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Abstract

In a 1968 issue of the Proceedings, P. M. Cohn famously claimed that a commutative
domain is atomic if and only if it satisfies the ascending chain condition on principal ide-
als (ACCP). Some years later, a counterexample was however provided by A. Grams, who
showed that every commutative domain with the ACCP is atomic, but not vice versa. This
has led to the problem of finding a sensible (ideal-theoretic) characterisation of atomicity.

The question (explicitly stated on p. 3 of A. Geroldinger and F. Halter–Koch’s 2006 mono-
graph on factorisation) is still open. We settle it here by using the language of monoids and
preorders.

2020 Mathematics Subject Classification: 13A05, 13E99, 16P70, 20M10, 20M13 (Primary)

1. Introduction

A (multiplicatively written) monoid H is cancellative if the function H → H : x �→ uxv is
injective for all u, v ∈ H; unit-cancellative if xy �= x �= yx for all x, y ∈ H with y not a unit; and
acyclic if uxv �= x for all u, v, x ∈ H unless u and v are both units (we address the reader to J.
M. Howie’s monograph [21] for generalities on monoids).

An acyclic or cancellative monoid is unit-cancellative, but not conversely; and it is a
basic fact that a cancellative monoid satisfying the ascending chain condition (ACC) on
both principal left ideals (ACCPL) and principal right ideals (ACCPR) is atomic, namely,
each non-unit is a product of atoms (we recall that an atom, in an arbitrary monoid, is a non-
unit that does not factor as a product of two non-units). We will refer to this fundamental
result as Cohn’s theorem, since it can be traced back to P. M. Cohn’s work on factorisation
in the 1960s (e.g., see [6, theorem 2·8], the unnumbered corollary on p. 589 of [7], and [10,
proposition 0·9·3]).

Cohn’s theorem was extended to unit-cancellative monoids in [15, theorem 2·28(i)] and
then generalised to premons in [23, theorem 3·10] and [11, theorem 3·4], where a premon
(or premonoid) is a pair consisting of a monoid H and a preorder — i.e., a reflexive and
transitive binary relation — on (the carrier set of) H. A key to these arguments is the role
played by the divisibility preorder |H , viz., the binary relation on H defined by x |H y if and
only if x ∈ H and y ∈ HxH (it is easy to check that |H is a preorder). In fact, the result follows
from applying [23, theorem 3·10] to the divisibility premon (H, |H) of H and considering that,
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by [23, corollary 4·6], H is unit-cancellative and satisfies the ACCPL and the ACCPR if and
only if it is acyclic and satisfies the ACC on principal two-sided ideals (ACCP).

The interplay between ACCs and factorisation in commutative monoids is a classical topic
which has overseen a revival in recent years. In [8, proposition 1·1], Cohn famously claimed
(without proof) that a commutative domain R is atomic (i.e., the multiplicative monoid R• of
the non-zero elements of R is atomic) if and only if R satisfies the ACCP (i.e., R• satisfies the
ACCP). Some years later, A. Grams [20] showed, by way of a counterexample, that Cohn’s
assertion is however wrong. Indeed, every commutative domain with the ACCP is atomic,
but not vice versa. Grams’ construction is usually acknowledged as the first counterexam-
ple, but it seems that Cohn had already realized his own mistake and outlined a simpler
construction in [9, p. 4, lines 14–18].

