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Quantum Cohomology of Minuscule
Homogeneous Spaces III
Semi-Simplicity and Consequences

P. E. Chaput, L. Manivel, and N. Perrin

Abstract. We prove that the quantum cohomology ring of any minuscule or cominuscule homoge-

neous space, specialized at q = 1, is semisimple. This implies that complex conjugation defines an

algebra automorphism of the quantum cohomology ring localized at the quantum parameter. We

check that this involution coincides with the strange duality defined in our previous article. We de-

duce Vafa–Intriligator type formulas for the Gromov–Witten invariants.

1 Introduction

This paper is a sequel to [CMP1] and [CMP2] where we developed a unified ap-

proach to the quantum cohomology of (co)minuscule homogeneous manifolds X =

G/P.

Recall that a Z-basis for the ordinary cohomology ring H∗(X) (or for the Chow

ring A∗(X)) of X is given by the Schubert classes σ(w), where w ∈ WX belongs to the

set of minimal lengths representatives of W/WP, the quotient of the Weyl group W

of G by the Weyl group WP of P. The Schubert classes are also a basis over Z[q] of the

(small) quantum Chow ring QA∗(X), whose associative product is defined in terms of

3-point Gromov–Witten invariants. If R is a ring, we denote by QA∗(X, R) the tensor

product QA∗(X) ⊗Z R and QA∗(X, R)loc its localization at q, that is, QA∗(X, R)loc =

QA∗(X, R) ⊗Z[q] Z[q, q−1]. The main result of [CMP2], strange duality, was that one

could define, for any w ∈ WX , a nonnegative integer δ(w), and an algebraic number

ζ(w) in such a way that the endomorphism ι of QA∗(X, R)loc, defined by

ι(q) = q−1 and ι(σ(w)) = q−δ(w)ζ(w)σ(ι(w)),

would be a ring involution.

In this paper we give a natural explanation of the existence of such an involution,

which turns out to be directly related to the semisimplicity of the quantum coho-

mology ring specialized at q = 1. For the classical cases this semisimplicity has been

known for some time, as it can readily be read off the explicit presentations that have

been found. We complete the picture by checking the semisimplicity in the excep-

tional cases.
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To this end, we recall that for X = G/P, a minuscule homogeneous space, the

rational quantum cohomology ring can be described as

QH∗(G/P) = Q[t]WP [q]/(Id1
, . . . , Idm

− q),

where t is a Cartan subalgebra of the Lie algebra g of G, and Id1
, . . . , Idm

are homoge-

neous generators of the W -invariants; the maximal degree dm is the Coxeter number

of g.

Let Z(g) denote the subscheme of t defined by the equations Id1
= · · · = Idm−1

=

Idm
− 1 = 0. Observe that it does not depend (up to homothety) on the choice

of the invariants. Moreover, it is a finite scheme of length #W , since if we replace

Idm
− 1 by Idm

in this set of equations, we get the spectrum of the Chow ring of the

full flag variety of G, which is a finite scheme of length #W supported at the origin.

The following result indicates a fundamental difference between the classical and the

quantum settings.

Proposition 1.1 For any simple Lie algebra g (except possibly f4 and e8), the scheme

Z(g) is reduced and is a free W -orbit.

In fact, this result is relevant for quantum cohomology only in type A, D, E, with

E8 excepted. For the classical types it is in fact very easy to check, but the cases of

E6 and E7 are somewhat more involved. It implies the “minuscule” part of our next

statement.

Corollary 1.2 For any minuscule or cominuscule rational homogeneous space G/P,

the algebra QA∗(G/P)q=1 ⊗Q C ≃ C[W/WP] is semisimple.

More intrisically, the spectrum Z(G/P) of the quantum algebra QA∗(G/P)q=1 is

Z(g)/WP, at least in the minuscule case.

Now, any commutative, semisimple, finite-dimensional algebra H is a product of

fields, hence over R it decomposes as H = Rn ⊕ Cp. By conjugating the complex

factors we get a canonical algebra automorphism, the complex involution.

We therefore get an algebra involution of QA∗(G/P, R)q=1. We point out that, be-

cause Z(G/P) is reduced, this involution lifts to an algebra involution of QA∗(G/P)loc,

mapping q to q−1 and any class of degree d to a class of degree −d (see Theorem 2.1).

This leads to a new interpretation of strange duality.

Theorem 1.3 For any minuscule or cominuscule homogeneous space X = G/P, com-

plex conjugation and strange duality define the same involution.

The proof is case by case. In fact, this result has already been observed by Hengel-

brock for the case of Grassmannians with a different method [H]. What we will check

is that strange duality and the complex involution coincide on a set of generators of

the quantum cohomology ring. In the classical cases we will also provide a direct

check that the complex involution is given by the same expressions as in [CMP2].

In particular, this will explain the occurrence of the irrationalities introduced by the

function ζ (which one can eventually get rid of by rescaling q).
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The advantage of this approach to strange duality through complex conjugation is

that, besides being conceptually enlightening, the fact that it is an algebra automor-

phism becomes completely obvious—while in [CMP2] this was the result of painful

computations, especially in the exceptional cases. What is not clear a priori is that

the complex conjugate of a Schubert class is again (a multiple of) a Schubert class,

while in [CMP2] this was given by the very definition of strange duality. It would be

interesting to have a conceptual explanation of that phenomenon (which no longer

holds true for non minuscule or cominuscule spaces).

We stress that the smoothness of the finite scheme Z(G/P) plays an essential role

here. In Section 7, we consider the case of Gω(2, 6), the Grassmannian of isotropic

planes in a six-dimensional symplectic complex vector space. This is the simplest

example of a homogeneous space with Picard number one that is neither minuscule

nor cominuscule. We check that its quantum cohomology ring is not semisimple.

In fact, the scheme Z(Gω(2, 6)) is made of ten simple points and one double point.

