10.

[5] Wallace, A. D., 'Quasi monotone transformations', Duke Math. J. 7 (1940), 136—145.
[6] Whyburn, G. T., 'Quasi-open mappings'. Rev. Math. Pure Appl. 2 (1957), 47—52.
[7] Whyburn, G. T., 'Topological analysis'. Princeton Math. Series-Princeton University

Press, Princeton, N. J. 1958.
[8] Whyburn, G. T., 'Analytic topology'. Amer. Math. Soc. Colloquim Publications, 28, (1942).
[9] Whyburn, G. T., 'Open and closed mappings', Duke Math. J. 17 (1950), 69—74.

[10] Whyburn, G. T., 'Concerning plane closed point sets which are accessible from certain
subsets of their complements', Proc. Nat. Acad. Sci. 14 (1928), 657—666.

[11] Summary of Lectures and Seminars — Revised Edition University of Wisconsin Summer
Institute on Set Theoretic Topology.

University of Miami
Coral Gables, Fla.

https://doi.org/10.1017/S1446788700007564 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700007564