Further contributions in the same vein were subsequently made by A. Zaks [24], who con-
sidered certain quotients of a polynomial ring in infinitely many variables and proved that
they are atomic but do not satisfy the ACCP; and by M. Roitman, who showed the existence
of an atomic commutative domain R such that the univariate polynomial ring R[X] is not
atomic [22, example 5·1]. Incidentally, Roitman’s example produced an atomic commuta-
tive domain without the ACCP (if R had the ACCP, then we would gather from [18, theorem
14·6] that R[X] also has the ACCP and hence is atomic by Cohn’s theorem). More recently,
J. G. Boynton and J. Coykendall [2] have used pullbacks of commutative rings to generate
large families of atomic commutative domains that do not satisfy the ACCP; F. Gotti and B.
Li [19, theorem 4·4] have built what appears to be the first example of an atomic, commuta-
tive monoid domain without the ACCP; and J. Bell et al. [1, proposition 7·6] have provided
the first example of an atomic, non-commutative, finitely presented monoid domain that sat-
isfies neither the ACCPL nor the ACCPR (see also [13] for some related results on monoid
rings, atomicity, and the ACCP).

It is definitely easier to come up with cancellative commutative monoids that are lacking
the ACCP. E.g., S. T. Chapman et al. proved in [5, corollary 4·4] that, if r is a non-zero
rational number smaller than 1 and the numerator (of the reduced fraction) of r is not 1, then
the submonoid of the additive group of the rational field generated by 1, r, r2, . . . is atomic
but does not satisfy the ACCP.

With these preliminaries in place, it is natural to ask if Cohn’s false claim (that, for com-
mutative domains, atomicity is equivalent to the ACCP) can be fixed by providing a sensible
characterization (of an ideal-theoretic nature) of when a cancellative commutative monoid
is atomic. In this regard, the last lines of p. 3 in A. Geroldinger and F. Halter–Koch’s 2006
monograph [16] on non-unique factorisation read, “Up to now, there is no satisfactory ideal-
theoretic characterisation of atomic [commutative] domains.” Geroldinger has confirmed
in private communication that, to his knowledge, the problem — ostensibly belonging to
folklore — is still open.

In this paper, we aim to settle the question by proving, more generally, a characterisation
of factorability in the abstract setting of premons (Corollary 2·5). First, we demonstrate that,
in a locally artinian premon (H, �), every �-non-unit factors as a product of �-irreducibles
(Theorem 2·4). Next, we obtain a characterisation of atomicity (Corollary 2·6) by (i) restrict-
ing the previous result to the case where H is acyclic and � is the divisibility preorder
on H, (ii) recognising that all �-irreducibles are then atoms, (iii) reinterpreting the con-
dition of local artinianity in ideal-theoretic terms, and (iv) considering that, among many
others, cancellative commutative monoids are acyclic. Details will be given in Section 2
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(see, in particular, Definition 2·1), but something to keep in mind is that we use the adverb
“locally” to refer to an element-wise property (i.e., the term has nothing to do with prime
ideals and localisations in the sense, say, of [16, section 2·2]).

Overall, this work is simple if measured from the technicality of the proofs. Its value, we
hope, lies rather in the insight that the ACCP has little to do with the classical setting [17] of
factorisation theory (an observation already made in [23]) and is the first step in a countably
infinite ladder of weaker and weaker conditions ultimately “converging” to local artinianity
(Remarks 2·2).

2. Turning the ACCP to an element-wise condition

Let (H, �) be a premon (note that, in principle, we require no compatibility between the
monoid operation and the preorder). An element u ∈ H is a �-unit if u � 1H � u and a �-
non-unit otherwise. A �-quark is then a �-non-unit a ∈ H with the property that there is no
�-non-unit b ≺ a (i.e., b � a and a �� b); and given s ∈N≥2 ∪ {∞}, a �-irreducible of degree
s (or degree-s �-irreducible) is a �-non-unit a such that a �= x1 · · · xk for every k ∈ [[2, s]]
and all �-non-units x1 ≺ a, . . . , xk ≺ a. In particular, we refer to a �-irreducible of degree 2
as a �-irreducible (occasionally, the term may also be used as an adjective).

The �-height of an element x ∈ H is, on the other hand, the supremum of the set of all
n ∈N+ for which there are �-non-units x1, . . . , xn with x1 = x and xi+1 ≺ xi for each i ∈
[[1, n − 1]], where sup ∅ := 0. Of course, x is a �-unit if and only if its �-height is zero; and
is a �-quark if and only if its �-height is one (in general, there is not much we can say about
the �-height of a �-irreducible).

