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This work focuses on the development of a semi-analytical model that is appropriate
for the rotational, steady, inviscid, and compressible motion of an ideal gas, which
is accelerated uniformly along the length of a right-cylindrical rocket chamber. By
overcoming some of the difficulties encountered in previous work on the subject,
the present analysis leads to an improved mathematical formulation, which enables
us to retrieve an exact solution for the pressure field. Considering a slender porous
chamber of circular cross-section, the method that we follow reduces the problem’s
mass, momentum, energy, ideal gas, and isentropic relations to a single integral
equation that is amenable to a direct numerical evaluation. Then, using an Abel
transformation, exact closed-form representations of the pressure distribution are
obtained for particular values of the specific heat ratio. Throughout this effort,
Saint-Robert’s power law is used to link the pressure to the mass injection rate at the
wall. This allows us to compare the results associated with the axisymmetric chamber
configuration to two closed-form analytical solutions developed under either one- or
two-dimensional, isentropic flow conditions. The comparison is carried out assuming,
first, a uniformly distributed mass flux and, second, a constant radial injection speed
along the simulated propellant grain. Our amended formulation is consequently shown
to agree with a one-dimensional solution obtained for the case of uniform wall mass
flux, as well as numerical simulations and asymptotic approximations for a constant
wall injection speed. The numerical simulations include three particular models: a
strictly inviscid solver, which closely agrees with the present formulation, and both
k–ω and Spalart–Allmaras computations.

Key words: aerodynamics, compressible flows, high-speed flow

1. Introduction
The majority of rocket-related problems featured in the literature rely on reduced-

order models that idealize solid propellant motors by considering that their bulk
gaseous motion may be suitably represented by the internal flow field evolving
within porous channels and tubes. In such idealizations, the effects of compressibility
may be either retained or dismissed, depending on the gas injection speed and
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the nozzleless chamber length. While the incompressible motion is relatively well
understood (Taylor 1956; Culick 1966; Majdalani & Akiki 2010), recent advances
have enabled us to account for the presence of arbitrary headwall injection (Majdalani
& Saad 2007b; Saad & Majdalani 2009), wall regression (Majdalani, Vyas &
Flandro 2002; Zhou & Majdalani 2002), grain taper (Saad, Sams & Majdalani 2006;
Sams, Majdalani & Saad 2007), variable cross-section (Kurdyumov 2006), headwall
singularity (Chedevergne, Casalis & Féraille 2006), viscous effects (Majdalani & Akiki
2010), and stability (Chedevergne, Casalis & Majdalani 2012). Furthermore, flow
approximations exhibiting smoother or steeper profiles than the cold flow equilibrium
state have been studied in connection with their energy content by Majdalani & Saad
(2007a) and Saad & Majdalani (2008). In what concerns compressible flow effects,
these have been first investigated by Traineau, Hervat & Kuentzmann (1986) in the
context of two-dimensional porous tubes and channels with sidewall injection. Using
either nitrogen or air as the working substance, these investigators have reported rich
characteristics of the spatially developing motion, which has been shown to depict
appreciable steepening beyond the Taylor–Culick baseline (Taylor 1956; Culick 1966).
In the downstream sections of the domain, compressibility intensified to the extent
of producing noticeably flattened mean-flow profiles. These observations were further
supported by numerical simulations attributed to Beddini (1986), Baum, Levine &
Lovine (1988), Liou & Lien (1995), and Apte & Yang (2000, 2001). They were also
studied by Gany & Aharon (1999) and King (1987) in the context of nozzleless rocket
motors. While the former group explored the merits of a one-dimensional theoretical
model, the latter employed a pseudo-two-dimensional numerical approach. Given
the relevance of an accurate mean-flow description to the study of hydrodynamic
instability in simulated rocket motors, the problem was revisited by Venugopal,
Najjar & Moser (2001) and, in complementary work, by Wasistho, Balachandar &
Moser (2004). As a windfall, the compressible solutions engendered in these studies
became valuable resources in the limiting process verification of Navier–Stokes solvers
(Wasistho et al. 2002; Najjar et al. 2003). This was partly caused by the obstacles
placed against the acquisition of rocket-related experimental data and, partly, because
of the harsh, intrusion-resistant medium arising in highly pressurized and reactive
chambers.

