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Semi-classical Integrability, Hyperbolic
Flows and the Birkhoff Normal Form

Michel Rouleux

Abstract. We prove that a Hamiltonian p ∈ C∞(T∗
R

n) is locally integrable near a non-degenerate

critical point ρ0 of the energy, provided that the fundamental matrix at ρ0 has rationally independent

eigenvalues, none purely imaginary. This is done by using Birkhoff normal forms, which turn out

to be convergent in the C∞ sense. We also give versions of the Lewis-Sternberg normal form near a

hyperbolic fixed point of a canonical transformation. Then we investigate the complex case, showing

that when p is holomorphic near ρ0 ∈ T∗
C

n, then Re p becomes integrable in the complex domain

for real times, while the Birkhoff series and the Birkhoff transforms may not converge, i.e., p may not

be integrable. These normal forms also hold in the semi-classical frame.

0 Introduction

Birkhoff ’s theorem reduces Hamiltonians near an elliptic equilibrium to quasi-
integrable systems. More precisely, let p ∈ C∞(T∗Rn) have a local non degenerate
minimum at ρ0 = (x0, ξ0) = 0 with non resonant frequencies λ1, . . . , λn, i.e., the

fundamental matrix Fρ0
defined by

(0.1) p ′′
ρ0

(t, s) =
1

2
σ(t, Fρ0

(s))

(here the hessian p ′′ and the symplectic 2-form are considered as quadratic forms

on R2n) has eigenvalues ±iλ1, . . . ,±iλ1 linearly independent over Z, λ j > 0. Then
there is (locally near ρ0,) a canonical transform κ ∈ C∞ preserving the origin ρ0 = 0,
formally defined through its Taylor series, such that

(0.2) q(y, η) = p ◦ κ(y, η) ∼
∑

α∈Nn\0

aαια, ι j =
1

2
(η2

j + y2
j )

near 0 (in the sense of Taylor series) with linear part
∑n

j=1 λ jι j . The function q is
known as the Birkhoff normal form of p (see [BamGraPa, Bi, Gal, GiDeFoGaSim,
Sj3, Vi], etc.) A theorem of C. Siegel [Si1, Si2] says that Birkhoff series are in general

divergent (because of small denominators) and there is no hope to reduce p to a
completely integrable system. A gigantic literature has been devoted to integrability
of Hamiltonian systems; we have listed below some of the most famous references
([Ar, ArNo, CuB, Mo, Si1, Si2, SiMo], etc.) but this work has been in part inspired by

[El, It and IaSj]. See also [Au] for a somewhat less conventional and more algebraic
approach.
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Semi-classical Integrability, Hyperbolic Flows and the Birkhoff Normal Form 1035

Classification of quadratic Hamiltonians was made by Williamson [Ar, App. 6].
We know that eigenvalues of Fρ0

are of the form λ, λ,−λ,−λ. These Hamiltonians

have a particularly simple normal form when the eigenvalues are all distinct and non
vanishing. Assuming that Fρ0

is semi-simple (diagonalizable) in suitable symplectic
coordinates (x, ξ) ∈ R2n, the normal form is given as follows:

p(x, ξ) =

ℓ∑

j=1

a jx jξ j +

m∑

j=1

(
c j

(
xℓ+2 j−1ξℓ+2 j−1 + xℓ+2 jξℓ+2 j

)
(0.3)

+ d j

(
xℓ+2 j−1ξℓ+2 j − xℓ+2 jξℓ+2 j−1

))
+

1

2

n∑

j=ℓ+2m+1

b j(ξ
2
j + x2

j )

We call “action variables” the elementary polynomials that enter the expression (0.3).
The eigenvalues λ j of Fρ0

are of the form ±a j , ±(c j ± id j), and ±ib j , with the con-

vention a j , b j , c j > 0. Here we consider the case where none of the eigenvalues λ j

is purely imaginary, i.e., no b j occur in the decomposition. We say then that p, or
Hp (the Hamiltonian vector field), is hyperbolic, or of complex hyperbolic type, if
we want to stress that some λ j ’s are complex. Since the construction of Birkhoff se-

ries is a purely algebraic algorithm, it extends trivially to the hyperbolic, or complex
hyperbolic case (provided, of course, the eigenvalues are rationally independent.)

In the analytic category, H. Ito has proved [It] that Birkhoff series and Birkhoff
transforms are convergent iff the Hamiltonian is integrable, i.e., the corresponding

dynamical system has, locally, n Poisson commuting, analytic integrals of motion.
Complex eigenvalues occur in small oscillations around an unstable equilibrium.

As a first example we consider a top spinning around its apex O, with inertial mo-
menta I1 ≤ I2 < I3, where the principal axis of inertia corresponding to eigenvalue

I3 goes through O. For I1 = I2 (the so-called Lagrange top), the Hamiltonian is in-
tegrable at all energies, but in general there are only 2 integrals of motion. See e.g.,

[Au] for details. When the top is spinning fast enough, the total energy is close to a
minimum, and the Hamiltonian orbits (expressed in suitable Euler angles) are con-

fined within compact energy surfaces, on quasi-invariant torii. Then the motion can
be described by means of the Birkhoff normal form (0.2). Some of these torii are in-
variant (the KAM torii), but most of them will be eventually destroyed. When kinetic
energy decreases however, we approach a critical value of the Hamiltonian, and the

motion becomes unstable.
As a second example, we may consider a satellite, with inertial momenta I1 < I2 <

I3, spinning around the principal axis of inertia corresponding to the intermediate
eigenvalue I2. Again, within certain regimes, such a motion is unstable.

Then we may ask whether the Hamiltonian becomes integrable near critical ener-
gies.

In the smooth case (or in case of finite regularity), G. Belitskii, I. Bronstein and A.
Kopanskii [BeKo1, BeKo2, BrKo] used recently an idea of A. Banyaga, R. de la Llave

and C. Wayne [BaLlWa] to prove that, under somewhat more general conditions of
non resonance, such hyperbolic (or complex hyperbolic) flows are locally integrable.

From the point of view of classical mechanics, this matter may look rather fu-
tile, since the system will leave the unstable position long before the effects of non
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integrablity become relevant. Divergence from equilibrium grows in general expo-
nentially fast with time, with exception however of the trajectories sufficiently close

to the stable manifold. Thus, such an improvement may be of “microlocal” nature.

In (semi-classical) quantum mechanics however, particles are reputed to tunnel in
classically forbidden regions. A local minimum of the classical Hamiltonian becomes
a saddle point “seen from the complex side”. Consider for instance a semiclassical

Schrödinger operator P = −h2∆+V (x) for energies E close to a non-degenerate min-
imum of V , V (x0) = 0. The classical Hamiltonian reads p(x, ξ) = ξ2 + V (x). When
extending quasi-invariant tori in V (x) > E, we replace p by p̃(x, ξ) = ξ2 − V (x),
which becomes hyperbolic, and it is very convenient to know, in tunneling problems

(as in [MaSo, KaRo, Ro1]) that the resulting Hamiltonian, written in (hyperbolic)
action-angle coordinates is completely integrable.

Our main result for integrability and Birkhoff transformations in the real C∞

sense is to give a self-contained proof of the following :

Theorem 0.1 Assume p ∈ C∞ is real, with a non-degenerate critical point at ρ0, such

that the eigenvalues λ1, . . . , λn of Fρ0
are rationally independent, and none of them is

purely imaginary. Then, in a neighborhood of (0, 0), there is a C∞ canonical map κ,

κ(0, 0) = (0, 0), dκ(0, 0) = Id, and a C∞ function q of the elementary action variables

ι as in (0.3) such that p ◦ κ(y, η) = q(ι).

(Then we shall say that p has exact Birkhoff normal form, while the term “reso-
nant” means that the relation p ◦ κ(y, η) = q(ι) holds modulo flat terms at ρ0.)

A related problem concerns conjugation of a real canonical transformation to a

time-one Hamiltonian flow ; this is the so-called Lewis-Sternberg normal form [St].
A typical situation is this of the Poincaré map, and a lot of work has been devoted to
the subject [Bru, Fr, BaLlWa, It, IaSj], etc.

As for the Birkhoff normal form, a central question is convergence of the process
of reduction. The Lewis-Sternberg theorem was stated at the level of formal series,
and a proof of convergence in the symplectic, hyperbolic case was recently given in
[BaLlWa].

So let Φ : T∗Rn → T∗Rn be a local diffeomorphism preserving the symplectic
structure, Φ(0, 0) = (0, 0). Assume that dΦ(0, 0) has eigenvalues λ1, . . . , λn, and
none of them is negative or of modulus 1. We say then that Φ is hyperbolic at (0, 0).

Assume also the frequencies λ1, . . . , λn are non resonant in the strong sense, i.e.,

(0.4) λm1

1 · · ·λmn
n = 1 for m j ∈ Z =⇒ m j = 0 for all j.

Note that if Hp is a Hamiltonian vector field, then Hp is hyperbolic in the sense above
iff the time-one map exp Hp is hyperbolic, because of the formula κ◦exp Hp ◦κ−1 =

exp Hp◦κ−1 . By a slight abuse of notations, if Φ is a map in T∗Rn and κ a local dif-

feomorphism, we denote again κ ◦ Φ ◦ κ−1 by Φ, since the conjugation is simply
a change of variables, both in source and target space. Loosely speaking, a Birkhoff
normal form for p gives a Sternberg normal form for exp Hp. This is the main idea
in the following:
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Theorem 0.2 Let Φ be as above, satisfying (0.4). Then there is a smooth function q(ι)
defined in a neighborhood (0, 0), depending on the action variables ι alone such that

Φ(ρ) = exp Hq(ι).

This theorem has the following semi-classical counterpart. Let U be an elliptic

h-Fourier Integral Operator (FIO for short) of order 0, defined microlocally near
ρ0, and associated with the canonical transformation Φ as in Theorem 0.2. Let I =

(I1, · · · , In) be the semi-classical Weyl quantization of the action variables ι j .

Theorem 0.3 Let U be as above, whose canonical transformation verifies (0.4). Then

there exists a classical symbol F(ι, h) = F0(ι) + hF1(ι) + h2F2(ι) + · · · , F0(ι) = q(ι),

such that U = eiF(I,h)/h microlocally near ρ0.

(For terminology and basic results on FIO’s see Appendix A.2.) Thus we specialize
the result of [IaSj] in the hyperbolic case. Such a normal form may be useful when
studying the quantization of some billiard maps as in [SjZw].

Next we turn to the holomorphic case, and focus on the reduction of Hamiltoni-
ans. (See [It] for a discussion on necessary and sufficient conditions ensuring that
such Hamiltonians are integrable.)

Again the problem arises naturally in semi-classical quantum mechanics. As an
example, consider p(x, ξ) real analytic near ρ0 = (0, 0) ∈ R2n, with a non-degenerate
minimum at ρ0, and let ±iλ1, . . . ,±iλn be the purely imaginary eigenvalues of Fρ0

,
λ j > 0, which we assume again rationally independent. When trying to construct

the solution of some eikonal equation, one introduces p̃(z, ζ) = −p(z − ζ, iζ) as an
holomorphic function on a neighborhood of 0 in T∗Cn. Then p̃ verifies the hypothe-
ses above, namely if p̃2 denotes the quadratic part of p̃, then 〈dp̃2(0, 0), (z, ζ)〉 =

2
∑n

j=1 λ jz j(ζ j − 1
2
z j). This situation is met when studying microlocal properties of

eigenfunctions for certain PDO’s (see [MaSo]).

As usual in complex symplectic geometry, it is convenient to distinguish between
several symplectic structures ; we send the reader to [Sj1], [MeSj] for the theory, and

recall here simply the following fact: C2n is endowed with the complex canonical 2-
form σC =

∑n
j=1 dζ j ∧ dz j , z j = x j + i y j , ζ j = ξ j + iη j , which makes it a symplectic

space, and two real symplectic 2-forms: ReσC =
∑n

j=1 dξ j ∧ dx j − dη j ∧ dy j , and

ImσC =
∑n

j=1 dξ j∧dy j +dη j∧dx j . Concerning integrability in the complex domain,
we are naturally led to introduce the following:

Definition 0.4 Let p(z, ζ) be a complex Hamiltonian near ρ0 and have a non de-
generate critical point at ρ0. We say that p is R-integrable iff there is a Re σC-canonical
map κ ∈ C∞ around ρ0 and a C∞ function q(ι ′) such that Re p ◦ κ(z, ζ) = q(ι ′).

(Here ι ′ stand for the real and imaginary part of the complex action variables as in
(0.3), and Poisson commute for the real symplectic structure.)

Equivalently, there exists an Im σC-canonical map κ̃ ∈ C∞, and a C∞ function
q̃(ι ′), such that Im p ◦ κ̃(z, ζ) = q̃(ι ′). We could define analogously an I-integrable
Hamiltonian by requiring that Im p ◦ κ(z, ζ) = q(ι ′) for some Re σC-canonical map
κ. Roughly speaking, an R- (resp. I-) integrable Hamiltonian is integrable for real
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(resp. imaginary) times. If p is holomorphic and C-integrable, (i.e., with respect
to σC), then it is both R and I-integrable, but there are not so many Hamiltonians

because of Siegel’s result. We have:

Theorem 0.5 Let p(z, ζ) be a complex Hamiltonian near ρ0 and have a non de-

generate critical point at ρ0. Assume that ∂(z,ζ) p = O(|z, ζ|∞), and that the fun-

damental matrix Fρ0
(in the holomorphic sense) has no purely imaginary eigenval-

ues. Then p is R-integrable in a complex neighborhood of ρ0. Moreover, if κ denotes

the Re σC-canonical map as in Definition (0.4), we have ∂(z,ζ)κ = O(|z, ζ|∞), and

κ∗(σC) = σC + O(|z, ζ|∞).

