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LINEAR COMBINATIONS OF HARMONIC MEASURES AND
QUADRATURE DOMAINS OF SIGNED MEASURES WITH

SMALL SUPPORTS

by MAKOTO SAKAI
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In this paper we discuss the shape of the quadrature domain of a signed measure for harmonic functions. It
is known that the quadrature domain of a positive measure with small support is like a ball if the total
measure is large enough. We show that, on the contrary, if the measure is not positive then the quadrature
domain can be close to an arbitrary domain. This follows from a lemma concerning linear combinations of
harmonic measures.

1991 Mathematics subject classification: 31B05, 31B10.

1. Introduction

A bounded open connected set Q in the Euclidean space Rd is called a quadrature
domain of a signed measure /x for harmonic functions if l/xKR̂ XQ) = 0 and if

= f hdm

for every harmonic and integrable function h in Q, where m denotes the Lebesgue
measure in Rd.

Assume now that the support of n is contained in the ball Br with radius r and centre
at the origin. In a previous paper [23], the author proved that if \i is positive and its
total measure is large enough, then the quadrature domain fi of n is star-shaped with
respect to the origin and satisfies

BHji)-r C Q C 2^00+,-.

Here Hji) denotes the volume radius of \i, that is to say, the total measure n(Rd) equals
the volume of a ball with radius Hji). This means that the quadrature domain of a positive
measure \i with small support is like a ball if the total measure of/i is large enough.

In this paper we show that if fi is not positive, then on the contrary, the quadrature
domain of \i can be close to an arbitrary domain. More precisely, we prove the
following theorem:
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434 MAKOTO SAKAI

Theorem 1. Let D be a bounded domain in M.d containing Br. Then, for every e > 0,
there exists a finite linear combination fi of one-point measures with support in Br and a
quadrature domain Q of (x for harmonic functions such that

DCQCDC,

where De = {x e R1* : dist(x, D) < e}.

B. Gustafsson conjectured this theorem first and proved it in the two-dimensional
case in [12]. He treated a bounded domain D with analytic boundary and its one-to-
one conformal mapping g onto a domain Q. He gave a necessary and sufficient
condition for Q to be a quadrature domain of a signed measure, which can be
expressed as a real-valued distribution with support in a finite number of points, and
constructed the mapping g satisfying \g(z) — z\ < e in D, where z denotes x1 + ix2 for
x = (x\x2) in R2. To construct the mapping g, he applied the Mergelyan
approximation theorem for a compact Riemann surface, the Schottky double of D, and
the implicit function theorem.

Our proof is quite different from his and valid for any dimension. It is obtained by
applying the following lemma:

Lemma 2. Let D be a C2 domain. Let cox = Pxa be the harmonic measure on the
boundary 3D relative to x, where a denotes the hypersurface measure on 3D. Let {x^}", be
a countable set of points in D whose closure contains at least one interior point. Then,
given any point y in D, Py can be approximated uniformly on 3D by finite linear
combinations of[PXj}Jli.

Our lemma is based on the simple fact that if the closure of a subset of a domain
contains at least one interior point, then the set is a set of uniqueness for any class of
harmonic functions defined on the domain. A natural question is whether there exists a
set of uniqueness whose closure is sufficiently small. We also discuss the problem in
this paper. We construct examples of sets of uniqueness for some classes of harmonic
functions such that they are countable and have no accumulation points in the domain.
The problem is closely related to problems discussed by Bonsall, Bonsall and Walsh,
and Hayman and Lyons in [4], [5], and [15], respectively. They discussed certain
conditions on a subset of a domain which imply that the set is a set of uniqueness for
certain classes of harmonic functions on the domain. Our examples satisfy their
conditions.

This paper is organized as follows: We prove Theorem 1 in Section 2 by applying
the lemma mentioned above. We prove the lemma and discuss its generalization in
Section 3. We propose a new quadrature formula in Section 4. Two examples which
satisfy conditions discussed by Bonsall, Bonsall and Walsh, and Hayman and Lyons
are given in Section 5. Concluding remarks are given in the final section, Section 6.
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2. Proof of Theorem 1

Since D is relatively compact in D(, we may assume that the boundary 3D of D is
sufficiently smooth. Let y be a point in D and let G(x, y) be the Green function for D
with pole at y. Let coy = Pya be the harmonic measure on dD relative to y. Then Py(x)
can be expressed as

for some constant fc,,, where 3G(x, y)/dnx denotes the inner normal derivative at x of
G(x, y). Since we have assumed that dD is sufficiently smooth, Py is continuous and
positive on 3D.