Among the analytical techniques that have been applied to this problem, the first
may be the Prandtl–Glauert expansion (Shapiro 1953). In fact, a variant of this
technique was used by Traineau et al. (1986), who introduced, in a precursor to
the present study, a rotational and compressible integral equation, which can be
solved in a planar, two-dimensional, and viscous-free setting. In the same context,
two related extensions appeared, given by Balakrishnan, Liñan & Williams (1991)
and Akiki & Majdalani (2012). In addition to their elegant theoretical and numerical
work, Traineau and co-workers have furnished a collection of experimental data
based on cold flow measurements with air as the sidewall injectant. Moreover, these
investigators have implemented judicious scaling arguments to justify the dismissal
of the radial momentum equation, thereby reducing the remaining momentum, mass,
energy, ideal gas, and isentropic state relations to a single integral expression that
can be numerically solved for the pressure distribution. This was accomplished by
relating the pressure and wall mass flux through the Saint-Robert power law, and by
showing that the Abel integral equation that precipitates can be inverted analytically
in the case for which 2(2− γ )/(γ − 1) takes on an integer value.

The second analytical approach used in this context refers to a variant of the
Rayleigh–Janzen expansion. The technique in question is based on small parameter
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Compressible integral representation of axisymmetric rocket flow 215

perturbations in the square of the wall injection Mach number. The Rayleigh–Janzen
expansion was first applied by Majdalani (2007) in the treatment of the axisymmetric
porous cylinder and then by Maicke & Majdalani (2008) in the planar flow analogue.
The axisymmetric analysis led to two closed-form solutions: one exact, satisfying
all first principles, and one approximate, which proved to be practically equivalent.
In contrast, the planar effort gave rise to a single compact expression satisfying
all physical requirements. At the outset, both streamwise and wall-normal velocity
profiles could be readily calculated, in addition to the critical length required to
achieve sonic conditions. In both configurations, the effort led to the identification
of the sonic distance as the appropriate length scale which, when inserted into the
solution, would promote a self-similar, parameter-independent behaviour for all wall
Mach numbers. It also disclosed a simple criterion that could help to determine
the relative effects of compressibility and the corresponding centreline amplification
during flow development. By eliminating the need to calculate the base flow over
the fluid domain, the resulting expressions opened up new avenues for conducting
parametric trade analyses.

In complementing ongoing efforts to obtain closed-form solutions for the flow in
porous cylinders, it is the purpose of this study to extend the integral formulation
developed initially by Traineau et al. (1986) and later reconstructed by Balakrishnan,
Liñan & Williams (1992). Our objective is to produce a complete pseudo-two-
dimensional approximation that would not be limited to homentropic flow conditions,
and that would obviate the need for numerical integration, at least in some
well-defined cases of interest. The resulting formulation would also permit direct
comparisons to available one- and two-dimensional closed-form representations.

The following summary outlines the organization of this paper. Section 2 describes
the mathematical derivation of the integral formulation as well as the numerical
approach used. In § 3, discussions of the numerical results are presented. Afterwards,
a mathematical approach to achieve an exact solution of the governing integral
equation is described in § 4. Then, in § 5, the approach is used in an example flow
with oscillatory wall injection. Finally, conclusions are summarized in § 6.

2. Mathematical model
2.1. Geometry

We consider the steady, inviscid flow of an ideal gas in a cylinder of length L0 and
radius a. A schematic diagram of the problem is given in figure 1. The origin of the
coordinate system is located at the centre of the headwall. The motion is taken to be
axisymmetric and swirl-free, which enables us to limit our investigation to the upper
half r − x portion of the porous chamber. Note that ψ represents a streamline and
ξ denotes the axial distance from the headwall to the point where a streamline is
generated at the sidewall, i.e. the tip of a streamline.

2.2. Formulation
A solid rocket motor is often idealized as a slender, elongated chamber with sidewall
injection. Under the assumption of low chamber aspect ratio, a/L0� 1, the system’s
conservation equations may be conveniently reduced to the following set:

∂(ρur)
∂x

+
∂(ρvr)
∂r
= 0 (compressible continuity), (2.1)
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(b)

FIGURE 1. Sketch of a slender rocket motor (a) of length L0 and radius a, modelled as
a right-cylindrical porous chamber (b) with an imposed sidewall injection velocity Uw(x).

ρu
∂u
∂x
+ ρv

∂u
∂r
=−

∂p
∂x

(axial momentum), (2.2)

∂p
∂r
= 0 (radial momentum) (2.3)

and

ρu
∂

∂x

(
cpT +

u2

2

)
+ ρv

∂

∂r

(
cpT +

u2

2

)
= 0 (energy), (2.4)

where u and v denote the velocities in the x and r directions, respectively. Similarly, p,
T and ρ designate the pressure, temperature, and density. Note that pressure variations
have been discounted in the radial direction due to the chamber’s low aspect ratio.
Knowing that x scales with L0 and r scales with a, an examination of the continuity
equation establishes that u must be of the order of vL0/a. Assuming a� L0, we get
u� v, and so the magnitude of the total velocity can be reduced to V2