Our result still looks quite poor, in the sense that we lose on the way almost ev-

ery track of analyticity; reduction to the normal Birkhoff form holds only modulo
functions with ∂ of rapid decrease near ρ0. Of course again, we cannot expect con-
vergence of Birkhoff series or Birkhoff transforms in a full complex neighborhood of
ρ0, except in the one dimensional case, see [It] and [HeSj2, App. B]. A more thorough

approach should rely on resurgence theory for functions of several complex variables
as in [Ec]; this would of course help to understand better how the system switches
from integrability to non-integrability when moving around the origin in complex
directions. (See also [Ro2] for another type of result, where we study integrability

and monodromy of κ, as a map defined on the covering in T∗Cn, of the complement
of the stable and unstable manifolds.) The paper is organized as follows:

In Section 1 we prove Theorem 0.1 for Hamiltonians and discuss briefly the case
of a closed hyperbolic orbit. Then we treat the semi-classical case.

Section 2 is devoted to the Lewis-Sternberg normal form for canonical transforms
and Fourier Integral Operators quantizing a Poincaré map. We sketch a slightly dif-
ferent proof for the normal form of canonical maps given in [BaLlWa].

In Section 3, we extend the Birkhoff normal form of Theorem 0.1 and the Stern-

berg normal form of Theorem 0.2 to the parameter dependent case, in the spirit of
[IaSj].

In Section 4, we recall some well known facts about complex symplectic geometry
and prove first the center stable/unstable manifold theorem in the almost holomor-

phic case. Then we turn to the proof of Theorem 0.5, which is very similar to that of
Theorem 0.1. We conclude with some remarks on monodromy.

In the Appendix, we first recall a simple way of constructing Birkhoff series, in-
cluding parameters. We conclude with some review on FIO’s.

We close this Introduction by listing some open problems:

(1) What can be said about integrability when Spec Fρ0
∩ iR = {iλ,−iλ}, λ > 0,

i.e., when the center-manifold associated with purely imaginary eigenvalues is of
dimension 2? For higher dimensions, it is known that KAM torii can occur (see
[Gr]).

(2) What can be said about integrability in the (complex-) hyperbolic case, when
some of the frequencies are resonant, or more precisely when the equilibrium
point ρ0 is “simply resonant” in the sense of [It]?

https://doi.org/10.4153/CJM-2004-047-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-047-6


Semi-classical Integrability, Hyperbolic Flows and the Birkhoff Normal Form 1039

(3) Do our results extend to time-dependent, (or non autonomous) Hamiltonians?
(See [Sie] and again [It].)

1 Birkhoff Normal Form and Integrability: The Real Case

We discuss here “convergence” of Birkhoff normal forms for smooth, real valued
Hamiltonians near a fixed point ρ0.

1.1 Classical Integrability

Let p be a real valued Hamiltonian with a nondegenerate critical point ρ0 ∈ T∗Rn of
complex hyperbolic type. First we recall some well-known facts about the geometry

of bicharacteristics of p near ρ0 (see [Ch2, Sj2], though there seems to be some con-
fusion in [Ch2, p. 707] between the invariant manifolds for the vector field X and its
linear part X0, the main arguments show up already in that paper.) Then we discuss a
solvability problem for Hp in the class of smooth, flat functions at ρ0. At last we prove

Theorem 0.1 by the method of homotopy. Let Fρ0
denote the fundamental matrix of

p at ρ0 = (0, 0),

(1.1) 2Fρ0
=




∂2 p

∂x∂ξ

∂2 p

∂ξ2

−∂2 p

∂x2
− ∂2 p

∂x∂ξ


 (ρ0) = J Hess(p)(ρ0)

(where J is the symplectic matrix), verifying

Hess(p)(ρ0)(t, s) = p ′ ′
ρ0

(t, s) =
1

2
σ(t, Fρ0

(s)).

The factor 1
2

is for convenience of notations. Since p ′ ′
ρ0

is non degenerate, Fρ0
has

no zero eigenvalues. As we are interested in the Birkhoff normal form, we readily
assume that Fρ0

is diagonalizable. Let Λ± ⊂ Tρ0
R2n be the sum of all eigenspaces

corresponding to eigenvalues with positive (resp. negative) real parts.

Assuming that Fρ0
has no purely imaginary eigenvalues, in suitable symplectic co-

ordinates (x, ξ) ∈ R2n, the normal form for the quadratic part p2 of p at ρ0 is given
as in (0.3) with no elliptic terms, i.e. ℓ + 2m = n. So Λ+ is the sum of eigenspaces

associated with λ j = a j , ( j = 1, . . . , ℓ ) λ j = c j−ℓ ± id j−ℓ, ( j = ℓ + 1, . . . ,
ℓ+m), and Λ− is the sum of eigenspaces associated with the corresponding −λ j , and
Λ+ ⊕ Λ− = Tρ0

R2n. In these symplectic coordinates Λ+ = {ξ = 0}, Λ− = {x = 0},
and Fρ0

has block diagonal form, the diagonal terms
(
λ1, . . . , λℓ

)
, the 2×2 matrices( c j d j

−d j c j

)
( j = ℓ + 1, . . . , ℓ + m), the diagonal terms

(
−λ1, . . . ,−λℓ

)
, and the 2 × 2

matrices
( −c j d j

−d j −c j

)
( j = ℓ + 1, . . . , ℓ + m) respectively, which is the so-called Cartan

decomposition. Note that Λ+ and Λ− are dual spaces for the symplectic form on R2n.
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To simplify notations, we shall sometimes introduce complex symplectic coordinates

(1.3)

zℓ+2 j =
1√
2

(xℓ+2 j + ixℓ+2 j−1),

zℓ+2 j−1 =
1√
2

(xℓ+2 j − ixℓ+2 j−1),

ζℓ+2 j =
1√
2

(ξℓ+2 j − iξℓ+2 j−1),

ζℓ+2 j−1 =
1√
2

(ξℓ+2 j + iξℓ+2 j−1),

j = 1, . . . , m. (the variables x j and ξ j being as in (0.3) ). Further we denote x j for z j ,
ξ j for the dual coordinate ζ j , and eventually label the collection of these symplectic
coordinates, so that

(1.4) Hp2
=

n∑

j=1

λ j(x j
∂

∂x j

− ξ j
∂

∂ξ j

)

or

p ′ ′
ρ0

(t, s) =

n∑

j=1

λ j

(
tx j

sξ j
+ tξ j

sx j

)
.

Of course, we shall keep in mind that the complexification here is only formal, since

no analyticity is assumed; this is no more than the usual identification consisting for
instance in taking complex coordinates which diagonalize a rotation in the plane.

Now we turn to the non-linear case and recall the stable-unstable manifold theo-
rem. This theorem has a long history, see e.g., [Ha] in the differentiable case, [Ch2]

or [Ne] for a proof based on Sternberg’s linearization theorem, [AbMar, AbRob, Hi-
PuSh] and references therein for more general statements. Note that these results are
generally stated without symplectic structure, but most of them easily extend to this
setting. See however [Sj2, App.] in the analytic category, and Theorem 4.2 below for

the almost holomorphic case.

Theorem 1.1 With notations above, in a neighborhood of ρ0, there are Hp-invariant

Lagrangian manifolds J± passing through ρ0, such that Tρ0
(J±) = Λ±. Within J+

(resp. J−), ρ0 is repulsive (resp. attractive) for Hp, and p|J±
= 0. We can also find real

symplectic coordinates, denoted again by (x, ξ), such that their differential at ρ0 verifies

d(x, ξ)(ρ0) = Id, and J+ = {ξ = 0}, J− = {x = 0}. In these coordinates

(1.5) p(x, ξ) = 〈A(x, ξ)x, ξ〉

where A(x, ξ) is a real, n × n matrix with C∞ coefficients, A0 = dA(ρ0) = diag(λ1,

. . . , λn) with the convention that if λ j is complex, diag(λ j, λ j) denotes
( c j d j

−d j c j

)
.

It follows that

(1.6) Hp = A1(x, ξ)x · ∂

∂x
− A2(x, ξ)ξ · ∂

∂ξ

with A j(x, ξ) = A0 +O
(

x, ξ
)

, A0 = diag(λ1, . . . , λn), A1(x, ξ) = A(x, ξ)+t∂ξA(x, ξ)·
ξ, A2(x, ξ) = tA(x, ξ) + ∂xA(x, ξ) · x, and Spec A(x, ξ) = Spec tA(x, ξ) ⊂ R+. Possibly
after relabeling the coordinates, we may assume 0 < Re λ1 ≤ · · · ≤ Re λn.
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Now we describe the flow of Hp, using Theorem 1.1. Let ‖ · ‖ denote the usual
euclidean norm on Rn. We put

B0 =

∫ ∞

0

e−s( tA0)e−sA0 ds.

which is a positive definite symmetric matrix with the property tA0B0 + B0A0 = Id.
In the present case where A0 is diagonalizable,

B0 = diag
(
λ1, · · · , λl,

1

2
cℓ+1,

1

2
cℓ+1, · · · ,

1

2
cℓ+m,

1

2
cℓ+m

)
.

If ‖x‖2
0 = 〈B0x, x〉 is the corresponding norm, then

(1.7) A0x · ∂x‖x‖2
0 = ‖x‖2, A0ξ · ∂ξ‖ξ‖2

0 = ‖ξ‖2.

It follows from this and (1.6) that if ‖x‖2
0 + ‖ξ‖2

0 ≤ δ2, for some δ > 0 small enough,
then

d

dt
‖x‖2

0 = Hp‖x‖2
0 ≥ C‖x‖2, −Hp‖ξ‖2

0 ≥ C‖ξ‖2, C > 0.

For δ > 0, we define the outgoing region

Ω
out
δ = {(x, ξ) : ‖ξ‖0 < 2‖x‖0, ‖x‖2

0 + ‖ξ‖2
0 < δ2}

and let ∂Ωout
δ denote its boundary. Let t 7→ (x(t), ξ(t)) = exp tHp

(
x(0), ξ(0)

)
be an

integral curve of Hp with ρ =
(

x(0), ξ(0)
)
∈ Ωout

δ . We have

ẋ(t) = A1(x(t), ξ(t))x(t), ξ̇(t) = −A2(x(t), ξ(t))ξ(t).

So when ρ ∈ Ωout
δ , ‖x(t)‖0 is increasing and ‖ξ(t)‖0 decreasing as long as

(
x(t), ξ(t)

)

∈ Ωout
δ , and moreover there is C > 0 such that for δ > 0 sufficiently small and all

t ∈ R:

e− Re λ+(t)t e−Cδ|t|‖ξ(0)‖0 ≤ ‖ξ(t)‖0 ≤ e− Re λ−(t)t eCδ|t|‖ξ(0)‖0(1.8)

eRe λ−(t)t e−Cδ|t|‖x(0)‖0 ≤ ‖x(t)‖0 ≤ eRe λ+(t)t eCδ|t|‖x(0)‖0(1.9)

with the convention λ+(t) = λn and λ−(t) = λ1 for t > 0, λ+(t) = λ1 and λ−(t) =

λn for t < 0. It follows that for any δ0 > 0, there is δ1 > 0 (say δ1 = δ0/2),
such that if ρ ∈ Ωout

δ1
, then exp(−tHp)(ρ) ∈ Ωout

δ0
, t ≥ 0, until the path meets

∂Ωout
δ0

∩ {‖ξ‖0 = 2‖x‖0}. For each ρ ∈ Ωout
δ1

, we define the hitting time

(1.10) Tout
− (ρ) = inf {t > 0 : ‖ξ(−t)‖0 ≥ 2‖x(−t)‖0},

i.e., the time for the path exp(−tHp)(ρ) to reach the cone ‖ξ‖0 = 2‖x‖0. Since
exp(−tHp)(ρ) is a C∞ function of ρ and t , it follows from the implicit function
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theorem that Tout
− (ρ) is a C∞ function of ρ ∈ Ωout

δ1
\ J+. For ρ = (x, 0) ∈ J+, we set

Tout
− (ρ) = +∞, and we leave it undefined for ρ = 0. Similarly, for ρ ∈ Ωout

δ1
we define

(1.11) Tout
+ (ρ) = inf {t > 0 : ‖x(t)‖2

0 + ‖ξ(t)‖2
0 ≥ δ2

0},

to be the time for the path exp(tHp)(ρ) to leave the ball ‖x‖2
0 + ‖ξ‖2

0 < δ2
0 . Again,

Tout
+ (ρ) is a C∞ function of ρ ∈ Ωout

δ1
. Moreover, there is τ > 0 such that for all

ρ ∈ Ωout
δ1

, exp(tHp)(ρ) /∈ Ωout
δ0

for Tout
− (ρ) ≤ t ≤ Tout

− (ρ) + τ . Since we are interested

in local properties of the flow near ρ0, we can modify, without loss of generality,
p(x, ξ) outside a small neighborhood of ρ0 such that the path exp(tHp)(ρ), ρ ∈ Ωout

δ1
,

will never enter Ωout
δ0

again after time Tout
+ (ρ), i.e., we may assume τ = +∞. From

now on, we change notation δ0 and δ1 to δ for simplicity, keeping in mind that δ is a

sufficiently small, but fixed positive number.