The notions of �-[non-]unit, �-quark, �-irreducible, and �-height were introduced in
[23, definitions 3·6 and 3·11], while �-irreducibles of finite degree were first considered in
[11, definition 3·1]. Note that a �-quark is �-irreducible, but the converse need not be true
[23, remark 3·7(4)].

Definition 2 1.

(1) Given a premon (H, �), an element x ∈ H is �-artinian if there is no (strictly) �-
decreasing sequence x1, x2, . . . in H with x1 = x, and is strongly �-artinian if the �-
height of x is finite.

(2) The premon itself is then artinian (resp., strongly artinian) if every �-non-unit is �-
artinian (resp., strongly �-artinian); and k-locally (resp., strongly k-locally) artinian,
for a certain k ∈N∪ {∞}, if every �-non-unit is a finite product of k or fewer �-
artinian (resp., strongly �-artinian) �-non-units.

(3) An ∞-locally (resp., strongly ∞-locally) artinian premon will simply be called a
locally (resp., strongly locally) artinian premon; and we shall say that the monoid H is
�-artinian, [strongly] locally �-artinian, etc., if the premon (H, �) is, resp., artinian,
[strongly] locally artinian, etc.

The notions of �-artinianity and strong �-artinianity (as per Definition 2·1(2)) are equiv-
alent to the homonymous notions introduced in [23, definitions 3·8 and 3·11] and further
studied in [11,12]. The main novelty of this work lies in the idea of turning �-artinianity
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into an element-wise condition, inspired by an online talk by F. Gotti at the seminar of the
Algebra and Number Theory research group of University of Graz in June 2022.

Remarks 2·2.

(1) A 1-locally (resp., strongly 1-locally) artinian premon is nothing else than an artinian
(resp., strongly artinian) premon, and it is fairly obvious that, for all h, k ∈N∪ {∞}
with h ≤ k, an h-locally (resp., strongly h-locally) artinian premon is also k-locally
(resp., strongly k-locally) artinian. In particular, artinian premons are locally artinian.
The converse need not be true, as shown by Grams’ counterexample in the basic case
of the divisibility premon of a cancellative commutative monoid.

(2) Fix h, k ∈N≥2, and let X = {x0, x1, . . .} and Y = {y1, y2, . . .} be disjoint, countably
infinite sets and σ be a (strictly) increasing function on N. Following [23, section
2·3], we denote by H the quotient of the free monoid F (S) with basis S := X ∪ Y by
the smallest monoid congruence R# containing the subset

R :=
⋃

r∈N
{(xrh, xrh+1 ∗ · · · ∗ xrh+h), (xrh, yσ (rk)+1 ∗ yσ (rk)+2 ∗ · · · ∗ yσ (rk+k)︸ ︷︷ ︸

σ (rk+k)−σ (rk) terms

)}

of F (S) ×F (S), where we denote by ∗ the operation (of word concatenation) in F (S).
Writing u for the congruence class modulo R# of an S-word u, it is clear that z is a |H-
quark for every z ∈ S \ {x0, xh, x2h, . . .}, while the |H-height of xrh is infinite for each
r ∈N (here we use that h, k ≥ 2 and hence σ (rk + k) − σ (rk) ≥ 2 by the hypothesis
that σ is increasing). It is then a routine exercise to check that (i) if h < k and σ is
the identity map on N, then the divisibility premon (H, |H) of H is strongly k-locally
artinian but not h-locally artinian, and (ii) if the growth rate of σ is superlinear (e.g.,
if σ (n) := n2 for all n ∈N), then (H, |H) is strongly locally artinian but not k′-artinian
for any k′ ∈N+ (we leave the details to the reader).