≈ u2. In turn,
the term of order O(v2) disappears from (2.4). Furthermore, the gas may be taken to
be ideal and calorically perfect, thus warranting a constant cp. The resulting ideal gas
law may be expressed in terms of the ratio of specific heats, γ , using

p=
γ − 1
γ

cpρT. (2.5)

From compressible theory, one can straightforwardly show that the isentropic
relation, φ = T/p[(γ−1)/γ ], remains constant along a streamline.
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2.3. Boundary conditions
The physical requirements at the sidewall, headwall, and centreline may be written as:

u(x, a)= 0 (no slip at sidewall),
u(0, r)= 0 (no headwall injection),
v(x, a)=−Uw(x) (radial sidewall injection),
v(x, 0)= 0 (no crossflow at the centreline),
T(x, a)= Tw(x) (sidewall temperature),
p(0)= p0 (headwall pressure),


(2.6)

where the subscript w refers to conditions at the wall. It may be helpful to remark
that the pressure p = p(x) will be permitted to evolve only with respect to x due
to the slender motor assumption, a/L0 � 1, and in view of (2.3). This is contrary
to the temperature and velocity profiles, which will be allowed to retain their two-
dimensional character with respect to both x and r.

2.4. Streamfunction transformation
For axisymmetric motions, the Stokes streamfunction may be defined as

∂ψ

∂r
= ρur, (2.7)

∂ψ

∂x
=−ρvr. (2.8)

Given that the stagnation enthalpy, (cpT + (1/2)u2), remains invariant along a
streamline, one can put

T(x, ψ)+ u2(x, ψ)/(2cp)= Tw(ψ), (2.9)

where Tw(ψ) is the total, stagnation temperature along a streamline. Then, in view of
φ, the isentropic pressure–temperature relation may be expressed as

T(x, ψ)/[p(x)](γ−1)/γ
= Tw(ψ)/[pw(ψ)]

(γ−1)/γ . (2.10)

Realizing that all streamlines originate through surface injection at r=a, equation (2.8)
may be readily evaluated at the sidewall. This may be performed using the ideal gas
expression for the density. Subsequent integration in the axial direction yields

ψ =
a γ

(γ − 1)cp

∫ ξ

0
[Uw(x)p(x)/Tw(x)] dx. (2.11)

As depicted in figure 1, ξ denotes the distance from the headwall to the point where
the streamline intersects with the sidewall. Because a unique value of ψ may be
associated with a given ξ , the independent variables may be shifted from (x, ψ) to
(x, ξ). In this new coordinate system, equations (2.9) and (2.10) may be written as

T(x, ξ)+ u2(x, ξ)/(2cp)= Tw(ξ), (2.12)

T(x, ξ)/[p(x)](γ−1)/γ
= Tw(ξ)/[pw(ξ)]

(γ−1)/γ
= Tw(ξ)/[p(ξ)](γ−1)/γ . (2.13)
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218 M. Akiki and J. Majdalani

Next, the expression for the streamfunction given by (2.11) may be substituted
into (2.7) and then integrated in the radial direction. This enables us to deduce the
coordinate r associated with a given axial position x and streamline emanating from
ξ . We get

r2
= 2a

∫ ξ

0

[
T(x, ξ ′)

p(x)u(x, ξ ′)

] [
Uw(ξ

′)p(ξ ′)
Tw(ξ ′)

]
dξ ′. (2.14)

We can also replace the variables u and T using (2.12) and (2.13) to deduce an
expression solely in terms of the pressure. This operation yields

r2
= 2a

∫ ξ

0

[
p(ξ ′)
p(x)

]1/γ
[

1−
[

p(x)
p(ξ ′)

](γ−1)/γ
]−1/2

Uw(ξ
′)√

2cpTw(ξ ′)
dξ ′. (2.15)

At this juncture, we are ready to evaluate (2.15) knowing that ξ = x at r= a. We find

a= 2
∫ x

0

[
p(ξ)
p(x)

]1/γ
[

1−
[

p(x)
p(ξ)

](γ−1)/γ
]−1/2

Uw(ξ)√
2cpTw(ξ)

dξ . (2.16)

Equation (2.16) is thus reduced to one unknown, which is the pressure distribution in
the axial direction.