We define in a similar way the incoming region

(1.12) Ω
in
δ =

{
(x, ξ) : ‖x‖0 < 2‖ξ‖0, ‖x‖2

0 + ‖ξ‖2
0 < δ2

}

and the hitting times T in
±(ρ). More precisely,

T in
−(ρ) = inf {t > 0 : ‖x(−t)‖2

0 + ‖ξ(−t)‖2
0 ≥ δ2}(1.13)

T in
+ (ρ) = inf {t > 0 : ‖x(t)‖0 ≥ 2‖ξ(t)‖0}(1.14)

As above, we may assume that the flow starting from any point ρ ∈ R2n crosses at
most once the region Ωδ = Ωin

δ ∪ Ωout
δ . Then estimates (1.8) and (1.9) hold for all

(x, ξ) ∈ Ωδ , and all t ∈ R provided
(

x(t), ξ(t)
)
∈ Ωδ .

Now let I denote the ideal of C∞(R2n) consisting in all smooth functions vanishing
at ρ0. We want to solve the homological equation Hp f = g in I∞. This is of course

essentially well-known (see e.g., [GuSc, p. 175] for analogous results). So let χout +
χin = 1 be a smooth partition of unity in the unit sphere S2n−1 such that supp
χout ⊂ {‖ξ‖0 < 2‖x‖0}, supp χin ⊂ {‖x‖0 < 2‖ξ‖0}. We extend χout, χin as
homogeneous functions of degree 0 on T∗Rn \ ρ0.

Proposition 1.2 Let ρ0 be an hyperbolic fixed point for p as above, and g ∈ I∞. Let

f out(ρ) =

∫ 0

−∞

(
χoutg

)
◦ exp(tHp)(ρ) dt, f in(ρ) = −

∫ ∞

0

(
χing

)
◦ exp(tHp)(ρ) dt

Then f = f out + f in ∈ I∞ solves Hp f = g.

Proof We treat the case of f out, this of f in is similar. Let δ0 > 0 small enough, and

Ω
out / in
δ1

be as above. Without loss of generality, we may assume supp g ⊂ Ωδ0
=

Ωout
δ0

∪ Ωin
δ0

, so supp(χoutg) ⊂ Ωout
δ0

. Then it is easy to see that

(supp f out) ∩ Ωδ1
⊂ Ω

out
δ1

,
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so we will assume ρ ∈ Ωout
δ1

, and as above write δ for δ0 or δ1. If ρ ∈ Ωout
δ \ J+, we

have f out(ρ) =
∫ 0

−Tout

−
(ρ)

(
χoutg

)
◦ exp(tHp)(ρ)dt , since exp(tHp)(ρ) /∈ supp χout for

t < −Tout
− (ρ). Furthermore,

Hp f out(ρ) =

∫ 0

−∞

d

dt

((
χoutg

)
◦ exp(tHp)(ρ)

)
dt = (χoutg)(ρ).

When ρ ∈ J+, exp(tHp)(ρ) → 0 when t → −∞ and the integral makes sense because
of (1.9) and the fact that g(ρ) = O(ρ), as ρ → 0. Again Hp f out(ρ) = χoutg(ρ). We
are left to show that f out ∈ I∞. Because of (1.9) and ‖ξ(t)‖0 ≤ 2‖x(t)‖0 in supp

χout, f out is continuous and vanishes at ρ = 0. To show that f out ∈ C1, we write,
following [IaSj]:

(1.15) d
(

(χoutg) ◦ exp(tHp)(ρ)
)

=
(

d(χoutg)(exp(tHp)(ρ)
)
◦ d exp(tHp)(ρ)

so we need to examine the evolution of dκt (ρ) = d exp(tHp)(ρ) along the integral

curve κt of Hp starting at ρ. Differentiating ∂tκt (ρ) = Hp

(
κt (ρ)

)
we find

(1.16) ∂t dκt (ρ) =
∂Hp

∂ρ
(κt (ρ)) ◦

(
dκt (ρ)

)
, dκ0(ρ) = Id

with
∂Hp

∂ρ (ρ) = 2Fρ0
+ O(ρ), and the Gronwall lemma applied to (1.16), as in (1.8)

and (1.9), gives, for κt (ρ) ∈ Ωout
δ and all t ≤ 0:

e−(Re λ1−Cδ)t ≤ ‖dξt (ρ)‖ ≤ e−(Re λn+Cδ)t(1.17)

e(Re λn+Cδ)t ≤ ‖dxt (ρ)‖ ≤ e(Re λ1−Cδ)t(1.18)

so dκt (ρ) = O
(

e−(Re λn+Cδ)t
)

.
On the other hand, g being flat at 0, d(χoutg)(exp(tHp)(ρ) = O(‖xt (ρ)‖N ) for any

N , so taking N large enough, we see that d
(

(χoutg) ◦ exp(tHp)(ρ)
)

is integrable, so
f out ∈ C1, and vanishes at 0. To continue, we take the partial derivative of (1.16)

with respect to ρ j , j = 1, · · · , 2n and write

∂t
∂

∂ρ j

dκt (ρ) − ∂Hp

∂ρ
(κt (ρ)) ◦

( ∂

∂ρ j

(dκt (ρ)
)

= F j(t, ρ)

with

F j(t, ρ) =

2n∑

k=1

∂2Hp

∂ρk∂ρ
(κt (ρ))

∂

∂ρ j

κt,k(ρ) ◦ dκt (ρ).

Using the group property, we write (1.16) as

∂t dκt−t̃

(
κt̃ (ρ)

)
◦ dκt̃ (ρ) =

∂Hp

∂ρ

(
κt−t̃

(
κt̃ (ρ)

))
◦ dκt−t̃

(
κt̃ (ρ)

)
◦ dκt̃ (ρ),(1.19)

dκ0(ρ) = Id .(1.20)
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Since κt̃ is a canonical map, dκt̃ is invertible, so

∂t dκt−t̃

(
κt̃ (ρ)

)
=

∂Hp

∂ρ

(
κt−t̃

(
κt̃ (ρ)

))
◦ dκt−t̃

(
κt̃ (ρ)

)
, dκ0(ρ) = Id .

So we recognize dκt−t̃

(
κt̃ (ρ)

)
, dκt̃−t̃ (ρ) = Id as the fundamental matrix of our 2n×

2n system of ordinary differential equations, and since ∂
∂ρ j

dκt (ρ)|t=0 = 0, Duhamel’s

principle gives:

∂

∂ρ j

dκt (ρ) =

∫ t

0

dκt−t̃

(
κt̃ (ρ)

)
◦ F j (̃t, ρ) dt̃.

From (1.17) and (1.18) we find the estimate F j (̃t, ρ) = O
(

e−2(Re λn+Cδ)̃t
)

, and by
integration

(1.21)
∂

∂ρ j

dκt (ρ) = O
(

e−2(Re λn+Cδ)t
)
.

On the other hand, differentiating (1.15) with respect to ρ j we get

∂

∂ρ j
d
(

(χoutg) ◦ κt (ρ)
)

= d(χoutg)
(
κt (ρ)

)
◦ ∂

∂ρ j
dκt (ρ)

+

2n∑

k=1

∂

∂ρk

d
(
χoutg

)(
κt (ρ)

) ∂

∂ρ j

κt,k(ρ) ◦ dκt (ρ)

Using (1.21), and again (1.17), (1.18), the estimates

d(χoutg) ◦
(
κt (ρ)

)
,

∂

∂ρk

d
(
χoutg

)(
κt (ρ)

)
= O

(
‖xt (ρ)‖N

)

ensure once more the integrability of ∂
∂ρ j

d
(

(χoutg) ◦ κt (ρ)
)

, so f out ∈ C2 and we

can see that its second derivatives vanish at 0. The argument carries over easily by
induction, so the Proposition is proved.

Now we are ready to prove Theorem 0.1, by combining the Birkhoff normal form
(see e.g., Appendix for a simple proof) and a deformation argument. When p has a
non-degenerate critical point with non-resonant frequencies, we know that there is a

smooth canonical transform κ between neighborhoods of 0, leaving fixed the origin,
such that p ◦ κ(x, ξ) = q0(ι) + r(x, ξ), where ι = (ι1, · · · , ιn) are the action variables
as in (0.3), and r ∈ I∞ depends also on the corresponding dual (angle) variables. The

Hamiltonian q0(ι) satisfies the same hypotheses as p, and is constructed from the for-
mal Taylor series by a Borel sum of the type q0(ι) =

∑∞
k=1 q̃k(ι)χ(ι/εk), χ ∈ C∞

0 (Rn)
equal to 1 near 0, εk → 0 fast enough as k → ∞, and q̃k(ι) is homogeneous of degree

k. The canonical transformation is of the form κ = exp H
f̃

for some smooth f̃ . We
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shall try to construct a family κs of canonical transformations, 0 ≤ s ≤ 1, tangent
to identity at infinite order, such that κ0 = Id and κ1 solves p ◦ κ ◦ κ1 = q0. The

deformation (or homotopy) method consists in finding a C∞ one-parameter fam-
ily of vector fields s 7→ Xs along which some property is conserved, in that case the
property for Hamiltonians, interpolating between p and q0, of being integrable. It
reduces here essentially to solving a homological equation as in Proposition 1.2. (See

[ArVaGo] for an introduction, and also [GuSc, p. 168, HeSj2, App. A, MeSj, BaLlWa,
BrKo, IaSj, etc.], for other applications more directly relevant to our problem.) So let
qs = q0 + sr, 0 ≤ s ≤ 1, and look for κs such that

(1.22) qs ◦ κs = q0.

Then κs|s=1 will solve our problem. The deformation field

Xs(ρ) =

2n∑

j=1

vs, j(ρ)
∂

∂ρ j

∈ I∞(TR2n)

is such that

(1.23) ∂sκs = Xs ◦ κs.

Differentiating (1.22) gives r ◦ κs + ∂qs

∂ρ (κs) ◦ ∂sκs = 0, or

r ◦ κs +
〈

Xs(κs(ρ)), qs(κs(ρ))
〉

= 0.

Furthermore, we require Xs to be Hamiltonian, i.e., Xs = H fs
, fs ∈ I∞, so we get

(1.24) 〈H fs
, qs〉 = −〈Hqs

, fs〉 = −r,

all quantities being evaluated at κs(ρ). We want to apply Proposition 1.2 to p = qs,
g = r, so we move to the new symplectic coordinates (adapted to the outgo-

ing/incoming manifolds) by composing with smooth canonical transformations Φs,
i.e., replace Hqs

by (Φs)
∗Hqs

, fs by (Φs)
∗ fs, etc., so omitting for brevity these coordi-

nate transformations when no confusion might occur, Proposition 1.2 gives fs ∈ I∞

solving (1.24). So we are led to show that, given H fs
∈ I∞, (1.23) has a solution of

the form κs = Id +κ ′
s , κ ′

s ∈ I∞. Existence for 0 ≤ s ≤ 1 follows e.g., from Gronwall’s
lemma, truncating qs outside a neighborhood of 0, and the condition κ0 = Id gives

(1.25) ‖κs(ρ)‖ ≤ C‖ρ‖, C > 0

for ‖ρ‖ < δ. We want to show κ ′
s (ρ) = O(ρ∞). Recall from the proof of Proposition

1.2 that, by the group property, dκs(ρ) is the fundamental solution for the system

∂sY (ρ, s) =
∂H fs

∂ρ

(
κs(ρ)

)
Y (ρ, s). Since dκ ′

s (ρ) solves

(1.26) ∂sdκ ′
s (ρ) − ∂H fs

∂ρ
(κs(ρ)) ◦

(
dκ ′

s (ρ)
)

=
∂H fs

∂ρ
(κs(ρ)), dκ ′

s (0) = 0.
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Duhamel’s principle gives

dκ ′
s (ρ) =

∫ s

0

dκs−s̃

(
κs̃(ρ)

)
◦ ∂H fs

∂ρ
(κs̃(ρ))ds̃.

Since
∂H fs

∂ρ (κs̃(ρ)) = O(‖(κs̃(ρ))‖N ), (1.25) gives
∂H fs

∂ρ (κs̃(ρ)) = O(‖ρ‖N ), and

dκs−s̃

(
κs̃(ρ)

)
= O(1), so, choosing N large enough, we get dκ ′

s (ρ) = O(‖ρ‖2). Inte-
grating this relation, we get again κ ′

s (ρ) = O(‖ρ‖). Taking partial derivative of (1.26)
with respect to ρ j as in the proof of Proposition 1.2 yields also ∂

∂ρ j
dκ ′

s (ρ) = O(‖ρ‖),

and a straightforward induction argument shows κ ′
s ∈ I∞, uniformly for s on com-

pact sets. Taking s = 1 and undoing the transformation Φs|s=1 give eventually the
result.

