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X-ray computed tomography (XCT) plays a critical role in non-destructive evaluation (NDE) of complex parts 

in metal additive manufacturing (AM), where characterization of metals in 3D with high spatial resolution is 

critical for qualification/certification of manufactured parts. However, for metallic objects, beam hardening 

and metal artifacts pose significant challenges for the analysis of reconstructed images from XCT scanners. 

This could be further exacerbated due to complex geometry of the part to be scanned as well as the noise and 

scattering effects in the measurements. Current methods to mitigate the noise and artifacts typically involve 

very long scan times, making several measurements at localized regions of interests (ROIs) with smaller field 

of views (FOVs), and development of new algorithm [1-4]. Still, standard approaches produce artifacts for 

high quality reconstruction of the complex parts being scanned, which make tasks such as detecting pores and 

defects in the parts very challenging. 

We have been developing AI-CT [5], a framework that uses CAD (computer-aided designs) models of the AM 

parts, along with physics-based parameters to simulate XCT data with noise/artifacts, and leverages a 2.5D 

convolutional neural network (CNN) to learn to suppress noise/artifacts in the synthetically generated XCT 

reconstructions. Once the network is trained on the synthetic data, it can be applied to experimental data sets. 

While promising preliminary results have been shown, for more complex geometries, modeling of the artifacts 

such as metal artifacts and scattering need more detailed information about the X-ray source, measurement 

settings and parameters. 

In this work, we propose a new framework that extends the capabilities of AI-CT by leveraging generative 

adversarial networks [6] and domain adaptation [7]. Figs. 1a and b elucidate the process. Starting from a CAD 

model that is passed through a defect generator to simulate a defective AM part, we model an XCT 

measurement of the part under study with some default measurement setting, material properties and calibrated 

physics-based parameters modeling beam hardening and noise. The simulation output along with a real 3D 

XCT measurement of an AM part is used to train a CycleGAN [6] for performing domain adaptation [7]. In 

this scenario, the network learns to modify the distribution of the source domain, i.e. simulated XCT volume, 

to adapt it to the target domain, i.e. the measured XCT volume. Please note that training CycleGAN is 

unsupervised as the source and target data are unpaired dataset. This trained domain adaptation CycleGAN is 

then used to generate realistic looking 3D XCT images from the input simulated data. An example of GAN-

generated data is shown in Fig. 1b. A pair of GAN-generated XCT volume and the input CAD model (with 

embedded defects) along with the physics-based beam hardening parameters are used to train the AI-CT, so 

the network learns to suppress noise and artifacts in the GAN-generated synthetic data to produce high quality 

reconstruction. The trained network will then be used on real XCT measurement of AM part that manufactured 

with the same material and are scanned with the same setting. 

We designed a proof-of-concept study to evaluate the proposed method. In this study, we took a CAD model 

(no defect) of an AM part and printed several samples. All these samples were scanned using ZEISS Versa 

Xardia 620 [8]. Since no ground truth for reconstruction exists, we performed XCT of the samples at two 

different resolutions of 3.8μm and 11.5μm. The 3.8μm XCT measurement was at a smaller FOV, but ROI 
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inside the FOV serves as a high-quality ground truth for the lower resolution measurement at the same ROI. 

Two samples from the batch with low and high porosity were chosen. The low porosity sample was 

used for domain adaptation using GAN. The other sample was used during testing AI-CT. Examples of results 

are shown in the Fig. 2. Fig. 2a, shows a qualitative comparison for a slice from the reconstructed volume that 

is between the standard reconstruction (top) and AI-CT reconstruction (bottom). Figs. 2b-d show a more 

elaborate example from the ROI. The ROI is measured at ~3X better resolution and every 3 slices in the high 

resolution (HR) images correspond to one slice from the low resolution (LR) images. Three consecutive slices 

from the HR volume are shown in Fig. 2b. A slice from the down-sampled volume (HR volume is interpolated 

(down-sampled) to the same resolution as the LR volume) that corresponds to the three HR slices of Fig. 2b, 

is shown in Fig. 2c. Fig. 2d is a slice from the output of standard reconstruction algorithm. The output volume 

is post-processed to remove beam hardening and metal artifacts. Fig. 2e is the corresponding slice from AI-

CT's output. The sharpness, high quality and very low noise level of the AI-CT results are evident. In addition, 

it is clear that AI-CT's high-quality reconstruction has significantly improved the pore detection capability 

from the LR scan. While these preliminary results are promising, further analyses are being performed to study 

generalizability of the approach to different measurement settings, scan times and materials. 
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Figure 1. Figure 1. a) AI-CT algorithm with GAN-based Domain Adaptation. b) A slice from different 

volumes (CAD with embedded defects, simulation, measurement and GAN-generated data) that are used in 

the algorithm. 
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Figure 2. Figure 2. a) a qualitative comparison between AI-CT and standard reconstruction for a single slice 

from the 3D volume. b) Three consecutive slices from the 3D volume at 3.8µm resolution (HR data). c) 

Corresponding downsampled slice from HR data. d) Standard reconstruction from a measurement at 11.6µm 

resolution (LR data). e) AI-CT output based on LR data. 

References 

[1]  P.Jin, C. A. Bouman, and K. D. Sauer, “A Model-Based Image Reconstruction Algorithm With 

Simultaneous Beam Hardening Correction for X-Ray CT,” IEEE Trans. Comput. Imaging, vol. 1, no. 3, pp. 

200–216, 2015. 

[2]  V. Ruth, D. Kolditz, C. Steiding, and W. A. Kalender, “Metal artifact reduction in X-ray computed 

tomography using computer-aided design data of implants as prior information,” Invest. Radiol., vol. 52, no. 

6, pp. 349–359, 2017. 

[3]  E. Van de Casteele, D. Van Dyck, J. Sijbers, and E. Raman, “An energy-based beam hardening model in 

tomography,” Phys. Med. Biol., vol. 47, no. 23, pp. 4181–4190, 2002. 

[4]  S. Xu and H. Dang, “Deep residual learning enabled metal artifact reduction in CT,” in SPIE Medical 

Imaging, 2018, no. 10573, p. 132. 

[5]  A.Ziabariet al., “Beam hardening artifact reduction in x-ray ct reconstruction of 3d printed metal parts 

leveraging deep learning and cad models,”inProceedings of the ASME 2020 International Mechanical 

Engineering Congress and Exposition(IMECE), 2020, p. V02BT02A043. 

[6]  J. Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-to-Image Translation Using Cycle-

Consistent Adversarial Networks,” Proc. IEEE Int. Conf. Comput. Vis., vol. 2017-Octob, pp. 2242–2251, 2017. 

[7]  G. Wilson and D. J. Cook, “A Survey of Unsupervised Deep Domain Adaptation,” ACM Trans. Intell. 

Syst. Technol., vol. 11, no. 5, pp. 1–46, 2020. 

[8]  “ZEISS Versa Xardia 620.” [Online]. Available: https://www.zeiss.com/microscopy/us/products/x-ray-

microscopy/zeiss-xradia-610-and-620-versa.html. 

https://doi.org/10.1017/S1431927621010254 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927621010254