2.5. Integral formulation with no pressure dependence
The dimensionless variables P(X), X and ζ may be conveniently introduced to simplify
the analysis. These are defined according to

P(X)=
p(x)
p0
, (2.17)

X =
1
a

√
γ

γ − 1

∫ x

0

Uw(x′)√
2cpTw(x′)

dx′, (2.18)

ζ =
1
a

√
γ

γ − 1

∫ ξ

0

Uw(x′)√
2cpTw(x′)

dx′. (2.19)

While the normalization of P is straightforward, that of X or ζ is based on their upper
integral bounds. The dimensionless expressions are then inserted into (2.15) and (2.16)
to obtain

( r
a

)2
= 2

√
γ − 1
γ

∫ ζ

0

[
P(ζ ′)
P(X)

]1/γ
[

1−
(

P(X)
P(ζ ′)

)(γ−1)/γ
]−1/2

dζ ′, (2.20)

√
γ

γ − 1
= 2

∫ X

0

[
P(ζ )
P(X)

]1/γ
[

1−
(

P(X)
P(ζ )

)(γ−1)/γ
]−1/2

dζ . (2.21)

Equations (2.20) and (2.21) slightly differ from the result obtained by Balakrishnan
et al. (1991), where an extra (ζ/X) term appears as part of the integrand.
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2.6. Integral formulation with pressure dependence
In practice, Uw(ξ) and p(ξ) may be linked according to Saint-Robert’s burning-rate
law with constant K and n,

mw = ρwUw =Kpn, (2.22)

where mw represents the mass flux at the wall. Then using the ideal gas law to
eliminate the density, the injection velocity may be expressed as

Uw =

(
γ − 1
γ

)
cp

Tw(ξ)

p(ξ)
mw(ξ). (2.23)

After substituting Uw into (2.16), the dimensionless forms of P(X), X and ζ may be
updated viz.

P(X)=
p(x)
p0
, (2.24)

X =

√
γ − 1
γ

Kpn−1
0

2a

∫ x

0

√
2cpTw(x′) dx′, (2.25)

ζ =

√
γ − 1
γ

Kpn−1
0

2a

∫ ξ

0

√
2cpTw(x′) dx′. (2.26)

At length, equations (2.15) and (2.16) become

( r
a

)2
= 2

√
γ − 1
γ

∫ ζ

0
[P(ζ ′)]n−1

[
P(ζ ′)
P(X)

]1/γ
[

1−
(

P(X)
P(ζ ′)

)(γ−1)/γ
]−1/2

dζ ′, (2.27)

√
γ

γ − 1
= 2

∫ X

0
[P(ζ )]n−1

[
P(ζ )
P(X)

]1/γ
[

1−
(

P(X)
P(ζ )

)(γ−1)/γ
]−1/2

dζ . (2.28)

The procedure for solving this problem consists of integrating (2.28) to the extent
of determining the pressure as a function of x. Equation (2.27) can then be evaluated
to deduce the radial coordinate in terms of x and ξ . With the pressure distribution at
hand, the temperature may be obtained using the isentropic relation of (2.13). Lastly,
the velocity may be extracted from the total temperature given by (2.12).

In the calculation of the Mach number, the compressible relation, M = u/√
(γ − 1)cpT , may be readily employed. In fact, the substitution of (2.12) into

the Mach number relation leads to

M =

√(
2

γ − 1

) [
Tw(ξ)

T(x, ξ)
− 1
]
=

√√√√( 2
γ − 1

)[(
P(ζ )
P(X)

)(γ−1)/γ

− 1

]
, (2.29)

where the expression on the right-hand side may be obtained using the isentropic
identity given by (2.13).
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2.7. Numerical integration
In the numerical integration of (2.28), an inverse procedure is pursued. This is
accomplished by switching to P as the independent variable, and calculating X in
increments of 1P. The scheme begins at the headwall boundary where X = 0 at
P= 1. The discretized pressure field can be expressed by Pi= 1− i1P. Subsequently,
one may solve for Xi at every step until choking conditions, which occur when
dP/dX→∞. Bearing these constraints in mind, a variable transformation in (2.28)
results in

2

√
γ − 1
γ

∫ 1

P
(P′)n−1

(
P′

P

)1/γ
[

1−
(

P
P′

)(γ−1)/γ
]−1/2[

−
dX(P′)

dP′

]
dP′=

∫ 1

P
f (P′) dP′= 1.