Moreover, the existence of this double point prevents the complex conjugation from

being lifted to an involution of the quantum cohomology ring reversing degrees.

Finally, we use the schemes Z(G/P) to obtain Vafa–Intriligator type formulas

for the Gromov–Witten invariants. We express these formulas in a uniform way in

terms of a quantum Euler class e(X) introduced in [A] for any projective manifold X.

Abrams proved that the invertibility of that class is equivalent to the semisimplicity of

the quantum cohomology ring QH∗(X) (after specialization of the quantum param-

eters). In the (co)minuscule setting, we prove that the quantum Euler class is simply

given by the product of the positive roots of g that are not roots of p = Lie(P). The

Vafa–Intriligator type formulas that we obtain are expressed in terms of that class.

They are equivalent to the formulas obtained in [ST] and [R] for Grassmannians,

but they are simpler than the formulas given in [Ch] for the other classical cases.

2 The Complex Involution

Let X be a smooth projective variety with Picard number one. Let QH∗(X, C) =

H∗(X, C)⊗C C[q] be its small quantum cohomology ring over the complex numbers,

and QH∗(X, C)loc the algebra obtained by inverting the quantum parameter q.

Theorem 2.1 Suppose that the spectrum of the finite dimensional algebra QH∗(X)q=1

is a reduced finite scheme. Then there exists an algebra automorphism of QH∗(X, C)loc

mapping q to q−1.

Proof The inclusion C[q, q−1] →֒ QH∗(X, C)loc yields a finite morphism π : C → D

of curves over C. We consider the involution i of D given by q 7→ q−1; the theorem

states that we can lift i to C under the hypothesis that C is a smooth curve.

Let us consider a homogeneous presentation

H∗(X, R) = R[X1, . . . , Xn]/(r1, . . . , rk)

of H∗(X, R). The quantum cohomology ring can be presented as

R[X1, . . . , Xn, q]/(R1, . . . , Rk),
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where Ri is again a homogeneous relation that specialises to ri when q = 0.

If (xi , q) ∈ C(C) is a complex point of C , then (xi , q) ∈ C(C) because C is de-

fined over R, and thus, by homogeneity, (xi/‖q‖2 deg(q)/ deg(xi ), q/‖q‖2) also belongs

to C(C). This is a complex point of C over q/‖q‖2
= q−1. We claim that the map

j : (xi , q) 7→ (xi/‖q‖2 deg(q)/ deg(xi ), q/‖q‖2)

is algebraic. Indeed, consider the fiber product C ×D C , where the first morphism

C → D is π, and the second is i◦π. Let C0 denote the connected component in (C×D

C)(C), given as the set of pairs ((xi , q), j(xi , q)). It is algebraic, and the morphism

C0 → C induced by the first projection is finite of degree one, thus an isomorphism.

So the theorem is proved.

We call this involution i of QH∗(X, C)loc the complex involution.

3 Grassmannians

Let G(d, n) denote the Grassmannian of d-dimensional subspaces of an n-dimen-

sional vector space. Its quantum cohomology ring can be described as

QA∗(G(d, n)) = Z[x1, . . . , xn]Sd×Sn−d [q]/(e1, . . . , en−1, en − (−1)n−dq),

where e1, . . . , en are the elementary symmetric functions in the n indeterminates

x1, . . . , xn [ST]. Here the symmetric groups Sd and Sn−d act by permutation of the

first d and last n − d variables, so we only consider symmetric functions in these two

sets of variables. Usually, the relations e1, . . . , en−1, en are used to eliminate one of

these two sets of variables, but we will not do that. As an algebra, QH∗(G(d, n)) is

generated by q and the special Schubert classes σ(k), which are represented by the

k-th elementary symmetric functions ek(x1, . . . , xd) in the first d variables.

Proof of Proposition 1.1 The equations defining Z(sln) in Cn are e1 = · · · = en−1 =

en − (−1)n−d
= 0. Thus Z(sln) is the set of n-tuples (ζ1, . . . , ζn) of distinct n-th roots

of (−1)d−1. This is certainly a free orbit of the symmetric group Sn.

We can therefore interpret the quantum cohomology ring of G(d, n) at q = 1, as

QH∗(G(d, n))q=1 = Q[Z(G(d, n))],

where Z(G(d, n)) denotes the set of (unordered) d-tuples of distinct n-th roots of

(−1)d−1.

Proof of Theorem 1.3 We need to prove that the complex involution maps a special

Schubert class σ(k) to the class σ(n − d, 1d−k). To check this we simply compute the

complex conjugate of σ(k) as follows:

ek(ζ̄1, . . . , ζ̄d) = ek(ζ−1
1 , . . . , ζ−1

d )

= (ζ1 · · · ζd)−1ed−k(ζ1, . . . , ζd)

= (−1)n−d(ζd+1 · · · ζn)ed−k(ζ1, . . . , ζd).
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Observe that (−1)n−dζd+1 · · · ζn = (−1)n−den−d(ζd+1, . . . , ζn) = hn−d(ζ1, . . . , ζd).

Therefore ēk = hn−ded−k = sn−d,1d−k .

For completeness we deduce the complex conjugate of any Schubert class and re-

cover the formulas given by Postnikov [P].

Proposition 3.1 The complex conjugate of the Schubert class σ(λ), is the Schubert

class σ(ι(λ)).

Here ι(λ) denotes the partition deduced from λ by a simple combinatorial process

(see [P,CMP2]). Recall that λ is a partition whose diagram is contained in a d×(n−d)

rectangle. Let c be the size of the Durfee square of λ, that is, the largest integer such

that λc ≥ c. Write λ as (c + µ, ν), where now µ is contained in a c × (n − d − c)

rectangle and µ in a (d−c)×c rectangle. Denote by p(µ) and p(ν) the complementary

partitions in these respective rectangles. Then ι(λ) = (c + p(µ), p(ν)).