1.2 Two Simple Applications

As a first application, we present a different statement of theorem 0.1. It is sometimes
convenient to perform the Birkhoff transform in action-angle coordinates (see [Gal,
p. 473] for the elliptic case.) We restrict for simplicity to the usual case of a (real-)

hyperbolic fixed point, where

p(x, ξ) = ξ2 −
n∑

j=1

λ2
j x

2
j + O(‖x‖3)

The corresponding Williamson coordinates are then given by the linear symplectic

transformation κ1(x, ξ) = (y, η),
√

2λ j y j = λ jx j + ξ j ,
√

2η j = −λ jx j + ξ j . Outside
the hyperplanes xi = 0, we can construct smooth hyperbolic action-angle coordi-
nates (ι, ϕ). Restricting for simplicity to x j > 0, all j, they are defined for ι j > 0,
ϕ j ∈ R, by the formulas λ jx j =

√
2λ jι j cosh ϕ j , ξ j =

√
2λ jι j sinh ϕ j . We set

κ0(ι, ϕ) = (x, ξ).
Let κ be the canonical transform of Theorem 0.1, and define κ̃ = κ−1

0 ◦ κ−1
1 ◦ κ ◦

κ1◦κ0. Then, with κ(y, η) = (y ′, η ′) = (y, η)+O(|y, η|2), we have κ̃(ι, ϕ) = (ι ′, ϕ ′),

2λ jι
′
j = −2λ j y ′

jη
′
j = −ξ ′

j
2

+ λ j
2x ′

j
2
, where κ1(x ′, ξ ′) = (y ′, η ′). Actually we can

check that we can choose κ such that κ−1
1 ◦ κ ◦ κ1 preserves the hyperplanes ξ j = 0.

(This is done at the level of Birkhoff series as in [KaRo, App], and an inspection of
the proof of theorem 0.1 shows that this carries out to the corrections mod I∞. )

Moreover, there exists a smooth generating function S(ι ′, ϕ) such that
ι = ∂ϕS(ι ′, ϕ), ϕ ′ = ∂ι ′S(ι ′, ϕ), and of the form S(ι ′, ϕ) = 〈ι ′, ϕ〉 + Φ(ι ′, ϕ). Here

∂ι ′Φ(ι ′, ϕ) = O(ι ′), ∂ϕΦ(ι ′, ϕ) = O(ι ′2), uniformly for ι ′ small enough. Finally,
p = q(ι ′).

As for the second application, we consider an Hamiltonian flow with a non triv-
ial center manifold. More precisely, let p ∈ C∞(T∗Rn) such that dp 6= 0 on

the characteristic variety p(ρ) = 0, and p has a closed trajectory γ0 of hyper-
bolic type at energy 0 (see e.g., [Ar, App. 7, GeSj, SjZw]). A basic example is
p(x, ξ) = ξ2 + λ2

1x2
1 − ∑n

j=2 λ2
j x

2
j , near an energy level E > 0. Another example

is given by a smooth family p = pE of Hamiltonians depending on 2(n − 1) phase
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variables (x ′, ξ ′) ∈ T∗Rn−1, periodic with respect to θ ∈ S1; parameter E then stands
for the dual variable.

Since near every point of γ0 there are symplectic coordinates (y, η), such that p =

η1, Hamiltonian p is locally integrable, but because of topological obstructions, there
is no such global coordinate patch in a neighborhood of γ0. So we may address the
problem of “semi-global” integrability.

Let K be the set of trapped trajectories near energy 0:

K = {ρ ∈ p−1(E), E ∈ [−E0, E0], exp(tHp)(ρ) 6→ ∞, as t → ±∞}

Let KE = K ∩ p−1(E), E small, and assume we are in the situation where K0 = γ0 is
a closed trajectory of hyperbolic type.

Then in a neighborhood of K, there is a smooth, symplectic, closed submani-

fold Σ ⊂ T∗Rn of dimension 2, containing K0 and such that Hp is tangent to Σ

everywhere. We call Σ the center manifold of γ0, and it is nothing but the one-
parameter family of closed trajectories γE ⊂ p−1(E), E small. The restriction σΣ

of σ to TΣ⊥ (where ( · )⊥ stands for “ symplectic orthogonal”) is clearly invariant

under Hp. Hyperbolicity means that p vanishes of second order on Σ, and for all
ρ ∈ Σ, the fundamental matrix Fρ|Σ⊥ as in (1.1) is of rank 2n − 2, and has no
purely imaginary eigenvalues. In the case at hand, we will assume that these eigen-
values are rationally independent. For ρ ∈ Σ, let Λ±(ρ) ⊂ Tρ(R2n) be as above the

(n − 1)-dimensional isotropic subspaces whose complexifications are the sum of all
complex eigenspaces corresponding to eigenvalues with positive/negative real parts.
We have the splitting (TρΣ)⊥ = Λ+(ρ) ⊕ Λ−(ρ). We can also find real symplectic
coordinates, denoted again by (x, ξ) = ((x ′, x ′ ′), (ξ ′, ξ ′ ′)), such that their differen-

tial verifies d(x, ξ)|Σ = Id, Σ is given by (x ′, ξ ′) = 0, and J+ = {ξ ′ = 0} and
J− = {x ′ = 0} are the stable/unstable manifolds, tangent to Λ±(ρ), ρ ∈ Σ.

Let ρ0 ∈ Σ be such that the non resonance condition holds on eigenvalues λ1(ρ0),
. . . , λn−1(ρ0), and apply the Birkhoff normal form to p. Then there exists a smooth
canonical transform κ for the symplectic 2-form σΣ, and a smooth Hamiltonian

q0(ι ′; x ′′, ξ ′′), where ι ′ = (ι1, . . . , ιn−1) are action variables as in (0.3) built from
the (x ′, ξ ′)-coordinates, such that

p ◦ κ(x, ξ) = q0(ι ′; x ′′, ξ ′′), (x, ξ) ∈ neigh (ρ0, R2n)

To formulate a semi-global result we assume that the fundamental matrix of p (for

the 2-form σΣ) is constant on Σ, with non resonant frequencies as above. Since the
coordinates above can be defined globally on a neighborhood of γ0 (see e.g., [GeSj]),
and the constructions above depend smoothly on ρ0 ∈ Σ, we have found a smooth
fibre bundle over Σ whose sections are action-angle coordinates in TΣ⊥ adapted

to p. Of course such a result is of mere academic interest, since κ a priori does not
preserve the full symplectic structure, but it makes sense for the family pE as above
(non autonomous case. ) See [CuB, Vu1, Vu2] for other (semi-)global aspects of
integrability.
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1.3 Semi-Classical Quantization and the Exact Birkhoff Normal Form

Let P = Pw(x, hD, h) be a h-PDO with principal symbol p as above, so that P(ρ, h) =

p(ρ) + hp1(ρ) + · · · (in the sense of asymptotic sums) is real valued. Let κ be as in
theorem 0.1, ϕ(x, η) a generating function and let U be an elliptic FIO associated

with the phase function ϕ and an amplitude we can choose so that U is microlocally
unitary near ρ0. Then the principal symbol p̃0 = p ◦ κ of P̃ = U−1PU is in the exact
Birkhoff normal form given by theorem 0.1 (see Appendix B for a short review on
pseudo differential calculus. ) We try to correct U by a h-PDO of the form B = eiW ,

where W = W w(x, hD, h), W (ρ, h) = w0(ρ)+hw1(ρ)+ · · · , and proceed as in [KaRo,
IaSj] to show that we can choose W such that the Weyl symbol of

(1.27) Q = B−1PB = e−iW PeiW
=

∑

j≥0

1

j!
[iW, [iW, . . . , [iW, P] · · · ]]

(we have dropped the tilde for convenience), is in the exact Birkhoff normal form.
Let p(x, ξ, h) = p0(x, ξ) + hp1(x, ξ) + · · · be the Weyl symbol of P, where p0 is in the
exact Birkhoff normal form by construction. The coefficient of h in (1.27) is given by

(1.28) q1 = p1 + {w0, p0}.

Working first at the level of formal Taylor series we can find q1 resonant, and w0 such
that q1 = p1 + {w0, p0} modulo I∞, then we correct w0 by changing w0 in w0 + w ′

0

where w ′
0 solves an equation of the form Hp0

w ′
0 = g ∈ I∞. This can be achieved

because of Proposition 1.2, so the principal symbol w0 of W (ρ, h) can be chosen such
that q1 = q1(ι), and the two first terms in (1.27) are in the exact Birkhoff form.
The choice of w0 will influence the h2 term in the symbol of e−iW PeiW only through

the term [iW, P] and to make the h2 term in the exact Birkhoff normal form leads
to a new equation of the same type as (1.28). It is clear that this construction can
be iterated and we have found W such that the Weyl symbol q(x, ξ, h) = p0(ι) +
hq1(ι) + h2q2(ι) + · · · is real and in the exact Birkhoff normal form. At last we set

A = U B. If I = (I1, . . . , In) denote the Weyl quantization of the action variables
ι (I j are commuting operators), our computations so far can be summarized in the
following:

Proposition 1.3 Let P(x, hD, h) be the Weyl quantization of the symbol p(x, ξ, h) =

p0(x, ξ) + hp1(x, ξ) + · · · , real valued, and such that p0 verifies the hypothesis of theo-

rem 0.1. Then there is a (formally) unitary FIO A, and a smooth symbol F(ι1, . . . , ιn)
defined near ρ0, such that A−1PA = F(I1, . . . , In, h) (microlocally near ρ0.)

2 The Lewis-Sternberg Normal Form for the Poincaré Map

In this section we prove Theorems 0.2 and 0.3. First we recall the following version

of a theorem of Lewis-Sternberg (see [St, Theorem 1, Corollary 1.1; Fr, Theorem V.1]
and [IaSj] for a detailed proof). For simplicity we content to a particular case relevant
to our problem. So assume A is a real 2n × 2n symplectic matrix and has eigenval-
ues λ1, . . . , λn, 1/λ1, . . . , 1/λn, λ1, . . . , λn, 1/λ1, . . . , 1/λn, where none of them is
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negative. Then there is a natural choice of the logarithm B = log A, and B is anti-
symmetric for the canonical 2-form on T∗Rn. Let µ j = log λ j , in such a way that λ j

corresponds to µ j , and p0(ρ) = b(ρ) =
1
2
σ(ρ, Bρ). Assume that for k j ∈ Z,

(2.1)
∑

k jµ j ∈ 2iπZ =⇒
∑

k jµ j = 0.

We have the following:

Theorem 2.1 Let Φ : neigh(0, R2n) → neigh(0, R2n) be a smooth canonical trans-

formation, leaving fixed ρ0 = 0, and A = dΦ(ρ0) as above. Then there is p ∈ C∞

defined near ρ0, uniquely determined modulo I∞, (for a given choice of p0 ) such that

p(ρ) = p0(ρ) + O(ρ3) and

Φ(ρ) = exp Hp(ρ) + O(ρ∞).

We state now the counterpart of Theorem 1.1 for canonical maps involving a dis-

crete dynamical system (see e.g., [BaLlWa] and references therein.)

Theorem 2.2 Let f : neigh(0, R2n) → neigh(0, R2n) be a smooth canonical transfor-

mation, leaving fixed ρ0 = 0, and assume A = d f (ρ0) is non degenerate and has no

eigenvalues of modulus 1. Let L+ (resp. L−) be the sum of eigenspaces associated with

eigenvalues λ j of modulus > 1 (resp. < 1). So L± are Lagrangian subspaces. Then

there exist smooth Lagrangian manifolds L± passing through ρ0, tangent to L± at ρ0,

invariant by f , and such that within L+ (resp. L−), ρ0 is repulsive (resp. attractive)

for f .

For ρ = (x, ξ), we denote by ρ(N) = (x(N)(ρ), ξ(N)(ρ)) = f N(ρ), N ∈ Z, the N-th
iterate of ρ under f . If L+ (resp. L−) is given by ξ = 0 (resp. x = 0), it is again
possible to define the outgoing region

Ω
out
δ =

{
(x, ξ) : ‖ξ‖0 < 2‖x‖0, ‖x‖2

0 + ‖ξ‖2
0 < δ2

}

for some suitable euclidean norm ‖ · ‖0, and express the expansion and contraction
properties of our discrete dynamical system in term of Lyapunov exponents as in

(1.8–1.9). The same holds of course for the incoming region. Now we recall the
following result, which is the symplectic version of the Lewis-Sternberg theorem. At
least to prepare for Theorem 0.3, it could be useful to sketch a simple proof based on
the previous arguments.

Theorem 2.3 [BaLlWa] Let f , f0 : neigh(0, R2n) → neigh(0, R2n) be smooth canon-

ical transformations, leaving fixed ρ0 = 0, and assume they are tangent to infinite order

at ρ0. Let A = d f (ρ0) have its spectrum outside the unit circle as above. Then there is a

smooth canonical transform g leaving fixed ρ0, dg(ρ0) = Id, such that g−1 ◦ f ◦ g = f0.
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Outline of Proof It relies again on the stable/unstable manifolds theorem above
and a deformation argument, which goes as follows. Let fs, 0 ≤ s ≤ 1 be a smooth

family of canonical transformations interpolating between f0 and f1 = f . We can

take fs = f̂s ◦ f0, with f̂s(ρ) =
1
s

f̂ (sρ) for s > 0, and f̂0(ρ) = ρ, for s = 0, where

f̂ = f ◦ f −1
0 . We look for a family of canonical transformations gs with g0 = Id,

satisfying

(2.2) g−1
s ◦ fs ◦ gs = f0.