(2.30)
To overcome the singularities that appear at the boundaries, this integral is subsequently
split into three parts, specifically,∫ Pi+1

Pi

f (P′) dP′︸ ︷︷ ︸
1

+

∫ 1−1P

Pi+1

f (P′) dP′︸ ︷︷ ︸
2

+

∫ 1

1−1P
f (P′) dP′︸ ︷︷ ︸
3

= 1. (2.31)

In the region near P = Pi, the first integrand may be approximated such that an
expression may be retrieved in a form that is straightforward to evaluate for an
arbitrary pressure exponent n. We get∫ Pi+1

Pi

f (P′) dP′ ≈ 2
∫ Pi+1

Pi

(P′)n−1
(

P′ − Pi

P′

)−1/2(
−

dX
dP

)
i

dP′. (2.32)

The second integral may be computed, for example, using the trapezoidal rule. This
involves finite step discretization,∫ 1−1P

Pi+1

f (P′) dP′ ≈1P

(
f1 + fi+1

2
+

i+2∑
k=2

fk

)
, (2.33)

where

fk = 2

√
γ − 1
γ
[Pk]

n−1

[
Pk

Pi

]1/γ
[

1−
(

Pi

Pk

)(γ−1)/γ
]−1/2(

−
dX
dP

)
k

. (2.34)

In the third integral, where X is small, P(X) may be expanded using a polynomial of
the form

P(X)= 1− αX2
+ · · ·. (2.35)

By inserting (2.35) into the integral and assuming αζ 2
� 1, we are left with∫ 1

1−1P
f (P′) dP′ ≈ 2

√
γ − 1
γ

(Pi)
−1/γ

[
1− (Pi)

(γ−1)/γ ]−1/2
√
1P
α
. (2.36)

To evaluate (2.36), α must be determined beforehand. We accomplish this by
substituting (2.35) into (2.28) and returning

2
√
α

∫ X

0

1√
X2 − ζ 2

dζ = 1. (2.37)
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(2.28) (2.27)
(2.13)

(2.29)

(2.12)

coordinate

Step in i

coordinate

FIGURE 2. Flowchart depicting the main steps of the numerical procedure needed to
extract the velocity from the integral formulation of the pressure.

We thus deduce that a value of α =π2 will be needed to satisfy (2.37).
Equation (2.31) is now linear in Xi. Starting with X= 0 at P= 1, one may solve for

Xi at every step until choking conditions are attained, at which point the average Mach
number reaches unity. In the cases described hereafter, we take 1P to be 5 × 10−4.
With the pressure distribution fully determined, it may be substituted into (2.27) and
integrated numerically. This step returns the corresponding radius, which is needed
for a complete description of the streamlines. Equations (2.12) and (2.13) may then
be utilized to extract the temperature and velocity. The resulting process is illustrated
in figure 2, where a procedural flowchart is furnished.

3. Results and discussion
3.1. On the pressure and temperature variations

After solving (2.30) in decrements of 1P, the pressure may be reproduced as a
function of x. Assuming a constant temperature along the sidewall, the resulting
solutions for P and T are showcased in figure 3 for n = 0 and n = 1. Also shown
on the graphs are the analytical predictions based on the one-dimensional theory of
Gany & Aharon (1999), and the two-dimensional analysis of Majdalani (2007).

Based on figure 3, a qualitative agreement may be seen to occur between the
present, semi-analytical formulation, and Majdalani’s closed-form solution. The same
may be said concerning the one-dimensional solution of Gany & Aharon (1999),
despite its entirely dissimilar form. The small differences separating these estimates
may be attributed to their underlying assumptions. On the one hand, the instantaneous
burning rate of the one-dimensional solution is taken to be uniform along the
grain, thus leading to a constant mass flux at the simulated propellant surface. A
corresponding relation may be reproduced in the present solution by setting n= 0, as
reflected in the improved agreement with one-dimensional theory (see figure 3a,b). In
summary the one-dimensional model predicts

M1D =

√
1−

√
1− χ 2

1+ γ
√

1− χ 2
; χ ≡

x
Ls
; P1D =

1+ γ
√

1− χ 2

1+ γ
,

T1D =

(
1+ γ

√
1− χ 2

1+ γ

)1−1/γ

.


(3.1)

On the other hand, the uniform sidewall injection velocity of the two-dimensional
axisymmetric solution of Majdalani (2007) corresponds to the n = 1 case presented
here. This may also explain the improved agreement with two-dimensional theory
in figure 3(c,d). In the interest of clarity, the two-dimensional solution obtained by
Majdalani (2007) is reproduced in appendix A.
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FIGURE 3. Comparison between the present semi-analytical formulation and both one- and
two-dimensional solutions by Gany & Aharon (1999) and Majdalani (2007). Results are
provided for the (a,c) pressure and (b,d) temperature distributions using γ = 1.4, Mw =

0.05, and either n= 0 (constant mass flux), or n= 1 (constant wall injection speed). Also
shown in (c,d) is the n= 0.67 case corresponding to solid propellant burning.