Proof We use the fact that the Giambelli formulas hold in the quantum cohomology

ring, as proved by Bertram in [B]. Thus, for any partition λ,

σ̄(λ) = (hn−d)n−d det(σ(d − λ∗
i + i − j))1≤i, j≤n−d

= (hn−d)n−d det(σ(d − λ∗
n−d+1−i − i + j))1≤i, j≤n−d

= (hn−d)n−dσ(p(λ)),

where σ(p(λ)) is the Schubert class Poincaré dual to σ(λ). But hn−d is invertible in

the quantum cohomology ring, with inverse σ(d), and σ(d)n−d is the punctual class

σ(pt). Since the multiplication by the punctual class is given (for q = 1) by the

formula σ(pt) ∗ σ(µ) = σ(pι(µ)) (see [CMP2, Theorem 3.3]), we finally get

σ̄(λ) = σ(pt)−1 ∗ σ(p(λ)) = σ(ι(λ)).

Note the interesting fact that we obtain directly the relation that holds for any (co)mi-

nuscule homogeneous space, between the complex conjugation, Poincaré duality,

and the quantum product by the punctual class.

4 Orthogonal Grassmannians and Quadrics

4.1 Orthogonal Grassmannians

Let GQ(n + 1, 2n + 2) denote the orthogonal Grassmannian, that is, one of the two

families of maximal isotropic subspaces in some vector space of dimension 2n + 2

endowed with a nondegenerate quadratic form. Its quantum cohomology ring can

be described as

QA∗(GQ(n + 1, 2n + 2)) = Z[x1, . . . , xn+1]Sn+1 [q]/(E1, . . . , En−1, En − 4q, en+1),

where E1, . . . , En, En+1 = e2
n+1 are now the elementary symmetric functions in the

squares of the n+1 indeterminates x1, . . . , xn+1. Moreover, the quantum cohomology

ring is generated by q and the special Schubert classes σ(k), for 1 ≤ k ≤ n. The class

σ(k) is represented by ek/2, where ek is the k-th elementary symmetric function in

x1, . . . , xn (see [KT, Theorem 1]).
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Proof of Proposition 1.1 The equations defining Z(so2n+2) are E1 = · · · = En−1 =

En − 4 = en+1 = 0. The set of solutions to this equation is

Z(so2n+2) = {(ζ1, . . . , ζk, 0, ζk+1, . . . , ζn)},

where the squares of ζ1, . . . , ζn are the n distinct n-th roots of 4.(−1)n−1. This is

certainly a free orbit of the Weyl group W (Dn+1) = Sn+1 × Zn
2 .

We can therefore interpret the quantum cohomology ring of GQ(n + 1, 2n + 2) at

q = 1, as

QH∗(GQ(n + 1, 2n + 2))q=1 = Q[Z(GQ(n + 1, 2n + 2))],

where Z(GQ(n+1, 2n+2)) is identified with the set of (unordered) n-tuples of square

roots of the n distinct n-th roots of (−1)n−1.4. Note that #Z(GQ(n + 1, 2n + 2)) = 2n,

as expected.

Proof of Theorem 1.3 We need to prove that the complex involution maps a special

Schubert class σ(k) to a suitable multiple of the class σ(n, n − k). We compute the

complex conjugate of σ(k) as follows:

ek(ζ̄1, . . . , ζ̄n) = 4k/nek(ζ−1
1 , . . . , ζ−1

n )

= 4k/n(ζ1 . . . ζn)−1en−k(ζ1, . . . , ζn)

= 4(k/n)−1(ζd+1 . . . ζn)en−k(ζ1, . . . , ζn),

where we have used the fact that (ζd+1 . . . ζn)2
= en(ζ1, . . . , ζn)2

= 4. Otherwise

stated,

σ̄(k) = 2(2k/n)−1σ(n)σ(n − k) = 2(2k/n)−1σ(n, n − k),

which is in complete agreement with Proposition 4.7 in [CMP2]. Finally, note that

since e2
n = 4, en is real, hence σ(n) is fixed by the complex involution, and we are

done.

We deduce that the complex conjugate of any Schubert class σ(λ) is given by a

suitable multiple of σ(ι(λ)), where ι(λ) is defined as follows. Write λ = (λ1 > · · · >
λ2δ(λ)), ending with a zero part if necessary. Then ι(λ) = (n−λ2δ(λ) > · · · > n−λ1).

Let z(λ) =
2|λ|

n
− (ℓ(λ) + δλ1,n).

Proposition 4.1 The complex involution maps the Schubert class σ(λ) to 2z(λ)σ(ι(λ)).

Proof We first consider classes σ(i, j), with i > j > 0. Suppose for example that

i + j > n; then

σ(i, j) = σ(i)σ( j) + 2
n−i−1
∑

k=1

(−1)kσ(i + k)σ( j − k) + (−1)n−iσ(n)σ(i + j − n).
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Using the fact that σ(n)2
= 1, we deduce that

σ̄(i, j) = 2
2i+2 j

n
−2{σ(n − j)σ(n − i)

+ 2
n−i−1
∑

k=1

(−1)kσ(n − j + k)σ(n − i − k) + (−1)n−iσ(2n − i − j)},

that is, σ̄(i, j) = 2
2i+2 j

n
−2σ(n − j, n − i). A similar computation shows that this

formula also holds for i + j ≤ n. But then the Giambelli type formula (see [BKT1,

Theorem 7])

σ(λ) = Pfaff(σ(λi, λ j))1≤i< j≤2δ(λ)

immediately implies that σ̄(λ) = 2z(λ)σ(ι(λ)).

4.2 Quadrics

We will only treat the case of quadrics of even dimension (which are minuscule). The

case of quadrics of odd dimensions (which are cominuscule) is very similar.

So let Q2n be a quadric of even dimension 2n. There are two Schubert classes σ+

and σ− in middle dimension n, and a single one σk in every other dimension k 6= n.