The deformation fields are of the form

(2.3) ∂s fs = Fs ◦ fs, ∂sgs = Gs ◦ gs

with Fs and Gs Hamiltonian, i.e., Fs = HFs
, Gs = HGs

. Since f and f0 are tangent to
infinite order at ρ0, we have Fs ∈ I∞ and we look for Gs in the same class. The crucial
observation in [BaLlWa] is the following. Taking derivative with respect to s in (2.2)
we obtain the homological equation:

∂s

(
g−1

s ◦ fs ◦ gs

)
=

(
g−1

s

)
∗

(
Fs − Gs + ( fs)∗Gs

)
◦

(
g−1

s ◦ fs ◦ gs

)
= 0

and it is clear that (2.2) can be solved iff we can find a C1 family of vector fields Gs

satisfying Fs − Gs + ( fs)∗Gs = 0. At the level of Hamiltonians this relation takes the
form

(2.4) Gs − Gs ◦ f −1
s = Fs.

This equation will be solved as in Proposition 1.2, changing the continuous dynam-

ical system t 7→ exp(tHp)(ρ), t ∈ R, to N 7→ f N (ρ), N ∈ Z. So let χout + χin = 1
be a smooth partition of unity such that supp χout ⊂ {‖ξ‖0 < 2‖x‖0}, supp
χin ⊂ {‖x‖0 < 2‖ξ‖0}, where we have chosen symplectic coordinates adapted to
fs as in theorem 2.2. After modifying suitably the functions outside a fixed neighbor-

hood of ρ0, define

(2.5) Gout
s (ρ) =

∑

N≥0

(χoutFs) ◦ f −N
s (ρ), Gin

s (ρ) = −
∑

N≥1

(χinFs) ◦ f N
s (ρ).

Then Gs = Gout
s + Gin

s formally solves (2.4) and using exponential estimates on the

discrete flow f N
s shows that Gs is C1 and vanishes at ρ0. For higher derivatives we use

the “tangent functor trick” of [BaLlWa], which is the discrete analogue of (1.16), and
differentiate (2.4) to obtain

(2.6) dGs − dGs( f −1
s ) ◦ d f −1

s = dFs.

This is a linear equation in dGs similar to (2.4), whose solution is again given (for-
mally) by dGs = Gout

s + Gin
s ,

(2.7)

dGout
s (ρ) =

∑

N≥0

(χoutdFs) ◦ f −N
s (ρ)

N∏

j=0

d f −1
s ◦ f −N+ j

s (ρ)

dGin
s (ρ) = −

∑

N≥1

(χindFs) ◦ f N
s (ρ)

N∏

j=0

d f −1
s ◦ f N− j

s (ρ)
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(the product being understood as a product of matrices). As above, it is easy to see
that the two series converge uniformly in Ωδ = Ωout

δ ∪ Ωin
δ to continuous functions

vanishing at ρ0, and the same holds for the first derivative. A uniqueness argument
further shows that dGs as defined in (2.7) is actually the derivative of (2.5), so Gs is
C2, and vanishes to second order at ρ0. To continue, we take partial derivative in (2.6)
with respect to ρ j , j = 1, · · · , 2n, which gives an equation analogous to (2.6), and

argue again as in Proposition 1.2 (precise estimates can be found in [BaLlWa]). So
by induction we proved Gs ∈ I∞, and (2.3) gives gs = Id +O(ρ∞) as in the argument
after (1.25). So we have proved the theorem.

Applying Theorem 2.3 to f = Φ, f0 = exp Hp, where p is given in Theorem 2.1,
we get:

Proposition 2.4 Let Φ be as in Theorem 2.1, i.e., none of the eigenvalues λ j of A =

dΦ(ρ0) is negative, and µ j = log λ j , |λ j | 6= 1 satisfy (2.1). Then there exists a smooth

Hamiltonian q defined near ρ0, q(ρ) = p0(ρ) + O(ρ3), such that Φ(ρ) = exp Hq(ρ).

If the µ j ’s are rationally independent, we can write q in the exact Birkhoff normal
form, so Theorem 0.2 immediately follows from Proposition 2.4 and Theorem 0.1.

2.1 Semiclassical Integrability

Here we prove theorem 0.3. From Proposition 2.4 we may already assume that U is
associated with a canonical transformation of the form κ = exp Hp (for the moment

we have no need on the rational independence of the µ j ’s. ) We could follow [IaSj]
but we prefer a similar proof based on the argument of Section 1.3. So consider the
family of FIO’s Us = sU + (1 − s)U0, U0 = eiP0/h, 0 ≤ s ≤ 1, P0 = pw(x, hD) + hα
(where α is a constant subprincipal symbol we choose so that Us is elliptic for all s, )

all associated with κ. See e.g., again [Iv, Section 2] for a proof of the fact that eiP0/h is
a FIO, and related properties. We look for a smooth family Ws(x, hD, h) of h-PDO’s
of order 0 such that

(2.8) e−iWsUse
iWs = eiP0/h.

Taking derivative with respect to s we get

(2.9) U−1
0 Us∂sWs −U−1

0 ∂sWsUs − i(U−1
0 U − Id) = 0.

Since all FIO’s are associated with the same canonical relation, U−1
0 Us∂sWs,

U−1
0 ∂sWsUs and U−1

0 U are h-PDO’s of order 0. Denoting the Weyl symbol of Ws

by the same letter, Ws(ρ, h) = w0(ρ, s) + hw1(ρ, s) + h2w2(ρ, s) + · · · , by a0(κ(ρ), ρ, s),
the principal symbol of Us, b0(ρ, κ(ρ)) this of U−1

0 , we first identify the principal

symbol of (2.9). From the well-known calculus on FIO’s that we recall in Appendix
B, we get from (2.9)

(2.10)

b0(ρ, κ(ρ))a0(κ(ρ), ρ, s)∂sw0(ρ, s) − b0
(
ρ, κ(ρ)

)
∂sw0(κ(ρ), s)a0

(
κ(ρ), ρ, s

)

− i
(

b0
(
ρ, κ(ρ)

)
a0

(
κ(ρ), ρ, s

)
− 1

)
= 0.
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Dividing this equation by b0
(
ρ, κ(ρ)

)
a0

(
κ(ρ), ρ, s

)
6= 0, we get

(2.11) ∂sw0(ρ, s) − ∂sw0(κ(ρ), s) = −
∫ 1

0

(∂sw0) ◦ exp(tHp)(ρ) dt = c0(ρ, s).

As in [IaSj, Theorem 3.2], this can be solved mod I∞ by successive approximations,
so we are left, changing w0 to w0 + w ′

0, with

(2.12) ∂sw
′
0(ρ, s) − ∂sw

′
0(κ(ρ), s) = c ′0(ρ, s) ∈ I∞.

This is exactly equation (2.4) with κ replacing f −1
s , so as in the proof of Theorem 2.3

we can find a smooth family ∂sw0(ρ, s) ∈ I∞ solving (2.12). Integrating for 0 ≤ s ≤ 1

with the initial value w0(ρ, 0) = 0, we are done with the principal symbol w0(ρ, s),
which is unique mod I∞ according to the uniqueness part of [IaSj, Theorem 3.2].
Of course, it is essential to notice that (2.11) and (2.12) can be solved in the whole
neighborhood of ρ0 where c ′0 is defined.

Let us consider now the coefficient of h in (2.9). Using (A.4) and (A.5) and the
usual calculus on h-PDO’s, we see that ∂sw1(ρ, s) verifies again an equation of the
form of (2.11), where the right hand side also depends on w0(ρ, s). This can again be
solved in the same neighborhood of ρ0. So an easy inductive argument shows that

(2.8) holds microlocally near ρ0. For s = 1 we get, by usual estimates (see e.g., [Iv,
Section 1]) microlocally near ρ0: U = eiW1 eiP0/he−iW1 = exp(ieiW1 P0e−iW1/h) and so
we have proved:

Proposition 2.5 Let U be an elliptic FIO microlocally defined near ρ0, associated

with a canonical transform Φ as in Proposition 2.4. Then there is an h-PDO, P =

P(x, hD, h), with principal symbol p given by Proposition 2.4, such that Φ = exp Hp

and U = eiP/h microlocally near ρ0.

Combining Propositions 1.3, 2.4 and 2.5 eventually gives Theorem 0.3.

3 Parameter Dependent Case

We extend some of the previous results, taking advantage of the fact observed in
[IaSj], that the Birkhoff normal form can be carried out nearby critical points with
non resonant frequencies, modulo small error terms. Thinking of the Poincaré map,

which depends smoothly on energy E, if the frequencies are non resonant for some
E = E0, they may become resonant for values of E arbitrarily close to E0. So it is
interesting to investigate some weak form of integrability. We content here to classical
Hamiltonians, but quantization could be easily treated as above.

3.1 The Birkhoff Normal Form

As in the Appendix, let ps ∈ C∞ depend smoothly on s ∈ neigh(0, Rk), ps(ρ0) = 0,

and have a non-degenerate critical point of hyperbolic type at ρ0. (In some applica-
tions, the critical point depends on s, but choosing suitable linear symplectic coordi-
nates and changing ps by a constant we are in this situation.) After possibly perform-
ing another linear symplectic transformation, we may assume that its quadratic part
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is of the form

(3.1) ps
2(x, ξ) =

n∑

j=1

µs
jx jξ j

with coordinates independent of s. For s = 0, we suppose the µ j = µ0
j rationally in-

dependent. Then Proposition A.1 below shows there is a smooth family of canonical
transforms, κs, κs(ρ0) = ρ0, such that

ps ◦ κs(ρ) = qs(ι) + rs(ρ), rs(ρ) = O(ρ∞) + ρ3O(s∞)

with the principal part of qs as in (3.1). Looking at the deformation procedure, we
see that we can apply the stable/unstable manifold theorem to Qτ (ρ) = qs(ι)+τ rs(ρ),
0 ≤ τ ≤ 1, and if we decompose rs = us + vs, vs = O(ρ∞), us = ρ3O(s∞), we are
able to solve HQτ

fτ = vs, for fτ ∈ I∞. Then the vector field Xτ = H fτ generates a

1-parameter family of canonical transformations κτ as in (1.23), and for τ = 1 we
get

ps ◦ κs ◦ κ1(ρ) = qs(ι) + ρ3O(s∞)

which is the normal form for ps.

3.2 The Lewis-Sternberg Normal Form

As in [IaSj] we extend Theorem 0.2 to the parameter dependent case. For simplicity
we just vary one parameter s ∈ neigh(0, R). Let Φs : neigh(0, R2n) → neigh(0, R2n),
s ∈ neigh(0, R), be a smooth family of smooth canonical transformations, leaving

fixed ρ0 = 0, and As = dΦs(ρ0). We assume that Φ = Φ0 fulfills the assumptions
of Proposition 2.4. For small s, As is still hyperbolic, but (2.1) need not be verified.
We want to investigate to what extent the conclusion of Proposition 2.4 holds for Φs,
s 6= 0, so we look for a smooth, real valued family ps(ρ) = O(ρ2), such that

(3.2) Φ
s(ρ) = exp Hps (ρ) + ρ2O(s∞).

By Proposition 2.4, this holds for s = 0, with ps = p. Assume for a moment we have
found ps, which fulfills formally (3.2), and consider the family Φs

t (ρ) = exp(tHps )(ρ).

Since ps vanishes to second order at ρ0, the germ of Φs
t at ρ0 is well-defined for all

real t . We compute the “logarithmic derivative”

(Φs
t )
∗∂sΦ

s
t = Hqs

t
,

where

qs
t =

∫ t

0

∂s ps ◦ Φ
s
t̃

dt̃.

In this formula, we take t = 1 (deleting the corresponding subscript) and try to solve

(3.3) qs(ρ) =

∫ t

0

∂s ps ◦ Φ
s
t̃

dt̃ mod ρ2O(s∞)
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where ∂s ps will be the unknown. We try to achieve this condition at any order in s.
At zeroth order, i.e., for s = 0, one should have q0(ρ) =

∫ t

0

(
∂s ps

)
|s=0 ◦Φ0

t̃
dt̃, and this

can be solved as in (2.11), since condition (2.1) holds for Φ0(ρ). We find ∂s ps|s=0 =

O(ρ2). If we differentiate (3.3) k times and evaluate at s = 0 we get

∫ 1

0

(∂k+1
s ps) ◦ exp tHps (ρ) dt = ∂k

s qs(ρ) + Fk(ps, . . . , ∂k
s ps, ρ), s = 0.

If p0, . . . , ∂k
s ps|s=0 = O(ρ2) have been determined, we get ∂k+1

s ps|s=0 = O(ρ2)

from this equation. It is then clear that (3.3) has a solution which is unique mod-
ulo ρ2O((ρ, s)∞). That is the inductive part of the argument. Conversely, define

Φ̃s = exp Hps . Then

(Φs)∗∂sΦ
s
= (Φ̃s)∗∂sΦ̃

s + ρ2O(s∞), Φ̃
0
= Φ

0.