In figure 3(a,b), the reason for the slight discrepancy at n = 0 between our
predictions and those of the one-dimensional analytical model may be attributed
to two-dimensional effects. As for the n= 1 case, the present model in figure 3(c,d)
appears to be in relatively good agreement with the two-dimensional approximation
everywhere except in the vicinity of the choke point, where the difference reaches
approximately 2 % at x/Ls= 0.9. Specifically, the tailing ends of the numerical curves
in figure 3(c,d) undergo an abrupt steepening process as x→ Ls, thus leading to a
minor departure from the two-dimensional formulation. Two possible explanations
may be offered in this respect. The first may be attributed to the linear approximation
affecting pressure integration in (2.32), especially that these approximations can
deteriorate near the choke point. The second source of disparity may be connected
with the accuracy of the Rayleigh–Janzen expansion used by Majdalani (2007) in the
vicinity of x = Ls. However, as shown by Tollmien (1941) and further confirmed by
Kaplan (1946), the Rayleigh–Janzen paradigm continues to hold past sonic conditions.
As for the n= 0.67 case, which has been attributed to solid propellant regression rate
behaviour, the corresponding chained lines in figure 3(c,d) reflect a slight increase
in the local pressure and temperature along the length of the chamber relative to the
constant Uw model.

Another factor that may have a bearing on the observed differences may be
connected to the underlying thermodynamic conditions adopted in these models. For
example, by holding entropy constant along streamlines, the present solution proves
to be isentropic, whereas Majdalani’s formulation, which assumes constant entropy
along the injecting wall, leads to a strictly homentropic model. Taken over the entire
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fluid domain, Majdalani (2007) assumes

T/T0 = (p/p0)
(γ−1)/γ , (3.2)

with the corresponding entropy change amounting to:

s− s0 = cp ln(T/T0)− R ln(p/p0), (3.3)

where the subscript 0 denotes a reference point. Clearly, when (3.2) is inserted
into (3.3), it leads to the vanishing of the entropy change throughout the chamber.
However, in the present formulation, we recall that (2.10) reduces the entropy
changes along a streamline, and would thus account for entropy changes as the
flow progresses downstream. In reality, as the critical distance is approached, both
turbulence and viscous effects become significant, and these may render any reversible
flow assumption invalid. In this event, the homentropic approximation, which prevents
entropy from varying in the streamwise direction, is likely to become less accurate
than the isentropic formulation.

Before leaving this section, it may be interesting to note that the four parts of
figure 3 are obtained using a single value of the wall Mach number, namely, of 0.05.
Nonetheless, these plots remain characteristic of the solution at other wall Mach
numbers. This may be attributed to the results being displayed as function of the
geometric similarity coordinate, χ ≡ x/Ls. As one may surmise from (A 1) to (A 4),
the similarity with respect to χ leads to a formulation that is virtually independent of
Mw. Another interesting feature may be associated with the sonic to headwall pressure
ratio, as it may be evaluated to be 0.3361 in the present formulation, thus lower than
the pressure ratio obtained from one-dimensional and two-dimensional theories which,
for γ = 1.4, yield (1+ γ )−1

≈ 0.4167 and 0.5013, respectively.

3.2. On the local Mach number and critical length calculations
With the present study being axisymmetric, the calculation of the critical length,
which is otherwise straightforward to define in one-dimensional space, deserves
special attention. In the classic sense, Ls denotes the distance from the headwall to
the point along the axis where the centreline speed reaches the velocity of sound
(Majdalani 2007). At this location, however, the bulk motion of the gases remains
subsonic everywhere except at r= 0. Evidently, a new definition of the critical length
is warranted, specifically one that considers the flow to be choked only when the
local area-averaged Mach number, M, would have reached unity. To this end, an
area-averaged critical length, Ls, may be introduced, where Ls > Ls. In fact, typical
values of Ls seem to vary between 1.1 and 1.2Ls, depending on the model and gas
property γ .

Using Ls as a reference length scale in the streamwise direction, a comparison of
the centreline Mach number, Mc, is provided in figure 4(a,b) for n = 0 and n = 1,
respectively. In both parts of the graph, the two-dimensional analytical model is
seen to outperform the one-dimensional solution, although better agreement with
the integral representation appears in figure 4(b). This behaviour may have been
anticipated because the axisymmetric analytic model is derived under the n = 1
assumption. Another point of disparity may be associated with the centreline Mach
numbers exceeding unity at x = Ls. Conversely, the one-dimensional Mach number,
in which area-averaging is intrinsic, is seen to reach sonic conditions at x = Ls. As
shown in figure 4(c,d), the analytical area-averaged Mach number and, in principle,
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FIGURE 4. Evolution of centreline Mach numbers along with available one- and
two-dimensional solutions for (a) n = 0 and (b) n = 1. The same is repeated using the
area-averaged Mach number for (c) n= 0 and (d) n= 1. Here γ = 1.4 and Mw = 0.05.

our numerically area-averaged solution, exhibit steeper curvatures that closely follow
the dotted, one-dimensional prediction.