In terms of the hyperplane class H = σ1, one has σk = Hk for k ≤ n − 1, σk = Hk/2

for k ≥ n + 1, and Hn
= σ+ + σ− (in the classical Chow ring). See [CMP1, Section

4.1] for more details.

The quantum cohomology ring can be described as

QH∗(Q
2n) = Z[x0, x1, . . . , xn]Dn [q]/(E1, . . . , En−1, En − (−1)n−14q, en+1),

where Dn denotes the Weyl group of type Dn. Therefore Z(so2n+2) is defined by the

equations E1 = · · · = En−1 = En − (−1)n−14 = en+1 = 0, and thus it is the set

of (n + 1)-tuples (ζ1, . . . , ζk, 0, ζk+1, . . . , ζn), where the squares of ζ1, . . . , ζn are the

n distinct n-th roots of 4. The Weyl group WP of the parabolic P defining Q2n is

the fixator of the first coordinate. It has 2n + 2 orbits in Z(so2n+2). First, there are

2n orbits O(ζ) defined by their non zero first coordinate ζ , which can be any 2n-th

root of 4. Second, there are two orbits O(+) and O(−) with zero first coordinate

and defined by the fact that the product of the non zero coordinates is ±2. Since

2n + 2 is also the dimension of H∗(Q2n), this confirms that Z(Q2n) is reduced and

QA∗(Q2n)q=1 is semisimple.

The WP-invariant polynomials are generated by t0, the first coordinate, and the

product P = t1 · · · tn of the other coordinates. The algebra QA∗(Q2n)q=1, considered

as an algebra of functions on the set Z(Q2n), is determined by the following table.

H Hn P

O(ζ) ζ ζn 0

O(+) 0 0 2

O(−) 0 0 −2
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Observe that the two degree n classes Hn and P are real. Moreover we easily get that

H = 4
1−n

n H2n−1. There remains to express σ+ and σ− in terms of Hn and P. Using

the formulas of [CMP2], we see that this expression depends on the parity of n; we

get

σ± =
1

2
(Hn ± iP) for n even and σ± =

1

2
(Hn ± P) for n odd.

Thus σ± = σ∓ for n even, but σ± = σ± for n odd. Comparing with [CMP2], we

see that strange duality coincides with the complex involution.

5 Lagrangian Grassmannians

Let Gω(n, 2n) denote the Lagrangian Grassmannian parametrizing maximal isotropic

subspaces in some symplectic vector space of dimension 2n. This is a cominus-

cule, but not minuscule, homogeneous space. Its quantum cohomology ring can

be described as

QA∗(Gω(n, 2n)) = Z[x1, . . . , xn]Sn [q]/(R1, . . . , Rn),

where the relations are Rk = Ek − (−1)2k−n−1qe2k−n−1 for 1 ≤ k ≤ n [T]. Recall that

ek (resp. Ek) is the k-th elementary symmetric functions of the variables x1, . . . , xn

(resp. of their squares). Moreover, we used the convention that ek = 0 for negative

k, so that the relations have no quantum correction in degree less than or equal to

n + 1. All the higher degree relations involve a quantum term, in contrast with the

minuscule case for which only the relation of highest degree receives a quantum cor-

rection. This means that the quantum relations are no longer W -invariants, so there

is no point in proving Proposition 1.1. Instead, we directly prove that Z(Gω(n, 2n))

is reduced, hence the semi-simplicity of the quantum cohomology ring at q = 1.

Proof of Corollary 1.2 Observe that the relations take a simpler form if we introduce

formally an auxiliary variable x0 and let q = en+1. The point is that the Rk’s are

then formally the same as the k-th elementary symmetric functions of the squares of

x0, x1, . . . , xn. This implies that the spectrum of the quantum cohomology ring at

q = 1 is supported on the set of (unordered) (n + 1)-tuples (ζ0, ζ1, . . . , ζn) such that

ζ0ζ1 · · · ζn = 1 and ζ2
0 , ζ2

1 , . . . , ζ2
n are the (n+1)-th different roots of (−1)n. There are

exactly 2n such unordered (n + 1)-tuples, as was already observed in [Ch]. Since this

coincides with the dimension of QA∗(Gω(n, 2n))q=1 as a vector space, this algebra is

semisimple.

Proof of Theorem 1.3 We leave this to the reader, since this case is even easier than

the previous ones. Indeed, the complex conjugation sends a special Schubert class

σ(k) to a suitable multiple of another special Schubert class σ(n + 1 − k). A conse-

quence is that the fact that this defines an involution of the quantum cohomology can

be directly checked on the relations: Rk is simply changed into a multiple of Rn+1−k,

and the claim follows.
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6 The Exceptional Cases

6.1 The Cayley Plane

We first recall some facts about the quantum cohomology ring of the Cayley plane

OP2
= E6/P1. This is a sixteen dimensional variety of index 12. The Schubert classes

are organized in the following Hasse diagram.

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•

• • • • •

• • • • •
• • • • •

• •

• •
•

•
••σ16 σ8

H

σ ′ ′
11

q

qH

This diagram could be extended indefinitely on the left, with a period increasing

degrees by 8. Then it would exactly encode the quantum Chevalley formula in the

sense that the product of any Schubert class by the hyperplane class H would be the

sum of the Schubert classes (possibly with some q-coefficient) connected to it on its

immediate left. Dashed edges represent quantum corrections, so that the rightmost

component of the diagram obtained by disconnecting the dashed edges in just the

classical Hasse diagram encoding the classical Chevalley formula. In particular the

diagram above, the quantum Hasse diagram, makes it easy to compute powers of H

in the quantum cohomology ring. This will be useful a little later on.

Over Q[q], it was proved in [CMP2] that the quantum cohomology ring is gener-

ated by the three classes H, σ8, and σ ′ ′
11. The complex involution is thus determined

by the images of these classes, which are sent by strange duality to

ι(H) = 121/4q−1σ ′ ′
11, ι(σ8) = q−2σ16, ι(σ ′ ′

11) = 121/4q−1H.