From identity ∂s(Φ̃
s)−1(ρ) = −Hps

(
(Φ̃s)−1(ρ)

)
, estimate

∂s(Φ
s)−1(ρ) = −Hps

(
(Φs)−1(ρ)

)
+ ρ2O(s∞),

which follows from (3.3), and initial condition Φ0 = Φ̃0 we conclude easily that (3.2)
holds.

Assume further that for s = 0 the µ j ’s are rationally independent. Using the
parameter dependent Birkhoff transformations as in Proposition A.1, we see that

for s ∈ neigh(0, R) small enough, there is a smooth family of Hamiltonians q̃s, and
canonical transformations κs, κs(ρ0) = ρ0, such that p ◦κs = q̃s + O(ρ∞) + ρ3O(s∞)
and q̃s = q̃s(ι) depend on the action variable only. So we have

(3.4) (κs)−1 ◦ exp Hps ◦ κs
= exp Hq̃s + O(ρ∞) + ρ2O(s∞)

and by (3.2),

(3.5) (κs)−1 ◦ Φ
s ◦ κs

= exp Hq̃s + ρ2O(s∞).

It suffices then to apply a parameter dependent version of Theorem 2.3 as in Sec-
tion 3.1, to get rid of the O(ρ∞) term, and we see that (3.4) and (3.5) imply the
following

Proposition 3.1 Let Φs, s ∈ neigh(0, R), be a smooth family of smooth canonical

transformations, Φs : neigh(0, R2n) → neigh(0, R2n), Φs(0) = 0, such that for s = 0,

A0 = dΦ0(0) is non degenerate, its eigenvalues λ j , j = 1 . . . , n, are non negative and

lie outside the unit circle, and µ j = log λ j verify (2.1). Assume further that the µ j ’s

are rationally independent (i.e., the λ js are non resonant in the strong sense.) Then

there are a smooth family of smooth canonical maps κs, s ∈ neigh(0, R), κs(0) = (0),

dκs(0) = Id, and a smooth family of smooth functions qs(ι) depending on the action

variables ι alone, such that

Φ
s
= exp Hqs + ρ2O(s∞).
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4 The Complex Case

We present here a rather rough discussion in the almost holomorphic case, i.e., for
Hamiltonians whose ∂ vanishes of infinite order at ρ0, somewhat in the spirit of [Sj2]
and [MeSj]. First we recall some properties concerning symplectic structures in TCn;

then we state the center stable/unstable manifold theorem for almost holomorphic
Hamiltonians; at last we prove Theorem 0.4, and conclude with some elementary
properties on monodromy.

4.1 Complex Symplectic Geometries

The variables in the complex phase-space T∗Cn will still be denoted by (x, ξ). As in

the real case, we start with some geometric preparations.
First we recall some elementary facts about complex vector fields. If

v(ρ) =

2n∑

j=1

v j(ρ)∂ρ j
+ v ′

j(ρ)∂ρ j

=

2n∑

j=1

(
a j(ρ)∂x j

+ b j(ρ)∂ξ j
+ a ′

j(ρ)∂x j
+ b ′

j(ρ)∂ξ j

)
∈ T(T∗Cn)

is a vector field on T∗Cn, we set v̂ = 2 Re v = v + v, or

v̂(ρ) =

2n∑

j=1

(
v j(ρ) + v ′

j(ρ)
)
∂ρ j

+
(

v j(ρ) + v ′
j(ρ)

)
∂ρ j

.

Identifying Cn × Cn with R2n × R2n, v̂ is simply the vector

(v1 + v ′
1, . . . , v2n + v ′

2n) = (a1 + a ′
1, . . . , an + a ′

n, b1 + b ′
1, . . . , bn + b ′

n)

=
(

Re(a1 + a ′
1), Im(a1 − a ′

1), . . . , Re(bn + b ′
n), Im(bn − b ′

n)
)

expressed in the basis B =
(
∂Re x1

, ∂Im x1
, . . . , ∂Re ξn

, ∂Im ξn

)
. In general the identifi-

cation between Cn (or C2n) and the underlying real vector space will be expressed as

Θ(a1, . . . , an) = (Re a1, Im a1, . . . , Re an, Im an).
Let us denote by I the ideal of C∞ functions in Cn (or T∗Cn as will be clear from

the context, ) that vanish at ρ0. We assume throughout that v ′
j ∈ I, or even v ′

j ∈
I∞. In that case, we write v ∈ T(1,0)(T∗Cn) ⊕ T(0,1)

∞ (T∗Cn). Then v̂ is the (unique)
real vector field which gives the same result as v, at the point ρ0, when applied to a

differentiable function u, provided ∂u ∈ I. For real t , the flow of v̂ will be denoted by

Φ̂t (ρ) =
(

x̂t (ρ), ξ̂t (ρ)
)

= exp(tv̂)(ρ).

In the case where v ′
j = 0 (i.e., v ∈ T(1,0)(T∗Cn)), this is the solution of the system of

ODE’s

d

dt
(̂x j)t

(ρ) = a j

(
Φ̂t (ρ)

)
,

d

dt
(̂ξ j)t

(ρ) = b j

(
Φ̂t (ρ)

)
, Φ̂0(ρ) = ρ.
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So it has the property, that if v ∈ T(1,0)(T∗Cn) has holomorphic coefficients, then

Φ̂t (ρ) is the restriction to the real t-axis of the holomorphic flow

Φt (ρ) =
(

xt (ρ), ξt (ρ)
)

= exp(tv)(ρ).

We recall also that C2n is endowed with the complex canonical 2-form σC, which
makes it a symplectic space, and two real symplectic 2-forms Re σC and Im σC. For

convenience, we remove subscript C from the notations. If p is a smooth complex
function on C2n, the Hamiltonian vector field of p is defined as

Hp =
∂p

∂ξ

∂

∂x
+

∂p

∂ξ

∂

∂x
− ∂p

∂x

∂

∂ξ
− ∂p

∂x

∂

∂ξ

(note that we have used a different convention from [MeSj, Sj1], where Hp does not
contain the antiholomorphic derivatives). If we define the real Hamiltonian vector
field HRe σ by (Re σ)(HRe σ

f , t) = 〈d f , t〉, then we have HRe σ
Re p = Ĥp. More precisely,

in the basis B,

Ĥp =

(
Re

∂p

∂ Re ξ
,−Re

∂p

∂ Im ξ
,−Re

∂p

∂ Re x
, Re

∂p

∂ Im x

)
.

We denote by
∂Ĥp

∂ρ the Jacobian (in the real sense) expressed in this basis.

The Poisson bracket associated with Re σC is denoted by { · , · }R and coincides
with {Re · , Re · } for the real symplectic structure on C2n read through Θ.

Let p be a smooth function such that ∂p ∈ I∞. For real t , the Hamiltonian flow
of Ĥp will be denoted as above by

(4.1) Φ̂t (ρ) =
(
Φt,x(ρ), Φt,ξ(ρ)

)
= exp(tĤp)(ρ)

Let X̃ρ = Θ
(
∂xΦt,x, ∂xΦt,ξ

)
, and Ỹρ = Θ

(
∂ξΦt,x, ∂ξΦt,ξ

)
considered as vec-

tor fields on T∗(Cn). In the same way, we write Xρ = Θ
(
∂xΦt,x, ∂xΦt,ξ

)
, and

Yρ = Θ
(
∂ξΦt,x, ∂ξΦt,ξ

)
, where ∂ denotes the holomorphic derivative. We first state

a technical Lemma, which follows from a straightforward computation and the fact

that p verifies approximately the Cauchy-Riemann equations:

Lemma 4.1 With p as above, we have:

∂t X̃ρ =
∂Ĥp

∂ρ
(Φ̂t )X̃ρ + O

(
Φ̂t (ρ)∞

)(
X̃ρ, Xρ

)
(4.2)

∂tỸρ =
∂Ĥp

∂ρ
(Φ̂t )Ỹρ + O

(
Φ̂t (ρ)∞

)(
Ỹρ,Yρ

)
.(4.3)
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4.2 The Stable-Unstable-Center Manifold Theorem in the Complex Domain

Our first step is to extend the stable/unstable manifold theorem in the case of almost
holomorphic Hamiltonians. To be complete we will actually prove a little bit more
than required. We will follow closely the nice geometric argument of [Sj2] in the

analytic category, implemented for higher derivatives by an idea we borrowed also
from [HeSj1].

So let p such that ∂p ∈ I∞, have a non degenerate critical point at ρ0, p(ρ0) = 0.
Let Fρ0

(p) as in (1.1) denote the fundamental matrix (in the holomorphic sense),

and assume as before that Fρ0
(p) has 2n distinct eigenvalues, none purely imaginary.

Again let Λ± ⊂ Tρ0
C2n be the sum of all eigenspaces corresponding to eigenvalues

with positive (resp. negative) real parts. We have:

Theorem 4.2 With the notations above, in a neighborhood of ρ0, there are Ĥp-

invariant, R-Lagrangian manifolds J± (i.e., Lagrangian for Re σC), passing through

ρ0, such that Tρ0
(J±) = Λ±. Within J+ (resp. J−), ρ0 is repulsive (resp. attractive)

for Ĥp, and Re p|J±
= 0. We can also find Re σC-symplectic coordinates, denoted again

by (x, ξ) = κ(y, η), ∂κ ∈ I∞, such that their differential at ρ0 verifies dκ(ρ0) = Id,

κ∗(σC) = σC mod I∞ and J+ = {ξ = 0}, J− = {x = 0}. In these coordinates

(4.4) Re p(x, ξ) = Re〈A(x, ξ)x, ξ〉

where A(x, ξ) is smooth, has constant term equal to A0, and ∂A(x, ξ) ∈ I∞. Moreover,

(4.5) p(x, ξ) = 〈A(x, ξ)x, ξ〉mod I∞.

(For simplicity, we have written 〈A(x, ξ)x, ξ〉 instead of

〈A ′(x, ξ)(Re x, Im x), (Re ξ, Im ξ)〉

where A ′(x, ξ) is a 2n×2n matrix; actually the notation p(x, ξ) = 〈A(x, ξ)x, ξ〉 makes
sense at the level of formal Taylor expansion at ρ0.)

Outline of Proof We proceed in several steps. In the topological step we start to
define, as in Section 1.1, the outgoing/incoming regions relative to Ĥp, and study the
flow of Lagrangian manifolds, as t → ±∞. This yields, via a compactness argument,

to C0 coordinates where the outgoing (resp. incoming) submanifold J+ (resp. J− ) is
given by ξ = 0 (resp. x = 0 ). Then we turn to differentiability and prove the J± are
C1. Finally we turn to higher derivatives and properties of almost analyticity.

We first choose coordinates where Fρ0
has block-diagonal form. Taking complex

linear coordinates as in (1.3), we can make it diagonal. Then the Hamiltonian vector
field takes the form

(4.6) Hp = A0x · ∂

∂x
− A0ξ · ∂

∂ξ
+ O

(
‖x, ξ‖2

)( ∂

∂x
,

∂

∂ξ

)
mod T(0,1)

∞ (T∗Cn)

where we recall A0 = diag(λ1, . . . , λn). For real t , let Φ̂t (ρ) be the Hamiltonian flow
of Ĥp as in (4.1). As in Section 1.1 we can construct an hermitian norm ‖ · ‖0 such
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that identity (1.7) holds if ‖ · ‖ and ‖ · ‖0 stand now for the hermitian norms. For
δ > 0, we define the outgoing region as

Ω
out
δ = {(x, ξ) : ‖ξ‖0 < 2‖x‖0, ‖x‖2

0 + ‖ξ‖2
0 < δ2}

and let ∂Ωout
δ denote its boundary. Estimates (4.6) again show that there exists

C > 0 such that

(4.7) ‖x‖0/(2C) ≤ Ĥp‖x‖0 ≤ ‖x‖0/C, ρ ∈ Ω
out
δ ,

while

(4.8) −Ĥp‖ξ‖0 ≥ ‖ξ‖0/C on ∂Ω
out
δ ∩ {(x, ξ) : ‖ξ‖0 = 2‖x‖0}.

Let t 7→ Φ̂t

(
x(0), ξ(0)

)
be an integral curve of Ĥp with ρ =

(
x(0), ξ(0)

)
∈ Ωout

δ .

Along Φ̂t we have ∂t = Ĥp, so using (4.7), Gronwall’s Lemma, after suitably truncat-
ing p outside a neighborhood of ρ0, shows that

(4.9) et/(2C)‖x(0)‖0 ≤ ‖x(t)‖0 ≤ et/C‖x(0)‖0, ρ ∈ Ω
out
δ , t ≥ 0,

which allows us to define the hitting times Tout
± as in (1.10) and (1.11) (although we

have not yet found the outgoing manifold).

It follows from (4.9) and (4.8) that Ωout
δ is stable under Φ̂t , i.e., if ρ ∈ Ωout

δ , then

exp(tĤp)(ρ) ∈ Ωout
δ , for 0 ≤ t < Tout

± (ρ), while it never gets back in afterwards.

Similarly, we define the incoming region as in (1.12), and the corresponding hit-
ting times as in (1.13), (1.14).

