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Abstract. The similarity rules to compare atmospheres with anisotropic and isotropic scattering 
are reviewed. Omission of a narrow diffraction peak in the scattering pattern is permitted and 
corresponds to a special application of the similarity rules. It is shown that the extrapolation length 
for conservative scattering can be found with great precision from a formula involving only a>2 
and o>3. An asymptotic expression for high-order scattering in a semi-infinite atmosphere is given 
and it is shown by some examples that this expression can be used to find by interpolation the terms 
of any order. Finally, the way in which the contrast between a dark and bright area near the center 
of the disk of Mars is affected by an overlying haze is computed for isotropic and for anisotropic 
scattering. 

Much of the literature on the photometry and spectroscopy of cloudy atmospheres 
still deals with the cloud particles on the assumption of isotropic or linearly aniso­
tropic light scattering. The reason for this is that calculations with a realistic phase 
function are complicated and time-consuming. In this paper we report on various 
approaches which we have recently tried out and which have in common that accurate 
quantitative answers to certain problems can be given without an excessive amount of 
computer time. 

1. Similarity Relations 
The question, first clearly posed during a symposium at Tucson 2 years ago, and 
answered in the Symposium Volume (Van de Hulst and Grossman, 1968) is the 
following. If a certain multiple scattering problem has been solved on the assumption 
of isotropic scattering, and we wish to change to an anisotropic law, can we then 
avoid a completely new computation and transform the total optical depth b and the 
single scattering albedo a in such a manner that the resulting intensity of reflected 
radiation is closely similar to the earlier result? The answer to this question is positive 
and the necessary relations can be summarized by two rules 

transform a so that y = (1 — a)jk = constant 
transform b so that ba{\ — g) = constant 

Here k is the characteristic root, or inverse diffusion length and g = cosa is the 
anisotropy factor of the single scattering phase function. In the conventional repre­
sentation of the scattering law by a series of Legendre functions, 

N 

<P (COS a) = ^ °>nPn (COS a) 
71 = 0 

* Condensed version of paper presented at this symposium. Section 3 has been added after the 
symposium. 
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we have w0 = a, co1 = 3ag. Both rules were derived from the requirement that the diffu­
sion through very thick layers should be made as closely similar as possible. Therefore, 
these rules should not be expected to give useful results for thin layers, or, generally, in 
any situation where single scattering, or light scattered only a few times, dominates 
the result. 

Each of these rules degenerates into a simple limit: A semi-infinite layer (b — cc) 
should remain semi-infinite and a conservative atmosphere (a= 1, k = 0) should remain 
conservative. 

Examples given in the earlier paper and further tests by Hansen (1969a, b) showed 
that a difference of 2-5% between the exact results computed for 'similar' situations 
was not uncommon. This means that the relations are certainly good to 10-20% 
accuracy, but that they cannot be trusted if a 1% accuracy or better is required. 

We now present two additional tests, which do not, however, change this conclusion. 

A. ADDITION OF A FORWARD PEAK 

This is a logical test. Strict forward scattering is no scattering at all. Hence, if inside an 
atmosphere formed by real scatterers and characterized by the values b\ a, g\ k' we 
sprinkle a well-mixed medium of fictitious conservative forward scatterers, character­
ized by the values b", a"=\, g"=l, k" = 0, nothing really changes. The combined 
atmosphere, characterized by the values b, a, g, k therefore gives reflection function, 
transmission function, and internal radiation field exactly as the atmosphere we 
started out with. 

These identical situations should certainly be called similar. We shall now see if 
they indeed obey the similarity rules given above. The formal relations for the com­
bined atmospheres are 

total extinction depth: b = V + b" 

which is the sum of 

total absorption depth: b (1 - a) = b'{\ -a) 

and 

total scattering depth: ba = b'd + b" 

Taking only the forward component of the last relation we have 

scattering depth times cos a: bag = b'a'g' H- b" 

Finally the attenuation suffered by the total flux in the diffusion domain (a description 
valid if the depth is very large) is 

diffusion depth: bk = b'k' 

Combination of these various equations easily leads to the proportionalities 
J> = 1 - a' q\\ - g') K_ 
V 1 -a a(\ - g) ~ k 

which agree with the rules stated in Section 1. 
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The preceding transformation is presented in the form of a logical test, but also has 
practical applications. First, the actual scattering pattern of particles large compared 
to the wavelength has a diffraction peak, which, though not infinitely sharp, is very 
strongly concentrated around the forward direction. The necessity to include this 
peak can be very bothersome in numerical calculations, because it greatly increases 
the number of Legendre functions which have to be retained in the expansion of the 
phase function. A practical consequence of the result just derived is that we can simply 
omit the diffraction peak, provided it is sharp, and provided we attach to the remaining 
phase function the appropriate values of a' and gf. The same conclusion has been 
reached by Hansen (1969a). 