Proof of Proposition 1.1 The first difficulty is to understand the W (E6)-invariant

polynomials on a Cartan subalgebra t of e6. For this, we consider the realisation of

t and W (E6) studied in [M]. This is based on the observation that e6 contains a full

rank subalgebra isomorphic with sl6 × sl2. As modules over this subalgebra, e6 and

its minimal representation J, of dimension 27, can be decomposed as

e6 = sl6 × sl2 ⊕ ∧3
C

6 ⊗ C
2, J = (C

6)∗ ⊗ C
2 ⊕ ∧2

C
6.

We choose for our Cartan subalgebra t of e6 the product of Cartan subalgebras in

sl6 and sl2. We thus have generators of t∗ given by (xi)1≤i≤6 with
∑

xi = 0 (for

the factor in sl6), and y (for the factor in sl2). Moreover, the W (E6)-invariants are

generated by the obvious invariants given by the sums of powers of weights in J, that

is,

Ik(x, y) =
∑

1≤i, j≤6

(xi + x j)
k +

∑

i

[(−xi + y)k + (−xi − y)k],

for k ∈ {2, 5, 6, 8, 9, 12}. So, the equations we have to solve are Ik(x, y) = 0 for

k ∈ {2, 5, 6, 8, 9} and I12(x, y) = c, where c is any nonzero constant.
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We claim that all the solutions of these equations, for a certain choice of c, are

given by the W (E6)-orbit of the solution



















x2 = −x1 = 1

x4 = −x3 = i

x6 = −x5 = eiπ/8

y = e5iπ/8,

and that this W (E6)-orbit is free. In fact, let us first check that this is indeed a solu-

tion. Since x1 + x2 = x3 + x4 = x5 + x6 = 0, all Ik’s with odd k vanish. For even k,

Ik reduces to a symmetric polynomial in x2
1, x2

3, x2
5 and y2. Therefore, to prove that

(x, y) annihilates I2, I6 and I8, it is enough to show that

∑

i∈{1,3,5,7}

x2
i = 0,

∑

i∈{1,3,5,7}

x6
i = 0,

∑

i∈{1,3,5,7}

x8
i = 0,

where we have set x7 := y. The first two equations hold because they are of odd

degree in the x2
i , and the values of x2

i are two opposite pairs. To check that the last

one also holds is a straighforward computation.

Let us now prove that the W (E6)-orbit of our solution is free. To this end, let

w ∈ W (E6) such that w(x, y) = (x, y). We know that w can be represented by a 7× 7

matrix (ai, j) with rational coefficients. Since x1, x3, x5, y are independant over Q , the

diagonal coefficient a7,7 of this matrix must be 1. Using the fact that w preserves I2,

we deduce that w stabilises the vector (0, 0, 0, 0, 0, 0, 1). This means that w belongs

to the symmetric group S6 ⊂ W (E6), acting by permutations of x1, . . . , x6. But then

it follows easily that w is the identity.

Proof of Theorem 1.3 Let us first show that the complex conjugate of σ8 is σ16, as

a warm-up. For this we recall that σ8 is an idempotent of the quantum cohomol-

ogy ring. More precisely, we have the following statement, which is a special case of

[CMP2, Corollary 5.2].

Lemma 6.1 The multiplication by σ8 in QH∗(E6/P1) sends any Schubert class to

its translate by eight steps on the left in the quantum Hasse diagram. In particular,

σ2
8 = σ16 and σ3

8 = q2.

In particular, we deduce that σ8, considered as a function on Z(E6/P1), takes its

values among the third roots of unity. But for such a root ζ , we have ζ = ζ2, and

therefore

σ8 = σ2
8 = σ16.

Let us now show that the complex conjugate of H is 121/4σ ′ ′
11. This is much more

tricky, but the idea is the same as above. Suppose we can find a non zero polynomial P

such that P(H) = 0; suppose that we can also find a polynomial Q such that Q(ζ) = ζ
for any ζ root of P. Then we can conclude that H = Q(H). (That’s exactly what we

have done above with P(ζ) = ζ3 − 1 and Q(ζ) = ζ2.)
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We first find an equation for H. For this we will find a dependance relation be-

tween H25, H13, and H (recall that the index of the Cayley plane is twelve). We com-

pute in the specialisation QH∗(E6/P1)q=1. With the help of the quantum Chevalley

formula, or equivalently, of the quantum Hasse diagram above, we get

{

H13
= 78σ13 + 57H

H25
= 21060σ13 + 15417H,

hence the equation P(H) = H25 − 270H13 − 27H = 0. Note that the roots of P are

given by ζ = 0 or ζ12
= 135 ± 78

√
3 = (3 ± 2

√
3)3.

The quantum Hasse diagram also gives us

{

H11
= 33σ ′

11 + 12σ ′ ′
11

H23
= 8901σ ′

11 + 3258σ ′ ′
11.

Therefore, 234σ ′ ′
11 = H11(11H12 − 2967).

To check that H = 121/4σ ′ ′
11, we therefore just need to verify that for every root ζ

of the polynomial P(z) = z25−270z13−27z, one has 234.121/4ζ = ζ11(11ζ12−2967),

or, equivalently,

234ζζ = ζ12(11ζ12 − 2967).

This is clear if ζ = 0. If ζ12
= 135+78

√
3, an explicit computation yields ζ12(11ζ12−

2967) = 702 + 234
√

3, whereas 121/4ζζ =

√

(3 + 2
√

3).2
√

3 = 3 +
√

3. The com-

putation is similar when ζ12
= 135 − 78

√
3, and we can therefore conclude that

H = 121/4σ ′ ′
11, as claimed.

Of course we can deduce that, conversely, the complex conjugate of σ ′ ′
11 is 12−1/4H.

Since QH∗(E6/P1) is generated by H, σ ′ ′
11, and σ8, this completes the proof.