Now we try to find the outgoing/incoming manifolds for Ĥp, and study the evo-

lution of the complex manifold Λt = {exp(tĤp)(ρ) : ρ ∈ Ωout
δ }, as t → +∞. It is

convenient to introduce

Λ
out

=
{(

t, τ ; exp(tĤp)(ρ)
)

: ρ ∈ Ω
out
δ , 0 ≤ t < Tout

+ (ρ), τ = Re p ◦ exp(tĤp)(ρ)
}

By what we have just said, Λout is a connected submanifold of codimension 1 in the

symplectic space T∗R2n+1 endowed with the 2-form dτ ∧ dt + Re σC. The vector field
∂t +Ĥp is tangent to Λout, and τ is independent of t . The evolution of a tangent vector

X̂ρ(t) =
(

X̂x(t), X̂ξ(t)
)
∈ T(T∗R2n) (the ρ-projection of the tangent space to Λout, )

is given by the 4n × 4n system:

(4.10) ∂t X̂ρ(t) =
∂Ĥp

∂ρ

(
Φ̂t (ρ)

)
X̂ρ(t)

where ∂ρ denotes the gradient in the real sense.

It is easy to see that the leading term in the 4n × 4n matrix ∂Ĥp/∂ρ in the basis B

has a hyperbolic structure, each eigenvalue λ j occurring twice, as well as −λ j , ±λ j ,
so that the linear flow is expansive in the (Re x, Im x)- directions, and contractive in
the (Re ξ, Im ξ)- directions.
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So (4.10) shows that if ε0 > 0 and δ > 0 are sufficiently small, then the outgoing
region

(4.11) ‖X̂ξ(t)‖ ≤ ε0 ‖X̂x(t)‖

is stable along Φ̂t (ρ), ρ ∈ Ωout
δ , as t increases, t < Tout

+ (ρ).

Now let J̃+ = {ρ ∈ Ωout
δ ; ξ = 0}, J+(t) = Φ̂t (J̃+) ∩Ωout

δ , and Λ+ be its lift in Λout.

This is a submanifold of T∗R2n+1, Lagrangian for dτ ∧ dt + Re σC, and its tangent
space contains ∂t + Ĥp. Applying the theorem of constant rank to the projection
π : Λ+ → Cn

x , (4.11) shows that Λ+ (or J+(t), forgetting about τ which is independent
of t , and that we may take equal to 0, since p(ρ0) = 0), is of the form ξ = g+(t, x)

where g+ ∈ C∞ (see for instance [M] for a simple proof). Moreover, g+(0, x) = 0.

Since Φ̂t (ρ) ∈ Ωout
δ , we have ‖g+(t, x)‖0 ≤ 2‖x‖0 for all t ≥ 0. By compactness, there

is a sequence t j → +∞, such that g+(t j , · ) → G+ in C0
(
{‖x‖ < const ·δ}

)
. We put

J+ = {(x, G+(x)) : x ∈ neigh(0)}

(the outgoing tail, or outgoing manifold) and proceed to show that G+ ∈ C1.

Consider the evolution of a normal vector

Ẑρ(t) =
(

Ẑx(t), Ẑξ(t)
)
∈ N(J+(t)) =

(
T(T∗R2n)|J+(t)

)
/T(J+(t))

(the ρ-projection of the normal space to Λ+). It is given by ∂t Ẑρ(t) = M(Φ̂t (ρ))Ẑρ(t)

where the leading part of M(x, ξ) is obtained from that of ∂Ĥp/∂ρ by permuting the
eigenvalues with positive and negative real parts. So in Λ+, the region given by

(4.12) ‖Ẑξ(t)‖ ≥ ‖Ẑx(t)‖/ ε0

is stable under Φ̂t .

Now let ρt be another integral curve of Ĥp, starting at ρ ∈ Ωout
δ , and not in J+(t)

(ρt lies in Λout, but we choose the initial condition away from J̃+). Let Γt be the
orthogonal projection of ρt on J+(t), Γ̇t ∈ N(J+(t)) the normal vector. By (4.12), we
see that if γt denotes the length of the segment [ρt , Γt ], then d

dt
γt ≤ −Cγt , C > 0;

so the integral curves of Ĥp approach J+ exponentially fast as t increases, and the

estimate ‖g+(t, x)−g+(s, x)‖ = O(e−s/C ), all t ≥ s ≥ 0, shows that g+(t, x) is Cauchy,
and T(J+(t)) has a limit as t → +∞ (not only for a sequence t j). This limit is the
tangent space to J+ = {ξ = G+(x) : x ∈ neigh(0)}, and it follows that J+(t) tends
exponentially fast to J+ in the C1 topology. It is easy to see that J+ is invariant under

Φ̂t , all t , and characterized as the set of ρ ∈ Ωout
δ such that Φ̂t (ρ) ∈ Ωout

δ , all t ≤ 0.

We have Φ̂t (ρ) → ρ0 = 0 as t → −∞, ρ ∈ J+. Moreover, Re p = τ = 0 on J+.

We are left to show that J+ is a Lagrangian submanifold for (T∗Cn, Re σC). If
u1, u2 are complex C1 functions vanishing on J+, and ρ ∈ J+, then {u1, u2}R(ρ) =

{u1 ◦ Φt , u2 ◦ Φt}R(Φ−t (ρ)). Since integral curves of exp tĤp approach J+ ex-

ponentially fast, we see that du j ◦ Φt

(
Φ−t (ρ)

)
tends to 0 as t → +∞, hence
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{u1, u2}R = 0, and we have proved that J+ is involutive. Because Tρt
J+(t) is transver-

sal to J̃− = {ρ ∈ Ωout
δ , x = 0} (and their intersection is 0) we have also proved,

letting t → +∞, that J+ is Lagrangian for Re σC. Furthermore, Tρ0
(J+) = Λ+. Simi-

larly, we introduce

Λ
in

=
{(

t, τ ; exp(−tĤp)(ρ)
)

: ρ ∈ Ω
in
δ , 0 ≤ t < T in

−(ρ), τ = Re p◦exp(−tĤp)(ρ)
}

Taking the flow of J̃− through Φ̂(t) for negative t , we set J−(t) = Φ̂t (J̃−) ∩ Ωin
δ ,

and look for the evolution of a tangent vector to J−(t) along an integral curve ρt

of Ĥp, starting at ρ ∈ Ωin
δ , and not in J−(t). Letting t → −∞, we can see that

J−(t) tends exponentially fast to J− = {(G−(ξ), ξ) : ξ ∈ neigh(0)}, for some C1

function G−(ξ). Then J− is again Lagrangian with respect to Re σC, and we call it
the incoming tail, or incoming manifold. Again we have Re p = τ = 0 on J−.

It is clear that the invariant manifolds J± are characterized as the set of ρ ∈ Ωδ

such that Φ̂∓t (ρ) ∈ Ωδ , for all ±t ≥ 0.
The higher derivatives cannot apparently be handled with the same method, but

by the uniqueness property of the outgoing/incoming manifolds, we can conclude

as in [AbRo, App. C] with a fixed point argument, the limits being necessarily J±.
An alternative way is to mimick the proof of [HeSj1, Prop. 2.3]. Namely, it follows
easily from the previous arguments that J+(t) (say) can be parametrized by a phase
function ϕt (x, η), such that the graph of exp(tĤp), t ≥ 0, is given by

Ct =
{(

∂ηϕt , η, x, ∂xϕt

)
: (x, η) ∈ Ω

out
δ

}
.

Furthermore, ϕt verifies the eikonal equation

∂ϕt

∂t
+ Re p

(
x,

∂ϕt

∂x

)
= 0, ϕ|t=0 = 〈x, η〉

By the previous estimates, we know then that ϕt tends exponentially fast as t → +∞,

to some ϕ+(x, η) in C2(Ωout
δ ). Then ϕ+(x, η) verifies again the corresponding station-

ary eikonal equation, and parametrizes J+. Using the transport equations verified by
∂ϕt

∂x
, we can show as in [HeSj1] that this convergence holds actually in C∞(Ωout

δ ). We
proceed similarly in Ωin

δ .

Once we have found the smooth, involutive invariant manifolds J±, we choose
adapted coordinates of the form (x ′, ξ ′) =

(
x − G−(ξ), ξ − G+(x)

)
. By construc-

tion, these are smooth symplectic coordinates for Re σC, where the outgoing (resp.

incoming) manifold takes the form ξ ′ = 0 (resp. x ′ = 0.) From now on, we work
in these coordinates, which we denote again by (x, ξ), deleting the prime. The same
argument as in Section 1 then shows that (1.8) and (1.9) hold for ρ ∈ Ωδ , t ∈ R,

where (x(t), ξ(t)) stands for Φ̂t (ρ), and ‖ · ‖0 for the hermitian norm.
We pass now to the almost analyticity property. Using coordinates adapted to J±,

this can be done again by combining Lemma 4.1 with the method above, showing

that the generating functions verify ∂ϕ± ∈ I∞. (Alternatively, this can be done
by the fixed point argument of [AbRo, App. C].) The Theorem easily follows, since
also (4.5) can be recovered from (4.4), using that p verifies the Cauchy-Riemann
equations modulo I∞.
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4.3 Proof of Theorem 0.4

We proceed exactly as in the real case. Again let χout+χin = 1 be a smooth partition of
unity in T∗R2n \ ρ0 with supp χout ⊂ {‖ξ‖0 < 2‖x‖0}, supp χin ⊂ {‖x‖0 < 2‖ξ‖0}.
We start with

Proposition 4.3 Let p be as above, and g ∈ I∞. Let

f out(ρ) =

∫ 0

−∞

(
χoutg

)
◦ exp(tĤp)(ρ) dt, f in(ρ) = −

∫ ∞

0

(
χing

)
◦ exp(tĤp)(ρ) dt

Then f = f out + f in ∈ I∞ solves Ĥp f = g.

We use throughout the C∞ coordinates as in Theorem 4.2 where J± are given by
ξ = 0 and x = 0, as we did in Proposition 1.2.

Using again Birkhoff series (in C2n), we know that there is a smooth canonical

transform for the complex symplectic structure (T∗Cn, σC), κ(ρ0) = ρ0, such that

(4.13) p ◦ κ(x, ξ) = q0(ι) + r(x, ξ)

where ι = (ι1, . . . , ιn) are the action variables as in (0.3), and r ∈ I∞. The Hamil-
tonian q0(ι) satisfies the same hypotheses as p, and is constructed from the formal

Taylor series by a Borel sum of the type q0(ι) =
∑∞

k=1 q̃k(ι)χ
(

ι
εk

)
, χ ∈ C∞

0 (Cn)
equal to 1 near 0, of the form χ(z1, . . . , zn) = χ0(z1) ⊗ · · · ⊗ χ0(zn), χ0 rotation
invariant. Of course, ∂ιq0(ι) = O(ι∞). Using again Borel sums, the canonical trans-

formation is of the form κ = exp H
f̃

for some smooth f̃ , ∂ρκ = O(ρ∞). Now we

take real part of (4.13):

Re p ◦ κ(x, ξ) = q ′
0(ι ′) + r ′(x, ξ),

where ι ′ stands for the real and imaginary part of ι (it is easy to see that these 2n new
action variables Poisson commute for { · , · }R). Following the proof of Theorem 0.1,

we consider the family q ′
s = q ′

0 + sr ′, 0 ≤ s ≤ 1.

As above we look for a family of smooth κs preserving Re σC, satisfying the identity
q ′

s ◦ κs = q ′
0 and

(4.14) ∂sκs = Xs ◦ κs.

We look for Xs of the form Xs = Ĥ fs
, for some family of real valued functions fs ∈ I∞.

Since q ′
s is real, we get

〈Ĥ fs
, q ′

s 〉 = −〈Ĥq ′
s
, fs〉 = −r ′,

and again we are led to solve the homological equation 〈Ĥq ′
s
, fs〉 = r ′, for which

Proposition 4.3 gives fs ∈ I∞. Then (4.14) has a solution of the form κs = Id +κ ′
s ,

κ ′
s ∈ I∞, uniformly for s on compact sets. Furthermore, by construction, κs pre-

serves Re σC, and (κs)
∗σC = σC mod I∞. Theorem 0.4 easily follows.
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4.4 Remark: Monodromy Along IR-Manifolds

Let p be analytic and have a non degenerate critical point at ρ = 0, such that Fρ0

has rationally independent eigenvalues, none purely imaginary, as above. Assume p

is real on the real domain. We can apply Theorem 0.1 to T∗Rn so p is integrable

in the C∞ sense on the real domain, for some real canonical transform κ = κ0

that takes p into its Birkhoff normal form. We set Λ0 = T∗Rn and try to move
Λ0 around ρ0 in the complex domain, so we consider the family of IR-manifolds
Λs = exp(isHp)(Λ0), s ∈ R, which is defined for all real t . (Recall that a submanifold

of T∗Cn is called IR if it is Lagrangian for Im σC and symplectic for Re σC). Then
again p is clearly integrable on Λs, in the C∞ sense, i.e., for real times, and one can
address the problem of monodromy. The 1–dimensional case has been settled in

[HeSj2, App. B], where the authors recover the well-known fact that p is integrable
in the holomorphic sense; here κ is univalued, so making a reflection on ρ0 gives
Λπ = Λ2π = Λ0. This is actually the way that the “exact Birkhoff normal form”
was obtained. In several variables we cannot expect integrability, nor even recovering

Λs = Λ0 for some s, since the orbits may never close (see [Ro2] for a more complete
study of monodromy).