First, we take 8 > 0 so that the quadrature domain of a measure Xom + &a f ° r

subharmonic functions is contained in Dc. Here xD denotes the characteristic function
of D. We call a bounded domain Q(v) a quadrature domain of a finite positive measure
v for subharmonic functions if v(R'i\Q(v)) = 0 and if

fsdv< f sdm

for every subharmonic and integrable function s in Ci(v). For proof of the existence of
the quadrature domain, see e.g. [20, Theorems 3.4 and 3.7], [21, Theorem 2], [22,
Theorem 7.5] and [13, Theorem 2.1], and for the existence of 8 mentioned above, see
e.g. [20, Proposition 10.6]. Let y0 be a point in D and take a constant c0 > 0 so that

on dD.
Next, we apply the Vitali covering theorem. Let Br(y) be the ball with radius r and

centre at y and take a sequence of mutually disjoint balls Br (yn) in D so that
~, Br.GO) = 0. We write D as

n=l

and choose N so that the balayage ga of XEN
m from D onto 3D satisfies

on 3D. Here the balayage #<7 of XEN
m from D onto 3D means that ga satisfies

/ hgda = / h%Ef)dm = I hdm
JiD J JEs
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for every function h which is harmonic in D and continuous on the closure of D. We
can do this, because Pyo is continuous and positive on 3D, g can be expressed as

g(x)= [ Py(x)dm(y) = kd f S f ' y ' i n * y ) ,
hN JEN onx

and the inner normal derivative of the Green function satisfies

3G(x, y) C
d-\3"x |x - y\

where C denotes a constant depending only on D (see e.g. [24, Theorem 2.3]).
Now, we apply Lemma 2. Take a countable subset {xy}~, of BT so that its closure

contains at least one interior point. Then, for each yn, n = 1 , . . . , N, we find a finite
linear combination Jjjl , Cn/P*, of {P*,}^ satisfying

min3D

N+\

on 3D, where cn = m(Brn(yn)), and £ £ , cOjPXl satisfying

in 3 P c0Py(

N+\

on 3D. It follows that

N jn

Pyo(x) - min c0Pn
=0 j=\

on 3D, and so/(x) = E l o Ejli satisfies

on 3D. Let \L = JlILo Hj=i c»;^» where 5X; denotes the unit one-point measure at x,.
We note that ( / - (~£i , cnPyn + g))(x) > (c0Pw - g)(x) > 0, and hence / - ( £ cnP,n + ff)
is positive on 3D. Let Q be a quadrature domain of xDm + ( / — ( £ cnPyn + g))ff for
subharmonic functions. Then Q contains the closure of D and it is a quadrature domain
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of n for harmonic functions. On the other hand, since ( / — ( £ c
nPyn + 0))(x) ^

(icoPn - g\x) < 3c0Pn(x) < 5 on 3D, we obtain Q c D ( . This completes the proof of
Theorem 1.

3. Lemma 2 and its generalization

First, we define a set of uniqueness for a class of harmonic functions. A subset E
of a domain D is called a set of uniqueness for a class H of harmonic functions defined in
D if a function in H vanishes on E, then it vanishes identically in D. If the closure of
E contains at least one interior point, then £ is a set of uniqueness for any class of
harmonic functions.

Next, let a be a fixed point in a domain D and let (oa be the harmonic measure on
3D relative to a. We denote by L°°(3D, a>a) the class of essentially bounded functions on
3D relative to a>a. Let Hg be the Dirichlet solution for a resolutive boundary function
g in the sense of the Perron-Wiener-Brelot method (see e.g. [16, Chapter 8]), and set

Now, we prove the following proposition:

Proposition 3. Let D be a bounded domain in Rd and let E be a subset of D. Let cpx

denote the Radon-Nikodym derivative of cox with respect to a>a and let L be the linear
space of finite linear combinations of functions in {<px : x e £}. Then L is dense in the
whole space L'(3D, a>a) of a>a-integrable functions on 3D if and only if E is a set of
uniqueness for H L<*>(gD<JJa).

Proof. Since coa is finite, L°°(dD, a>a) is isometrically isomorphic to the dual space
of L'(3D, coa). For g € L°°(3D, coj, it follows that

Hg{x) = I gdcox = I gq>xdcoa.