6.2 The Freudenthal Variety

We recall some facts on the quantum cohomology ring of the Freudenthal variety

E7/P7. This is a 27 dimensional variety, of index 18. The quantum Hasse diagram is

as follows.

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•

•
•
•

•
•
•
•

• • • • •

• • • • •
• • • • •

• • •

• •

• •
•

• • • • • •
• • • •

• • • • •

• • •
• •
•

• •

•
•
•
•
•
•H

σ27

σ17

σ ′
17

σ ′ ′
17

q
qH
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Over Q[q], the quantum cohomology ring of the Freudenthal variety is generated by

the hyperplane class H and the Schubert classes σ17 and σ27, the punctual class. The

strange duality ι maps these classes to

ι(H) = 34561/9q−1σ17, ι(σ17) = 3456−1/9q−1H, ι(σ27) = q−3σ27.

Proof of Proposition 1.1 In this case, we were not able to give explicitely any point

in Z(E7), so we give a more abstract argument. First recall that the W (E7)-invariants

polynomials on a Cartan subalgebra t of e7 are generated by homogeneous polynomi-

als Jl of degrees l = 2, 6, 8, 10, 12, 18. To compute Z(e7), we will, as in the preceeding

cases, give a (nonexplicit) example of an element in this scheme, and show that it

belongs to a free W (E7)-orbit, so that Z(e7) is exactly this orbit and is reduced.

The orthogonal of ω7 in t is a Cartan algebra for e6. Let Ik, k ∈ {2, 5, 6, 8, 9, 12}
denote W (E6)-invariants of degree k in ω⊥

7 that generate the algebra of invariants. Let

u in t be a point in ω⊥
7 such that I2(u) = I5(u) = I6(u) = I8(u) = 0 and I9(u) = 1.

First we claim that u ∈ Z(e7). In fact, the Jl, l ∈ {2, 6, 8, 10, 12} restrict on ω⊥
7 to

W (E6)-invariants, therefore to polynomials in the Ik, k ∈ {2, 5, 6, 8, 9, 12}, and since

I2(u) = I5(u) = I6(u) = I8(u) = I12(u) = 0, we must have Jl(u) = 0.

Let w ∈ W (E7) such that w.u = u. Let J denote the first fundamental representa-

tion of e6 and consider the characteristic polynomial of the action of u on J. Since it

is a W (E6)-invariant of degree 27 and I2(u) = I5(u) = I6(u) = I8(u) = I12(u) = 0, it

must be of the form

Q(u, T) =
∏

η
(T − η(u)) = T27 + q9T18 + q18T9 + q27,

where the product is taken over the 27 weights η of J.

Let η1 be a weight of J such that x := η1(u) 6= 0. Let ζ be a primitive 9-th root of

unity. Since the set {η(u)} is the set of roots of Q(u, T), which is a polynomial in T9,

there must exist weights η2, . . . , η6 such that

(η1(u), . . . , η6(u)) = (x, xζ, xζ2, . . . , xζ5).

Recall that the product
∏

θ(T − θ) over the 6 primitive 9-th roots of unity, a cyclo-

tomic polynomial, is irreducible. Thus T6 + T3 + 1 is the minimal polynomial of ζ
and the family (1, ζ, . . . , ζ5) is free over Q . Therefore, (x, xζ, . . . , xζ5) is also free

over Q , and a fortiori (η1, . . . , η6) is free over Q , and thus (ηi , ω7) form a base over

Q of the weight vector space.

Thus, setting

w.ω7 = aω7 +
∑

1≤i≤6

aiηi ,

we get 0 = ω7(w−1.u) =
∑

aiηi(u), so ∀i ∈ {1, . . . , 6}, ai = 0, and w.ω7 = aω7.

By the same argument, we also have w.ηi = ηi modulo ω7, so w preserves ω⊥
7 and is

trivial on it. Recall that in any Weyl group the only nontrivial elements acting trivially

on some hyperplane are the reflections sα, where α is some root (see [Bou, Chap. V,

§3.2, Théorème 1(iv)]). But ω7 is not a root, so the line it generates is not preserved

by any reflection. Hence we must have w = id.
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Proof of Theorem 1.3 We know from [CMP2, Theorem 3.3] that σ2
27 = q3. When

we specialize at q = 1, we deduce that σ27 is real, hence equal to its complex conju-

gate.

Let us now show that the complex conjugate of H is 34561/9σ17. For this, we first

express σ17 as a polynomial in H. Using the quantum Hasse diagram, we compute

H17
= 78σ17 + 442σ ′

17 + 748σ ′ ′
17,

H35
= 2252088σ17 + 12969160σ ′

17 + 22121896σ ′ ′
17,

H53
= 66396246672σ17 + 382360744192σ ′

17 + 652206892048σ ′ ′
17.

So we get the relation σ17 = H17Q(H18), where we have set

Q(T) =
4237743313

721278
− 33629825

77976
T +

84371

5770224
T2.

In fact, these formulas can be proved simply using the periodicity of the quantum

Hasse diagram of E7/P7, and the fact that the restriction of the multiplication by H18

to the degree 8 part of QH∗(E7/P7)q=1 has matrix





598 1710 1938

3420 9832 11172

5814 16758 19066





in the base σ26, σ8, σ
′
8. Moreover, this shows that if

P(T) = 64 − 401808T + 29496T2 − T3,

the characteristic polynomial of this matrix, then H8P(H18) = 0. Now, it is easy to

check that P has three real roots, all positive. Moreover, our key point is the following

observation.

Fact (TQ(T))18
= (3456T)2 modulo P.

In fact, somewhat painful computations lead to

(TQ(T))2 ≡ −1/40071 T2 + 799/1083 T + 11696/13357,

(TQ(T))6 ≡ −40/13357 T2 + 34544/361 T + 8768/13357,

and finally

(TQ(T))18
= (3456T)2 mod P.