(3) Given a premon H= (H, �) and an element x̄ ∈ H, we put ↓H x̄ := {x ∈ H : x � x̄}
and ↑H x̄ := {x ∈ H : x̄ � x}. Similarly as in the case of a poset (see, e.g., [14, p. 45]),
we call ↓H x̄ and ↑H x̄, resp., the principal �-ideal and the principal �-filter generated
by x̄. Note that ↑H x̄ is then a principal �op-ideal and ↓H x̄ is a principal �op-filter,
where �op is the dual of the preorder � (i.e., u �op v if and only if v � u).

It is evident that, for all y, z ∈ H, we have y � z if and only if ↓H y ⊆ ↓H z, if and only
if ↑H z ⊆ ↑H y. It follows that an element x̄ ∈ H is �-artinian if and only if there is no
sequence x1, x2, . . . in H with x1 = x̄ and ↓H xi+1 � ↓H xi (resp., ↑H xi � ↑H xi+1) for all
i ∈N+. This allows for an ideal-theoretic interpretation of the notions of �-artinianity and
local �-artinianity introduced in Definition 2. Most notably, the principal |H-filter generated
by x̄ is the principal two-sided ideal Hx̄H of the monoid H; whence H satisfies the ACCP if
and only if it is |H-artinian (cf. [23, remark 3·9(4)]).

We are going to show that local artinianity is a sufficient condition for a premon (H, �)
to be factorable in the sense of [12, definition 3·2(4)], i.e., for each �-non-unit to factor as a
product of �-irreducibles (equivalently, we will say that the monoid H is �-factorable).

LEMMA 2·3. Let (H, �) be a premon and s be either an integer ≥ 2 or ∞. Each
�-artinian �-non-unit is then a product of �-irreducibles of degree s.
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Proof. Let � be the set of all �-artinian �-non-units that do not factor as a product of �-
irreducibles of degree s, and suppose for a contradiction that � is non-empty. It then follows
from the well-foundedness of artinian preorders (see, e.g., [23, remark 3·9(3)]) that � has
a �-minimal element x̄. In particular, x̄ is neither a �-unit nor a �-irreducible (because the
elements of � are neither �-units nor products of �-irreducibles of degree s). Therefore,
x̄ = yz for some �-non-units y, z ∈ H with y ≺ x̄ and z ≺ x̄, and at least one of y and z is not
a product of �-irreducibles of degree s (or else so would be x̄, which is absurd). But then
either y or z is in � (note that y and z are �-artinian elements of H, since x̄ is �-artinian and
we have y ≺ x̄ and z ≺ x̄), contradicting that x̄ is a �-minimal element of the same set.

The proof of the next result is now straightforward from Definition 2·1 and Lemma 2·3.

THEOREM 2·4 If (H, �) is a locally artinian premon, then every �-non-unit factors as
a product of �-irreducibles of degree s for all s ∈N≥2 ∪ {∞} and, in particular, H is a
�-factorable monoid.

In fact, Theorem 2·4 is a refinement of [23, theorem 3·10] and the existence part of [11,
theorem 3·4], where the local artinianity of the premon (H, �) is replaced by the stronger
condition of artinianity (and, incidentally, only �-irreducibles of finite degree are being
considered).

COROLLARY 2·5 Let (H, �) be a premon such that every �-irreducible is a �-quark or,
more generally, has finite �-height. Then H is a �-factorable monoid if and only if it is
locally �-artinian.

Proof. The “if” part is a consequence of Theorem 2·4. The “only if” part follows from
considering that, if H is a �-factorable monoid and each �-irreducible has finite �-height,
then the premon (H, �) is strongly artinian and hence locally artinian (as already noted in
Remark 2·2(1)).