Hence g vanishes on L if and only if Hg(x) = 0 on E. It is known that Hg vanishes
identically in D if and only if g is equal to zero a.e. on 3D relative to a>a (see e.g. [6,
Hilfssatz 3.1]). Hence, by the Hahn-Banach theorem, we see that L is dense in
L'(3D, coa) if and only if £ is a set of uniqueness for HLoo^Da)a). This completes the proof
of the proposition.

To prove Lemma 2, take a fixed point a in D and a relatively compact subdomain
D' of D so that D' contains a, y, and an interior point of the closure of {x^}~,. Let co'a be
the harmonic measure on 3D' relative to a, and let fga be the balayage of gco'a with g
in L'(3D', Q)'a) from D onto 3D. Then fg is continuous on 3D and, for every e > 0, there
is 5 > 0 such that f\g\dco'a < 5 implies sup3D \fg\ < e, because fg can be expressed as
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here G(x, y) denotes the Green function for D with pole at y. Since D is a C2 domain,
{3G(x, y)/dnx : y e 3D'} is uniformly bounded and, for each y e 3D', 3G(x, y)/dnx is
continuous and positive on 3D.

Now, we apply Proposition 3 to D' and q>'y e L'(3D', CO'0), where q>'y denotes the
Radon-Nikodym derivative of u>'y with respect to co'a. Then we find, for 8 > 0, a finite
linear combination JZtyp' such that / | 23c,<p' ~ Vyl^'a < -̂ Since the balayage of
w'x = <p'xco'a from D onto 3D equals Pxa, that is to say, since f9x = Px, it follows that
sup3D | Y^CjPx — Py\ < £. This completes the proof of Lemma 2.

It is known, as the Brelot theorem, that a boundary function g is resolutive if and
only if it is a>o-integrable, and in which case, it follows that

Ht(x) = j gdcox

for every x in D. Therefore Proposition 3 can be generalized and discussed in the frame
of compactification of domains and in axiomatic potential theory (see e.g. [6] and
[7]). However, we confine ourselves to a discussion on concrete domains in Rd and
prove a stronger version of Lemma 2.

We introduce a more general domain than a C2 domain, namely, a Lyapunov-Dini
domain discussed by K..-O. Widman. To ensure the continuity of the gradient of the
Green function around the boundary, we assume further that the Dini function e(t)
satisfies the following additional condition: e(t)/ty is decreasing for some constant y
with 0 < y < 1 (see [24, Theorem 2.4]). If d — 2, then the boundary of a Lyapunov-Dini
domain consists of a finite number of disjoint Dini-smooth Jordan curves, and we
can assert the continuity of the gradient of the Green function without the additional
condition. For a proof, see e.g. [19, Theorem 3.5]. Every C1" domain with 0 < a < 1 is
a Lyapunov-Dini domain and we can take kf with some constant k as the Dini
function e{t). For the definition of Cl>a domains, see e.g. [11, Definition in 6.2].

From the proof of Lemma 2 combined with the argument in Section 2, we see that,
for a Lyapunov-Dini domain, the Radon-Nikodym derivative / of the balayage fa of
XDm from D onto 3D with respect to a is positive and continuous on 3D.

Now, we apply the Martin theory on positive harmonic functions. It asserts that,
for every positive harmonic function h in D, there exists a unique finite positive
measure v on the Martin minimal boundary such that

h(x) = HAx)^JK(y,x)dV(y),

where K(y, x) denotes the Martin kernel function for D with pole at y. If D is a
Lyapunov-Dini domain, then the minimal boundary coincides with the Euclidean
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boundary 3D. We normalize the kernel function as K(y, a) = 1 for a fixed point a. It
is expressed as

MQ P.(y)

for y on 3D, because grad G(y, x) is continuous and does not vanish as a vector-valued
function of y around 3D, and Px(y) can be expressed as

dny

Let M(3D) be the class of signed measures on 3D and set HM(3D) = {Hv : v e M(3D)}.
Then HM{aD) is the class of differences of positive harmonic functions in the Lyapunov-
Dini domain D.

Proposition 4. Let D be a Lyapunov-Dini domain and let E be a subset of D. Let Px

be as in Lemma 2. Then every continuous function on 3D can be approximated uniformly
on dD by finite linear combinations of functions in {Px : x e E] if and only if E is a set
of uniqueness for HMm.

Proof. We regard M(3D) as the dual space of the linear space C(3D) of continuous
functions on 3D. Let L be the linear space of finite linear combinations of functions
in {Px:x€ E). For f € M(3D), set

, a) g

Then

tf,(x) = JK(y,x)dv(y) =

Hence, by the Hahn-Banach theorem, we see that L is dense in C(3D) if and only if E
is a set of uniqueness for HMiBD). This completes the proof of the proposition.