It may be instructive to add that, based on (2.29), the Mach number may be
calculated over the entire chamber. However, owing to the variables being expressed
in terms of the axial location and the streamfunction tip ξ , a transformation is
required to convert ξ back to the radial coordinate by way of (2.27). The resulting
operation leads to a non-uniform mesh that requires careful treatment and reverse
engineering. After some effort, the contour plots of the numerically extracted local
Mach numbers are displayed in figure 5 using solid lines, where the shape of the
M= 1 curve is clearly delineated. Here the axisymmetric analytical predictions of the
iso-Mach number lines are presented side by side using broken lines.

Despite the slight dissimilarity in their contour curvatures near choking (upper
rightmost corner), the two models seem to display visible agreement in their Mach
number predictions everywhere else. Clearly, the traditional concept of a choke point
proves to be limited, as the iso-Mach number contours consist of lines of revolution
about the chamber axis. At the outset, the actual locus of sonic velocities forms a
curved surface that can be captured either numerically or analytically for M=1. In the
present configuration, such a condition can only be realized along a two-dimensional
axisymmetric surface instead of a local point.

Before leaving this section, it may be useful to note that figures 4 and 5 retain a
rather universal character; being plotted versus x/Ls, these graphs will not change if a
different wall Mach number is used to reproduce them. This too may be attributed to
the geometric self-similarity with respect to χ , which is consistent with (A 1)–(A 4).
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FIGURE 5. Local Mach number contours for constant wall injection speed using the
present integral formulation (——) as well as the axisymmetric analytical approximation
(– – –) obtained by Majdalani (2007). Here n= 1, γ = 1.4 and Mw = 0.01.
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FIGURE 6. Numerical streamlines for (a) Mw= 0.01 and (b) Mw= 0.005 compared to the
incompressible solution by Culick (1966). Here γ = 1.4.

3.3. Compressible streamlines
Having completed our description of the Mach number variation, characteristic
streamlines are displayed in figure 6 based on the numerical integration of (2.27).
This is carried out by first specifying a value of ξ , and then integrating at discrete
locations of x until the centreline Mach number has reached unity. The corresponding
point marks the critical distance to the sonic point, which enables us to calculate
Ls for each of the test cases at hand. The procedure also enables us to collect the
family of coordinates at a fixed value of ξ , thus leading to an assortment of points
that constitute a streamline. By comparing the results in figure 6 at two wall Mach
numbers of (a) 0.01 and (b) 0.005, it is clear that compressibility becomes more
pronounced when the mean-flow velocity is increased (for γ = 1.4). This is reflected
in the faster flow turning that occurs at higher injection Mach numbers, specifically
in figure 6(a), where Ls

∼= 24.44, than in figure 6(b), where Ls
∼= 48.87. However,

by replotting these two cases in terms of x/Ls, the ensuing graphs become identical.
This visual artefact is caused by the strong similarity of the flow motion with respect
to χ .

3.4. Axial and radial velocities
As alluded to in the flowchart of figure 2, the last procedural step consists of
extracting the axial velocity from (2.12). The outcome is featured in figure 7 where u
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FIGURE 7. Spatial evolution of the axial velocity for (a) Mw = 0.01 and (b) Mw = 0.005
at x/Ls = 0.2, 0.4, 0.6, 0.8, and 1. Results are compared to the compressible solution by
Majdalani (2007). Here γ = 1.4.

is depicted at evenly spaced intervals of x/Ls= 0.2, 0.4, . . . , 1, and for injection wall
Mach numbers of (a) 0.01 and (b) 0.005. Graphically, it may be interesting to observe
the strong similarity in the evolution of the velocity profile with respect to χ . Also
featured on the graph is the two-dimensional analytical solution by Majdalani (2007).
Unsurprisingly, these results compare quite favourably to the numerical simulations
and laboratory measurements reported by Traineau et al. (1986), Balakrishnan et al.
(1992), and Apte & Yang (2001). By comparison to Taylor–Culick’s incompressible
mean-flow solution, it may be seen that the axial velocity develops into a blunter,
top-hat profile as x→ Ls. The steepening of the solution into a fuller, turbulent-like,
slug motion is consistent with both theoretical and experimental predictions. It
is accompanied by progressively sharper wall gradients that significantly alter the
mean-flow character.

With the axial velocity in hand, one can deduce the radial velocity evolution from
the continuity equation. In this manner, a numerical approximation of v may be
retrieved and presented in figure 8(a), at multiple locations in the chamber; this
is mainly done to aid in visualizing the actual development of the profile as the
flow advances downstream. Here too, the radial velocity approximation by Majdalani
(2007) is depicted in figure 8(b) to showcase the consistent agreement between the
two models.