In the light of Remark 2·2(3), let us say that an element x in a monoid H
satisfies the ACCP if there is no sequence x1, x2, . . . in H with x1 = x and HxiH � Hxi+1H
for every i ∈N+. Cohn’s assertion that “a commutative domain R is atomic if and only if its
multiplicative monoid (R, · ) satisfies the ACCP” then amounts to the statement that (R, · ) is
atomic if and only if each element of R satisfies the ACCP. We are about to see that the truth
is, in fact, not too far from Cohn’s (false) claim.

COROLLARY 2·6. An acyclic monoid is atomic if and only if it has a generating set whose
elements all satisfy the ACCP.

Proof. Let H be an acyclic monoid. An element x ∈ H is then a |H-unit if and only if it is
a unit. On the other hand, we gather from [23, corollary 4·4] that x is a |H-irreducible if and
only if it is an (ordinary) atom, if and only if it is a |H-quark. It follows that H is atomic if
and only if it is |H-factorable; and by Corollary 2·5, this is in turn equivalent to saying that
H is locally |H-artinian. Hence every non-unit factors as a product of finitely many elements
each of which satisfies the ACCP. Thus we are done, for it is obvious that units also satisfy
the ACCP.
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First introduced in [23, definition 4·2], acyclic monoids abound in nature and provide an
interesting alternative to cancellativity in the study of factorisation in a non-commutative
setting. Apart from unit-cancellative commutative monoids, a number of non-commutative
examples can be found in [12, examples 5·4]. In particular, we recall from the introduction
that, for a monoid, being unit-cancellative and satisfying both the ACCPL and the ACCPR
is equivalent to being acyclic and satisfying the ACCP.

Examples 2·7.

(1) Let R be the subdomain of the univariate polynomial ring Q[X] over the rational field
consisting of all polynomials whose constant term is an integer. We gather from the
unnumbered example on p. 166 of [3] that R is a non-atomic domain. This gives us a
chance to illustrate how the sufficient condition in Corollary 2·6 can fail in practice.
In fact, let H be the multiplicative monoid of the non-zero elements of R and suppose
for a contradiction that H has a generating set A each of whose elements satisfies the
ACCP. Since X is in H and the only divisors of X in H are either integers or degree-one
polynomials with zero constant term, it is clear that qX ∈ A for some non-zero q ∈Q

(if the only generators in A that divide X were integers, then X would not belong
to the submonoid generated by A). However, qX does not satisfy the ACCP (which is
absurd), because qX, qX/2, . . . , qX/2i, . . . is a (strictly) |H-decreasing sequence (note
that q1X |H q2X, for arbitrary q1, q2 ∈Q, if and only if q2 = q1k for some k ∈Z).

(2) Let r = a/b be a positive rational number smaller than 1, with a, b ∈N+, a ≥ 2,
and gcd (a, b) = 1. We have already mentioned in Sect. 1 that the submonoid H of
(Q, +) generated by 1, r, r2, . . . is then an atomic monoid without the ACCP [5,
corollary 4·4]. In fact, it is readily checked that, for all i ∈N,

ari+1 < ari = (b − a)ri+1 + ari+1 ∈ ari+1 + H,

which shows that a, ar, ar2, . . . is a (strictly) |H-decreasing sequence. Since H is a
cancellative monoid, it follows that for an element x ∈ H to be |H-artinian (i.e., to
satisfy the ACCP) it is necessary that x /∈ ari + H for each i ∈N. Interestingly, it turns
out that the same condition is also sufficient.

To see why, suppose x �= 0 (or else there is nothing to prove) and denote by LH(x) the set of all
n ∈N+ such that x = a1 + · · · + an for some atoms a1, . . . , an ∈ H. We have that LH(x) �= ∅
(note that the only unit of H is the identity 0 ∈Q), and [4, lemma 3·1(3)] yields that |LH(x)| =
∞ if and only if x ∈ ari + H for some i ∈N. So, if x /∈ ari + H for every i ∈N, then LH(x) is
a non-empty finite subset of N+, which implies at once that the |H-height of x is finite and
hence x is |H-artinian.
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