Secondly, if a result is sought, say for a phase function with a certain gf and a and 
we wish to make use of tables (e.g. Van de Hulst, 1968a) available for a somewhat 
different anisotropy g, we can, by arbitrarily adding a fictitious forward peak, quite 
easily transform to this value g. Upon transforming a' to a and b' to b accordingly, 
we can then obtain the result from the existing tables by interpolation in a and b. 

B. CONSERVATIVE, SEMI-INFINITE ATMOSPHERES 

Under the particular assumption that b = oo (semi-infinite atmosphere) and w0 = a 
= 1 (conservative scattering) any phase function is 'similar'. The exact theory (Chan-
drasekhar, 1950; Busbridge and Orchard, 1968) shows that in this case the value of w1 

is irrelevant. All quantities must, therefore, be slowly varying function of cu2, cu3, etc. 
Numerical examples show that this is indeed true. Figure 1 shows by way of illustra­

tion the value of the extrapolation length (1— g)q. This has the well-known value 
0.7104 for isotropic (or linearly anisotropic) scattering. The first two decimals remain 
the same throughout the figure; only the third and fourth are given. Values for N=2 
for various o>2 were taken from Horak and Janousek (1965). Values for N=3, repre­
senting the combinations o>2 = 1, co3 = \ and co2 = 1, w3 = 1 were computed from Bus-
bridge and Orchard (1968). In addition, the figure shows three points for N=oo 
corresponding to the Henyey-Greenstein functions for g = %9 -J-, and \ (Van de Hulst, 
1968a and unpublished work). The fact that these points fit smoothly into the pattern, 
although here OJ4 etc. are non-zero, shows that the influence of those higher terms is 
very small indeed. The linear approximation 

q(\ - g) = 0.7104 + 0.0020o>2 - O.OOlOĉ  
gives results good to 0.05% for all points shown in Figure 1 and even beyond that up 
to the Henyey-Greenstein function with g = %. 

The extrapolation length discussed here forms a particularly favourable case. A less 
extreme example is the 'escape function', which is the solution of the Milne problem. 
Its empirical linear approximations in the domain of (o>2, co3) corresponding to Figure 1 
are in the perpendicular direction 

K(\) = 1.259 + 0.012a,2 - 0.012a,3 

and in grazing directions 
K(0) = 0.433 - 0.028a,2 - 0.02 1OJ3 

which lead to errors of 1 or 2% at most. 
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Fig. 1. Values of the extrapolation length for conservative atmospheres plotted against the 
coefficients o>2 and w3 of the Legendre function. The third and fourth decimals 

following 0.71 are given. 

2. High-Order Scattering 

In certain problems it would be very attractive to fall back to the very simple descrip­
tion in which the diffusely reflected radiation is made up of the contribution of single 
scattering, two successive scatterings etc. If the form of the scattering pattern is fixed 
and only the albedo a is retained as variable we obviously can expand the reflected 
intensity (in any direction or integrated over a range of directions) in the form 

f = fia+f2a2 + . . . +/n<,» + . . . 
in which fn signifies the contribution given by quanta which have been scattered n 
times in succession. Such an expansion can be particularly handy if a has to be varied 
continuously as, e.g., inside an absorption line. Belton (1968) has shown that with 
known coefficients fn a theory of the curve of growth follows directly. 

It is not too much trouble to find the low-order terms, say/\ t o / 5 , with reasonable 
accuracy. The principle simply is to take half-steps as follows: 

Intensity of n-th order 
| (integration over angles, using single scattering pattern) 

source function of (n + l)-th order 
j (integration over optical depth) 

intensity of (n + l)-th order 
However, for thick layers the convergence is extremely slow; this is the main reason 

why this * successive-order' method has not found a wider use. The asymptotic 
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behavior of fn for /7^oo is as a geometric series as long as the optical thickness b is 
finite, but gets a different character for semi-infinite atmospheres. The dominant term 
in the asymptotic behavior for 6 = 00 has been derived by Uesugi and Irvine (1969), 
Further terms can best be found (Van de Hulst, 1970) by starting from the expansion 

/ = G0 + Gxt + G2t2 + G3t3 + ••• 
which may in turn be derived from a similar expansion in terms of k (e.g. Van de 
Hulst, 1968b). Here t = (\—a)12 and k again is the smallest characteristic root, or 
inverse diffusion length. We find 

fn = -(4TT)-1 '2G1(A2 + c)"3'2{l + 0(n~2)} 
where 

c = G3/G, - i 
Figure 2 shows by means of a few examples how this knowledge may be used to find 
the numerical values for all n. The abscissa is (c + 4)~2; the number 4 is chosen arbi­
trarily to match some average value of c. The ordinate is fn(n + c)32 with the correct 
value of c. Further specifications for the four examples are given in Table I. 