4. A new quadrature formula

Lemma 2 asserts that a)y can be approximated by finite linear combinations of
{a>Xj}°lx. This does not imply that the sequence of corresponding finite linear
combinations of {dx }°lt converges to some measure in D, where 5 denotes the unit
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one-point measure at xf. For example, let {xy}~, be contained in Br and assume that
the closure Br of Br is contained in D. Let y be a point in D but not on Br. Assume
further that a sequence of linear combinations ]T]*=] ckjcox. of {to,}™, converges strongly
to coy and the sequence of the corresponding linear combinations £*=1 cy5x of {5X}?!,
converges to a signed measure /x in the weak* topology. Then, for every harmonic
function h on D, we obtain

Jhdfx = lim ̂ / . d ^ c ^ J = Urn I hd(Y^ckjwx\ = fhdcoy = h{y).

On the other hand, for every e > 0, there is a harmonic homogeneous polynomial h
such that \h(x)\ < e on Br and h(y) = 1. Since the support of fi is contained in Br, this
contradicts the equation above.

Thus Theorem 1 does not imply that every bounded domain is the quadrature
domain of a signed measure with support in Br. It asserts that any domain can be
approximated by quadrature domains of finite linear combinations of one-point
measures with supports in Br. It gives a new quadrature formula for harmonic
functions: Let D be a bounded domain in M.d containing Br. For every <5 > 0, we can
find a finite number of points {x;}*=1 in Br and real numbers {c,}*=1 such that

- f hdm <M5

for every harmonic function h satisfying \h(x)\ < M in D. The proof is given by just
taking a relatively compact subdomain D' of D so that Br c D' and m(D\D') < 8, and
apply Theorem 1 replacing D and e with £>' and dist(D', 3D), respectively. We can take r
as small as we want.

5. Examples of sets of uniqueness which have no accumulation points in the domain

As we remarked at the beginning of Section 3, if the closure of a subset £ of a
domain D contains an interior point, then £ is a set of uniqueness for any class of
harmonic functions. In this section, we give examples of sets of uniqueness which
cluster toward 3D, but which have no accumulation points in D. Our examples are
countable subsets of D which satisfy Condition (i) or (ii) below.

We first explain the Conditions (i) and (ii). If a sequence of the linear combinations
Ylj=\ ckj<>xj converges strongly to a signed measure, then the measure is of the form
H~i cfixj with D"i \cj\ < +°°- Hence, if we take account of the strong convergence of
5ZjLi ck)$xj> it is natural to take a countable set E = {x,}^, and consider a continuous
linear operator T from /' into L\dD, wa) defined by
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Here /' denotes the space of absolutely convergent series c = {c,}", of real numbers,
and cpx denotes the Radon-Nikodym derivative of a)x with respect to a)a. The Hahn-
Banach theorem assets that the image T(/') of T is dense in L'(3D, coa) if and only if
the kernel of the dual operator T of T is equal to {0}. This is nothing less than
Proposition 3 in the case that £ is a countable set.

The operator was treated by F. F. Bonsall, in the case of the unit disk in R2, with
complex numbers c, (see [4, Theorem 2]). From the closed range theorem, it follows
that T(/') — L'(3D, coa) if and only if T has a continuous inverse on the image of T,
that is to say, there is a constant C such that

• sup|fc(x)|<Csup|/i(x)l (i)
xeE

for every h in HL»(3Dma).
A different, but closely related, problem is to find the condition that every positive

lower-semicontinuous function on 3D can be expressed as the sum mentioned above
with nonnegative coefficients cy. Here the word "positive" means that the function
takes a positive value at every point on 3D. The problem was discussed recently by
many authors (see e.g. [5, 15, 14, 8, 9, 10 and 1]).

Assume that q>% is continuous on 3D for every x in D. Let £ be a subset of D. Let
L+ be the class of finite sums with positive coefficients of functions in {cpx : x e £}, and
let C+(3D) be the class of positive continuous functions on 3D. Then, as shown in [5,
Lemma 11] and [15, Theorem 1], every positive lower-semicontinuous function on 3D
can be expressed as the sum with positive coefficients of functions in {cpx : x e £} if and
only if L+ is dense in C+(3D) in the topology of uniform convergence. If we assume
further that the Martin minimal boundary coincides with the Euclidean boundary 3D
and the Martin kernel function K( v, x) (which is normalized as K(y,a) = 1) can be
expressed as q>x(y) on 3D for x in D, then we obtain, by applying the Hahn-Banach
theorem to the convex set L+, that L+ is dense in C+(3D) if and only if

h(x) < 0 on £ implies h(x) < 0 in D (ii)

for every h in HM{aD). This is equivalent to the following conditions: supD/i(x) =
supE h(x) for every h in HM(BD).