Therefore, if ζ is such that P(ζ18) = 0, then (ζ18Q(ζ18))18
= (3456ζ18)2, and since

ζ18 is real, this is equal to 34562(ζζ)18. We have noticed that ζ18, being a root of P, is

positive. One also checks that Q(ζ18) ≥ 0. So we can extract 18-th roots, and deduce

that

ζ = 34561/9ζ17Q(ζ18).
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Note that this also holds for ζ = 0, so this is exactly what we need to conclude that

the complex conjugate of H is

H = 34561/9H17Q(H18) = 34561/9σ17.

Of course, we can deduce that the complex conjugate of σ17 is the expected multiple

of H, and this concludes the proof.

7 A Nonreduced Example

In this section we consider the symplectic Grassmannian Gω(2, 6). Its dimension is 7

and its index is 5. Its Schubert classes are indexed by pairs (a|α), where 0 ≤ a ≤ 2,

and α is a strict partition whose parts are not bigger than 3, and whose length is at

most a. The cohomological degree of the corresponding class is a plus the sum of the

parts of α. The Hasse diagram is the following.

• •

• • • •

• • • •

• •(2|32) (0|0)(2|31) (1|0)

(2|3) (1|1)

(2|21) (2|0)

(1|3) (1|2)

(2|2) (2|1)

Tamvakis proved in [T] that the quantum cohomology ring of Gω(2, 6) is gener-

ated by the special Schubert classes σk = σ(1|k−1), for 1 ≤ k ≤ 4, with the following

relations:

σ2
2 − 2σ1σ3 + 2σ4 = σ2

3 − 2σ2σ4 + qσ1 = 0,





σ1 σ2 σ3

1 σ1 σ2

0 1 σ1



 = 0,









σ1 σ2 σ3 σ4

1 σ1 σ2 σ3

0 1 σ1 σ2

0 0 1 σ1









= 0.

The last two relations allow us to express σ3 and σ4 as polynomials in σ1, σ2. Plugging

these expressions in the first two relations, and letting q = 1, we get

σ2(3σ2 − 2σ2
1) = 2σ2

2σ
2
1 − 2σ2σ

4
1 + σ6

1 − 2σ3
2 + σ1 = 0.

These two equations define the finite scheme Z(Gω(2, 6)). This scheme has length

12 and is the union of a subscheme Z1, the union of the 5 simple points given by

σ2 = 0, σ5
1 = −1, a subscheme Z2, the union of the other 5 simple points given by

3σ2 = 2σ2
1 , σ

5
1 = 27, and a length two scheme Z0 supported at the origin, with Zariski

tangent space σ1 = 0. The quantum cohomology ring of Gω(2, 6) at q = 1 identifies

with the algebra of functions on that scheme Z. It is convenient to identify each

Schubert class with such a function given by a triple of functions on the subschemes
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Z0, Z1, Z2. For this we just need the quantum Chevalley formula, and the result is as

follows.

σ(1|0) σ(1|1) σ(0|2) σ(2|1) σ(1|2) σ(2|2) σ(1|3) σ(2|3) σ(2|21) σ(2|31) σ(2|32)

Z0 0 ǫ −ǫ 0 0 0 0 −1 1 0 −ǫ
Z1 s 0 s2 s3 −s3 s4 −s4 0 −1 −s −s2

Z2 s 2
3
s2 1

3
s2 1

3
s3 1

3
s3 1

9
s4 1

9
s4 2 1 s 1

3
s2

Note in particular that σ(2|32) − σ(1|1) + σ(0|2) is nilpotent: it generates the radical

of the quantum cohomology ring at q = 1. In fact, even before specializing q, we

have

(σ(2|32) − qσ(1|1) + qσ(0|2))
2
= 0 in QA∗(Gω(2, 6)).

It would now be completely straightforward to write down the multiplication table of

Schubert classes in the quantum cohomology ring. But the point we want to stress is

the following: if we consider a degree two class, σ(1|1) or σ(0|2), its complex conjugate

is nonzero on Z0, and therefore it cannot be expressed as a linear combination of the

degree three classes σ(2|1) and σ(1|2), which vanish on Z0. It is therefore impossible to

lift the complex conjugation to the localized quantum cohomology ring of Gω(2, 6),

in such a way that a degree k class is mapped to a class of degree −k. The existence of

a nonreduced point, although as simple as possible, definitely prevents us from doing

that.

The fact that the first non(co)minuscule example leads to a nonsemisimple quan-

tum cohomology algebra suggests the following

Conjecture Consider a rational homogeneous variety G/P with Picard number one.

Then QA∗(G/P)q=1, its quantum cohomology algebra specialized at q = 1, is semi-

simple, if and only if G/P is minuscule or cominuscule.

8 Vafa-Intrilagator Type Formulas

8.1 The Quantum Euler Class

Abrams introduced in [A], for any projective variety X, with Picard group of arbi-

trary rank, and in fact, in an even more general setting, a quantum Euler class e(X).

Let us denote by pt the element of W P that defines the punctual class σ(pt). Let

ϕ : QH∗(X, C) ≃ H∗(X, C) ⊗C C[q] → C[q] be defined by ϕ(
∑

Pλ(q)σ(λ)) = Ppt .

Then the bilinear map (x, y) 7→ ϕ(x ∗ y) defines a Frobenius algebra structure on

QH∗(X, C) over C[q]. Let (ei) be a base of QH∗(X, C) over C[q] and (e∗i ) the dual

base. Our bilinear form identifies QH∗(X, C) and its dual; let e
♯
i ∈ QH∗(X, C) corre-

spond to e∗i . The Euler class is defined by e(X) :=
∑

ei .e
♯
i . By [A, Theorem 3.4], in

a given specialization of the quantum parameters, the invertibility of e(X) is equiva-

lent to the semisimplicity of that algebra. We will identify that class explicitly when

X = G/P is any homogeneous variety of Picard number one.