A Appendix

A.1 The Birkhoff Transformations

We recall here from [KaRo] some formal constructions, using Lie brackets, borrowed
essentially from [AbMa, p. 500]. There are of course many alternative proofs, the
idea here is just to write formal power series in the most convenient way. Since the
procedure is mere algebra, it works equally in the holomorphic, real analytic or C∞

category, and eigenvalues also can be real or complex. When eigenvalues are complex,
and the Hamiltonian real and C∞, we can recover real asymptotics just by using an
appropriate linear symplectic transformation of coordinates. As in [IaSj], we discuss
the parameter dependent case. In what follows, s ∈ neigh(0, Rk).

Let p = p(s) depend smoothly on s, and have a non degenerate critical point of
hyperbolic type at ρs. If p(s) is complex valued, we assume also that ∂(z,ζ) p vanishes
of infinite order at ρs, so that p(s) has formal Taylor series in (z, ζ) at ρs. After a
linear symplectic change of coordinates, depending smoothly on s, we may assume

that ρs = ρ0 = 0, and p(s) has quadratic part p2(z, ζ, s) =
∑n

j=1 λ j(s)z j (s)ζ j(s).
We assume also that p(0) has rationally independent (or non resonant) frequencies
(λ1(0), . . . , λn(0)) = (λ1, . . . , λn). Using the fact that the symplectic group is con-
nected, we may further perform a symplectic, linear change of coordinates, C∞ in s,

such that z j(s), ζ j(s) become independent of s, and p2(z, ζ, s) =
∑n

j=1 λ j(s)z jζ j . Of
course, the λ j(s)’s do not in general verify the non-resonance condition for s 6= 0,
but we shall investigate up to which accuracy Birkhoff series hold in that case. After
reduction of the quadratic part as above, p(s) now takes the form

p(z, ζ, s) = p2(z, ζ, s) + O(|z, ζ|3).

We want to construct a map f = f (s) between neighborhoods V(0) of ρ0 = 0 ∈
T∗Rn, such that (exp H f (s))

∗Hp(s) is resonant, modulo ρ3O(s∞). Indeed we have:
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Proposition A.1 Let p(s) = p(z, ζ, s) as above, and ρ = (z, ζ). Then there exists

a smooth canonical transforms κ(s) : V(0) → V(0) in T∗Rn, and a smooth function

q(s) = q(ι, s), ι as in (0.3), such that κ(ρ0, s) = ρ0 = 0, dκ(ρ0, s) = Id and

(A.1) p(s) ◦ κ(s) = q(s) + ρ3O
(

(ρ, s)∞
)

Proof For simplicity, we assume k = 1, but the general case is similar. We introduce
a small ordering parameter ε and rescale coordinates (y, η), as (ε y, ε η) = (z, ζ)
so that p(z, ζ, s) = ε2 p2(y, η, s) + ε3 p3(y, η, s) + · · · where p j is homogeneous of
degree j. Working first at the level of formal Taylor series, we want to solve (formally),

denoting p = p(s), f = f (s):

(A.2) (exp tH f )∗Hp =

∑

j≥0

t j

j!
[H f , [H f , . . . , [H f , Hp] . . . ]] = Hr,

where r = r(s) is resonant, modulo ρ3O(s∞), and t = ε2. We look also for
f (y, η, s) = ε f1(y, η, s) + ε2 f2(y, η, s) + · · · with f j homogeneous of degree j + 2.

We proceed by induction. Collecting the ε3-terms in (A.2), we want to find f1

such that Hp3
− H{p2, f1} is resonant modulo ρ2O(s∞), i.e., p3 − {p2, f1} is reso-

nant modulo ρ3O(s∞). Writing p3(y, η, s) =
∑

|α+β|=3 pαβ(s)yαηβ , f1(y, η, s) =∑
|α+β|=3 aαβ(s)yαηβ we try to achieve this condition at any order in s. At zeroth or-

der, i.e., for s = 0, we take aαβ(0) = −pαβ(0)/〈λ, α − β〉 for α 6= β and aαβ(0) = 0
otherwise. At first order in s, the condition that ∂s

(
p3 − {p2, f1}

) ∣∣
s=0

is resonant

modulo ρ3O(s∞) gives

∂saαβ(0) =
∂s pαβ(0) − 〈∂sλ(0), α − β〉aαβ(0)

〈λ, α − β〉

when α 6= β and say, ∂saαβ(0) = 0 otherwise. This process extends by induction
to any order in s (note that when s is vector valued, we need to check symmetry for

higher derivatives.)
So far we have constructed the formal Taylor series for aαβ(s) at s = 0, and found

f1(s) with an uncertainty ρ3O(s∞) (in the original variables). Next we collect the
ε4-terms, which gives:

p4 − Hp2
f2 − Hp3

f1 +
1

2
{ f1, { f1, p2}} =def −Hp2

f2 + q4.

We want to find f2 = f2(s) such that −Hp2
f2 + q4 is resonant modulo ρ2O(s∞).

Writing q4(y, η, s) =
∑

|α+β|=4 qαβ(s)yαηβ , f2(y, η, s) =
∑

|α+β|=4 aαβ(s)yαηβ , we

look again for the Taylor series aαβ(s) = aαβ(0) + ∂saαβ(0)s + 1
2
∂2

s aαβ(0)s2 + · · · . At
zeroth order we may take aαβ(0) = 0 for α = β, and aαβ(0) = qαβ(0)/〈λ, α − β〉
otherwise, then carry on the procedure as above at any order in s. This gives Hp2

f2 =

r4, where r4(s) =
∑

|α|=2 qαα(s)yαηα is the resonant part of q4, modulo ρ3O(s∞).
Assume by induction that we have already constructed f1, . . . , fN−1 homogeneous

of degree 3, . . . , N + 1, so that f (N−1) =
∑N−1

j=1
ε j f j verifies (A.2) at order εN+1 in ρ,
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and infinite order in s. Then we try f (N) = f (N−1) + εN fN to fulfill (A.2) up to order
εN+2, i.e., find fN = fN (s) such that

(A.3) Hp + [H f , Hp] + · · · +
tN−1

(N − 1)!
[H f , [H f , . . . , [H f , Hp] · · · ]]

+
tN

N!
[H f , [H f , . . . , [H f , Hp] · · · ]]

is resonant modulo ρ2O(s∞). Each of the terms of that sum are ex-
panded to order εN+2. The last one is an N-fold bracket and contains only
[H f1

, [H f1
, . . . , [H f1

, Hp2
] · · · ]] to this order; other terms are j-fold brackets con-

taining f1, . . . , fN−1, and fN occurs only in [H fN
, Hp2

]. Writing fN (y, η, s) =∑
|α+β|=N+2 aαβ(s)yαηβ , we can find aαβ(s) as before so that −Hp2

fN + qN+2 = rN+2

where qN+2 = qN+2(s) and rN+2 = rN+2(s) are of degree N + 2 (or rN+2(s) = 0,
according to the parity of N), and rN+2(s) is resonant modulo ρ3O(s∞).

Summing up, we have found f j , r j , deg( f j) = j + 2, deg(r j) = j such that

(exp tH(ε f1+ε2 f2+··· ))
∗H(ε2 p2+ε3 p3+ε4 p4+··· ) = Hε4 r4+···

so (A.2) is verified at the level of formal power series. In the original variables (z, ζ) =

ε(y, η), so by homogeneity: (exp H f (s))
∗Hp(s) = Hr(s).

All this computation can be implemented at the level of C∞ germs of functions

at ρ = ρ0(0, 0), s = 0 if we apply Borel’s theorem to the f j(s) and r j(s). Hence
the relation (exp H f (s))

∗Hp(s) = Hr(s) holds at the level of C∞ germs, with r(s)
resonant modulo ρ3O(s∞), i.e., asymptotic to a C∞ function of (z1ζ1, . . . , znζn).
Since (exp H f )∗Hp = Hp◦exp H f

[AbMa, p. 194], we get Hp◦exp H f
= Hr, and so

p ◦ exp H f = r is resonant modulo ρ3O(s∞). So we have proved the Proposition

with κ(s) = exp H
f̃ (s)

, where f̃ (s) is a Borel sum for f (z, ζ, s).

A.2 Families of Fourier Integral Operators

We review the most fundamental properties of FIOs needed in the main text, follow-
ing essentially the book by V. Ivrii [Iv, Section 1].

First item composing our toolbox is the class Sm(T∗Rn) of smooth symbols in h

of order m ∈ Z on T∗Rn, i.e., h−ma(ρ, h) = a0(ρ) + ha1(ρ) + · · · (in the sense of
asymptotic series in h), where a j are C∞ functions defined in a (fixed) neighborhood
of ρ0. Of course, a may depends on other parameters, and this dependence will

also be smooth. We shall always work microlocally near ρ0, which roughly means
that symbols are compactly supported near ρ0 = (x0, ξ0), and only defined modulo
O(h∞). We call also “amplitude” an asymptotic sum a(x, y, θ, h) depending on the
position variable x, y ∈ Rn, defined near x = x0, y = y0, and possibly on other phase

variables θ ∈ RN . Their class is again denoted by Sm = Sm(Rn × Rn × RN), etc.
Next item is the class of smooth (real) phase functions φ(x, y, θ), (x, y, θ) ∈ Rn ×

Rn ×RN , nondegenerate in the sense that dφ ′
θ1
, . . . , dφ ′

θN
are linearly independent on

the critical set Cφ = {(x, y, θ) : φ ′
θ = 0}. If φ is nondegenerate, the map ι : (x, y, θ) ∈
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Cφ 7→ (x, φ ′
x; y,−φ ′

y) is a (local) diffeomorphism onto its range Λφ. Then Λ =

Λφ is a Lagrangian submanifold of T∗R2n for the 2-form dξ ∧ dx + dη ∧ dy, and
the graph of a canonical transform κ. Conversely, if Λ is Lagrangian and π : Λ →
T∗Rn, (x, ξ; y, η) 7→ (x, η) is non-degenerate, then Λ is the graph of a canonical map,
and if we consider a generating function ϕ, then Λ = Λφ, with the standard phase

φ(x, y, θ) = ϕ(x, η) − yη, θ = η. We say usually that φ quantizes, or parametrizes
κ. These objects may not defined everywhere, but we shall always assume that Λφ

contains a neighborhood of (κ(ρ0), ρ0, ). On Cφ there is a natural half-density δ
1/2
C ,

and the inertial index sgn Φ, where Φ is the Hessian of φ, with respect to all variables,
is a well-defined integer.

Given an amplitude a ∈ S0 and a non-degenerate phase function φ as above, a

FIO is a linear operator A on C∞
0 (Rn) with Schwartz kernel of the form

KA(x, y) = I(a, φ)(x, y) = (2πh)−(n+N)/2

∫
eiφ(x,y,θ)/ha(x, y, θ, h) dθ.

Again we say that A quantizes κ, thinking of the case where A is (formally) unitary.
The principal symbol of A is the function on Λφ defined by

a0(κ(ρ), ρ) = ei π
4

sgn Φa0δ
1/2
C ◦ ι−1(κ(ρ), ρ).

Again, such an FIO is only defined “microlocally near (κ(ρ0), ρ0)”; in the present case

where κ(ρ0) = ρ0 we simply say that A is defined microlocally near ρ0. The relevant
setup is the notion of “frequency set”, and we refer to [Iv, Section 1] for details.

Objects such as the canonical transform κ or the principal symbol a0 are intrin-
sically attached to A, but not the phase or amplitude, which gives some degrees of

freedom for writing an FIO. Namely, if A is defined through I(a, φ), and φ̃(x, y, θ)
is another phase function parametrizing κ (the number of phase variables θ need

not be the same as for φ), then there exists another amplitude ã(x, y, θ) such that

I(a, φ) = I(ã, φ̃), microlocally near ρ0.
In particular, if As, 0 ≤ s ≤ 1, is a smooth family of FIOs associated with the same

canonical transformation κ, κ(ρ0) = ρ0, with KA0
= I(a0, φ0) then there is a smooth

family of amplitudes as(x, y, θ, h) such that KAs
= I(as, φ0), microlocally near ρ0.

There exists a nice calculus of FIOs. They compose according to their canoni-
cal relation, in particular if the principal symbol of A is non vanishing, then A is

invertible (microlocally near ρ0), and we can choose for A−1 the phase −φ(y, x, θ),
which parametrizes κ−1. Let A, B quantize κ and κ−1 respectively, and P be a h-PDO
(a h-PDO is a particular FIO with κ = Id; we shall always use Weyl quantization of
symbols) then Q = BPA is again a h-PDO. Denoting by P(ρ, h) = p0(ρ)+hp1(ρ)+· · ·
and Q(ρ, h) = q0(ρ) + hq1(ρ) + · · · their Weyl symbol, the following relation holds:

(A.4) qk =

k∑

j=0

ℓk− j(x, ξ, ∂x, ∂ξ)p j ◦ κ

where ℓ j are linear differential operators of degree 2 j. In particular, we have Egorov’s
Theorem:

(A.5) q0(ρ) = b0
(
ρ, κ(ρ)

)
(p0 ◦ κ)(ρ)a0

(
κ(ρ), ρ

)
.
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dynamics, J. Palis, ( ed.), Springer-Verlag, 1983, pp. 216–260.
[Gal] G. Gallavotti, The Elements of mechanics. Springer-Verlag, New York, 1983.
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