Every Lyapunov-Dini domain satisfies the conditions for the Martin Boundary
mentioned above. The class of domains which satisfy the conditions is much wider than
that of Lyapunov-Dini domains. For d = 2, every domain which is surrounded by a
finite number of disjoint Jordan curves satisfies the conditions. For d > 3, the situation
is quite different in this respect. Every Lipschitz domain satisfies the conditions (see
[17]). There are non-Lipschitz domains which satisfy the conditions (see [18] and [3]).

Now, we construct our examples. If d — 1, then a subset £ of a bounded open
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interval (a, b) which contains two different points is a set of uniqueness, and satisfies
Condition (i) as well. It satisfies Condition (ii) if and only if both a and b are its
accumulation points. In what follows, we assume that d > 2.

Let p be a positive function defined in D such that p(x) < <5(x) in D, where
<5(x) = dist(x, 3D). Let {Dn}~, be an exhaustion of D. We call a subset £ of D a
{p, {Dn}}-set if £ n BpM(x) is not empty for every x on dDn and for every n. If £ is a
{p, {Dn}}-set, then a countable dense subset of £ is also a {p, {Dn}}-set. Hence we may
assume that £ is countable; moreover, if p is lower-semicontinuous, we can choose a
subset of £ so that it is a {p, {DJ}-set and it has no accumulation points in D. Let
Kd = 2(d/(d - \))ad_Jad = (2/jn)T{(d/2) + \)/T{{d + l)/2), where ad denotes the total
surface measure of the unit hypersphere in Rd. It follows that 1 < Kd < ~/d.

We proceed to show that if k satisfies 0 < k < \/{Kd + 1) and if a countable set
£ = {x,-}~, is a {kd, {Dn}}-set, then £ satisfies (i). We first note that

Igrad h\{y) <

holds if a harmonic function h satisfies \h(x)\ < M in BR(y). The constant Kd is the best
for inequality (see e.g. [2, Theorem 6.18]). Next, we set MD = supD \h(x)\ and
ME = sup£ |/i(x)|, and apply the inequality above to points y on the line segment joining
x e 3Dn and x, e £ n BkiM(x). Since 8(y) > (1 - k)5(x), we obtain

, KdMDk

- 1 -k '

and so \h(x)\ < KdMDk/{\ -k) + ME in Dn. Hence MD < ((1 - /c)/(l - (K,, + l)fc))M£,
and £ satisfies (i).

If we take p(x) so that p(x)/<5(x) tends to zero as x tends toward 3D, then every
{p, {DJ}-set satisfies Condition (ii). In fact, let h — h+ — h~ with positive harmonic
functions h+ and h~ in D satisfy h(x) < 0 on a {p, {Dn}}-set £ = {x,-}",. For every e > 0,
we take Dn so that p(x)/8(x) < e on 3Dn. We apply the Harnack inequality to positive
harmonic functions in BSM(x) with x on dDn. Then, for x; e £ n Bp(x)(x), it follows
that

(1 - k(e))h+(x) < h+(Xj) < h~(xj) < (1 4- fc(<0)/T(x),

where k(e) is a positive function of e which tends to zero as e tends to zero. Hence

holds in Dn. By letting e tend to zero, we obtain h+(x) < h~(x) in D. Thus £ satisfies
(ii).
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6. Concluding remarks

In Section 5, we constructed examples of sets of uniqueness for some classes of
harmonic functions. They satisfy Condition (i) or (ii) discussed by Bonsall, Bonsall and
Walsh, and Hayman and Lyons. The set of uniqueness which was treated in the proof
of our Theorem 1 is contained in a small ball, and so it satisfies neither Condition (i)
nor (ii). This reveals that Conditions (i) and (ii) are too strong to prove Theorem 1.
We need the fact that, for any given small ball contained in a domain and any class of
harmonic functions defined in the domain, there is a set of uniqueness for the class
which is contained in the ball.

Acknowledgement. The author wishes to express his gratitude to H. Aikawa who
suggested a relationship between Lemma 2 and the results obtained by F. F. Bonsall
and D. Walsh.
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