Recall that the invariant algebras

Q[t]WP = Q[X1, . . . , Xr] and Q[t]W
= Q[Y1, . . . ,Yr]
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are polynomial algebras over certain homogeneous invariants by the famous Cheval-

ley theorem. The classical and quantum cohomology rings of G/P are

H∗(G/P)Q = Q[t]WP/(Y1, . . . ,Yr) and

QA∗(G/P)Q = Q[t]WP [q]/(Y1(q), . . . ,Yr(q)),

where Y1(q), . . . ,Yr(q) are certain homogeneous deformations of the classical rela-

tions Y1, . . . ,Yr.

Denote by Φ(G/P) = Φ
+ − Φ

+
P the set of positive roots of g that are not roots

of p = Lie(P). This is also the set of weights in g/p, the P-module whose associ-

ated vector bundle on G/P is the tangent bundle. Each root in Φ(G/P) defines a

linear functional on t, and since Φ(G/P) is preserved by WP, the product of the roots

contained in it defines a WP-invariant polynomial function on t, hence a class in the

cohomology ring QA∗(G/P)q=1.

Proposition 8.1 Let G/P be any rational homogeneous space of Picard number one.

The quantum Euler class of G/P is

e(G/P) =
∏

α∈Φ(G/P)

α.

Proof Choose a basis t1, . . . , tr of t∗. There is a constant c 6= 0 such that

det
( ∂Y p

∂tq

)

1≤p,q≤r
= c

∏

α∈Φ+

α.

Indeed both terms are proportional to the minimal degree anti-invariant of the Weyl

group (see [Bou, Chap. V, § 5.4, Proposition 5]). Similarly, for WP, we get

det
( ∂Xp

∂tq

)

1≤p,q≤r
= cP

∏

α∈Φ
+
P

α,

and both terms are proportional to the minimal degree anti-invariant of WP. We

deduce that

J := det
( ∂Y p

∂Xq

)

1≤p,q≤r
= dP

∏

α∈Φ(G/P)

α

for some nonzero constant dP.

It was proved in [A, Proposition 6.3] that in our situation, J and the quantum

Euler class e(G/P) coincide up to some invertible class in QH∗(G/P). Moreover,

since J is homogeneous of degree #Φ(G/P) = dim(G/P), this invertible class is in

fact a constant (see the proof of [A, Proposition 6.4]). So e(G/P) must be a constant

multiple of
∏

α∈Φ(G/P) α.

We claim that this constant is one. Indeed, the quantum Euler class is a defor-

mation of the classical Euler class (see the claim after [A, Proposition 5.1]). But the

latter coincides with ctop(TG/P), the top Chern class of the tangent space, which in the

classical setting is precisely given by the product of the roots in Φ(G/P). This implies

our claim, and the proof is complete.
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8.2 The Gromov–Witten Invariants

From now on G/P is again a (co)minuscule, rational, homogeneous space. Its Pi-

card number is one so Proposition 8.1 applies. Moreover the quantum Euler class is

invertible.

For a class σ in QH∗(G/P)q=1, denote by trace(σ) the trace of the multiplication

operator by σ. In terms of our finite set Z(G/P), we have

trace(σ) =
∑

z∈Z(G/P)

σ(z).

Recall that we denote by pt the element of W P that defines the punctual class

σ(pt). Recall also that the Schubert class that is Poincaré dual to σ(µ) is denoted by

σ(p(µ)).

Lemma 8.2 For any Schubert classes σ(λ) and σ(µ) on G/P, we have

trace
( σ(λ)

e(G/P)

)

= δλ,pt , trace
( σ(λ)σ(µ)

e(G/P)

)

= δλ,p(µ).

Proof The first equality is a general fact in Frobenius algebras. Recall that for x ∈
QH∗(X, C) we denoted by ϕ(x) the coefficient of x in σpt . We want to show that

trace(x) = ϕ(e(G/P)x) for x ∈ QH∗(G/P, C).

But we have

ϕ(e(G/P)x) =
∑

i

ϕ(e
♯
i eix) =

∑

e∗i (eix) = trace(x)

(the second equality follows from the definition of e
♯
i ).

We deduce that trace(σ(λ)σ(µ)/e(G/P)) is the coefficient of σ(pt) in the quan-

tum product σ(λ) ∗ σ(µ), that is, the Gromov–Witten invariant I(σ(λ), σ(µ), 1). By

the associativity of the quantum product, this is also the coefficient of the Poincaré

dual class σ(p(µ)) inside σ(λ) ∗ 1 = σ(λ).

Our Vafa–Intriligator type formula follows immediately (up to the identification

of J = e(G/P), this formula appears in [ST, Section 4]).

Proposition 8.3 Let G/P be a (co)minuscule, rational, homogeneous space. The

three-point, genus zero, Gromov–Witten invariants of G/P can be computed as

I(σ(λ), σ(µ), σ(ν)) = trace
( σ(λ)σ(µ)σ(ν)

e(G/P)

)

=

∑

z∈Z(G/P)

σ(λ)(z)σ(µ)(z)σ(ν)(z)
∏

α∈Φ(G/P) α(z)
.

Note that we have not indicated the degree d of this invariant. It is determined by

the Schubert classes involved through the relation deg σ(λ) + deg σ(µ) + deg σ(ν) =

dim(G/P) + ind(G/P)d.
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In fact, following [ST] we have a general formula for the genus g Gromov–Witten

invariants:

Ig(σ(λ), σ(µ), σ(ν)) = trace
(

e(G/P)g−1σ(λ)σ(µ)σ(ν)
)

.

It would be interesting to understand better the quantum Euler class of a (co)mi-

nuscule G/P. We conjecture that, as functions on Z(G/P), we should have

e(G/P) = |e(G/P)|σ(pt).

Recall that the punctual class σ(pt) is always an idempotent, so it takes its values

among the roots of unity. So the punctual class would give the argument of the

quantum Euler class. We have checked this on Grassmannians and quadrics, but we

have no explanation of this intriguing relation.
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e-mail: Laurent.Manivel@ujf-grenoble.fr
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