TABLE I 

Example 

Quantity 
anisotropy factor g 
- G i 
c 

1 

URU 
0 
2.31 
1.15 

2 

*0, 
0 
3.66 
3.76 

1) 

3 

URU 
0.75 
4.62 
4.00 

4 

* ( 1 , 
0.75 
7.33 
6.75 

1) 

Here URU is the fraction of the energy reflected if the incident radiation has 
uniform intensity. It also equals the Bond albedo of a planet covered by such an 
atmosphere. Further R(\, 1) is the reflection function for perpendicular incidence and 
reflection. 

Examples 1 and 2 in Figure 2 vary very little over the entire range; example 1 even 
starts out at n = 1 with less than 1 % difference from its asymptotic value. Examples 
3 and 4 refer to the Henyey-Greenstein function for g = J, which is highly anisotropic. 
Here it was fully expected that the radiation emerging after only 2 or 3 scatterings 
should not yet conform to the asymptotic law. Nevertheless a smooth interpolation 
between n = 3 and n = 00 appears possible. 

Having found from Figure 2 the values of fn for any n we may use any summation 
method, numerical or analytic, to sum the power series and find the function/for an 
arbitrary value of a. 

3. Contrast of Surface Markings 

The blue haze phenomena on Mars have been discussed in this symposium. A number 
of models have been suggested to explain the visibility of contrast between dark and 
light surface features if the haze is partially dispersed. The time appears ripe to replace 
such qualitative suggestions by calculations based on precise models. This is indeed 
relatively simple. 
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Fig. 2. Graphical interpolation between the contributions of single, double, and triple scattering 
(/i = 1, 2, 3) and the asymptotic expression for /*->oc, illustrated by four examples. 
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Let the atmosphere be homogeneous and the ground surface reflect with uniform 
intensity (i.e., by Lamberts' law) a fraction p of the incident radiation; further let /x0 

and {JL be the cosines of the angles of incidence and reflection, both taken positive, and 
(f> — (f>0 the azimuth-difference. Define 

of bare 
atmosphere 

^'(M> MO, <f> — </>o; a, b, g) = reflection function 
hipo! #> b, g) = transmitted flux 
r(a,b,g) = reflected flux with uniform 

incidence (this was called 
URU in the last section) 

R(fi9 /x0, <f> — (f>0; a,b,g;p) = reflection function of atmosphere backed by 
the ground surface 

Thus we have the well-known relation, omitting the common variables: 

^ ( M > M O , <f> - </>o) = R'(p, Mo, <l> - <f>o) + | _ h(fi) hifio) 

Throughout these definitions reflection from a white Lambert surface has been taken 
to define the unit reflection function. 

The equation just given shows that the brightness p reflected from the bare ground 
surface may be either increased (by atmospheric scattering) or decreased (by atmos­
pheric extinction) in the presence of an atmosphere. It seems rather difficult, by mere 
handwaving, to guess what happens to the contrast between a darker and brighter 
surface area on the planet. 

In order to give one definite example, we have selected in Figure 3 two regions seen 
near the center of the disk at opposition so that /x = /x0= 1. The values of R(l, 1), ^(1) 
and r were taken from the tables in a book in preparation. With a view to the actual 
situation of the blue haze on Mars, we have chosen regions with p = 0.25 (bright 
region; brightness plotted as abscissa) andp = 0.05 (dark region; brightness plotted as 
ordinate). The two diagrams correspond to two scattering laws, isotropic scattering, 
and Henyey-Greenstein function with g = 0.5. 

Inside each diagram the single scattering albedo a and the optical depth b of the 
haze layer are varied. If the haze has completely cleared (6 = 0), we see the full contrast 
ratio 5; if it is completely dense (& = oo), the contrast ratio is 1. Somewhat surprisingly, 
we find that the contrast ratio at intermediate values depends strongly on b, but very 
little on a. Separate photometry of the dark and bright markings would in practice be 
necessary to determine a. Although the similarity rules cannot be expected to give a 
precise answer in this application, where the optical depths are small, the two diagrams 
are strikingly similar, with the curves of constant b and of constant a shifted approxi­
mately as predicted by the similarity rules. 

Evidently calculations of this kind for different assumptions of the ground albedo 
and reflection law, and for different haze scattering patterns, and for different direc­
tions of incidence and reflection, are needed before such curves can be used as a firm 
basis for the interpretation of the observational data. 
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Fig. 3. Contrast between two areas near the center of the Mars disk, with brightness 0.25 and 
0.05, as affected by an overlying haze; a — single scattering albedo, # = anisotropy factor, b = optical 

thickness of haze layer. 
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