3.5. Computational verification
The present model may be compared to numerical simulations using a second-order
finite volume solver and two turbulent models, namely, the k–ω and the Spalart–
Allmaras relations, as well as a strictly inviscid solver. Based on (A 5), we estimate
that an aspect ratio of 13 will be sufficient to induce sonic conditions, and proceed
to define a porous tube of 1 m radius and 13 m length. Then, using air as a working
fluid with a density of 1.18 kg m−3 and a wall Mach number of 0.02, we impose
a 6.86 m s−1 velocity inlet condition at the sidewall along with a static pressure of
101 720 Pa. Subsequently, the domain is discretized using 800 and 100 nodes in the
axial and radial directions, respectively. We also use a Courant number of 70 and
a relaxation factor of 0.5 until our convergence criterion of 10−7 is secured in the
continuity, momentum, ideal gas, and energy equations.
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FIGURE 8. Spatial evolution of the radial velocity for Mw = 0.01 at x/Ls = 0.2, 0.4, and
0.6 according to (a) the present solution and (b) the compressible model by Majdalani
(2007).
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FIGURE 9. Comparison of the present solution to computational predictions from
two turbulent models and a strictly inviscid compressible solver for (a) the pressure
distribution, (b) the streamwise velocity at the critical length, (c) the temperature
distribution, and (d) the centreline Mach number. Here γ = 1.4, L= 13, and Mw = 0.02.

After some post-processing, figure 9(a) is used to display the pressure distribution
along the centreline, as done previously by Majdalani (2007). Although numerical
simulations do not perfectly coincide with the theoretical models, the consistency in
the sloping curvature of the various pressure profiles tends to confirm the effectiveness
of the methods employed. This is especially true in the inviscid computation, which
closely mimics the axial distribution of the present formulation, followed by the
k–ω and the Spalart–Allmaras simulations. The differences observed may be partly
attributed to viscosity and turbulence effects, which are accounted for in the turbulent
computations but not in the theoretical solutions. For instance, when viscosity is
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FIGURE 10. Relative (a,c) and absolute deviations (b,d) between the present solution and
the inviscid compressible solver (——) as well as the k–ω (– – –) and the Spalart–Allmaras
simulations (— · —) for (a) the pressure, (b) the streamwise velocity at the critical length,
(c) the temperature, and (d) the centreline Mach number. Here γ = 1.4, L= 13, and Mw=

0.02.

recognized as a damping agent, its presence may be seen to reduce the transfer of
thermal to kinetic energy, and this deficiency leads to an increase in the chamber
pressure everywhere except in the vicinity of the choking area. Also shown in
figure 9(b) are comparisons of the streamwise velocity profiles, which are evaluated
at the critical distance, where disparities between various models are most appreciable.
Here the velocities are normalized with respect to the centreline speed in order to
more effectively showcase the blunting character induced in the profile as a result
of fluid dilatation. Interestingly, the centreline velocities predicted by the three
computational models fall within a few percent of theoretical approximations. In
this case, the Spalart–Allmaras model seems to outperform the k–ω simulation in
matching the radial steepening of the axial flow profile in the mid-annular region
between the centreline and the wall. The inviscid simulation, however, remains close
to the integral formulation over the majority of the chamber radius, although its
accuracy is occasionally matched near the wall by the k–ω computation.

Similar trends are captured in figures 9(c) and 9(d), where a strong agreement
may be noted between the present approximation for the temperature and centreline
Mach numbers, and simulations based on both inviscid and k–ω models. In fact,
the k–ω predictions for the pressure and temperature seem to mirror those of the
inviscid solver along the length of the chamber. In both figures 9(c) and 9(d), the
agreement with the inviscid solver is most appreciable in the streamwise direction up
to approximately 70 % and 80 % of the sonic length, respectively. In the remaining
section of the chamber, the k–ω simulations appear to be nearer to the integral model,
although their deviations remain on the same order as that of the inviscid solver.

To better quantify these differences, a plot of each model’s deviation relative to the
integral formulation is provided in figure 10. Consistently with the previous discussion,
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it may be seen in figure 10(a) that the relative deviation of the pressure acquired
by the inviscid solver remains lower than its k–ω and Spalart–Allmaras counterparts
for 0 6 x 6 L̄s. The same statement would have been applicable to figures 10(c)
and 10(d) were it not for a small segment, not exceeding 20 %–30 % of the chamber
length, where the k–ω becomes slightly more accurate than the inviscid solver. In
both cases, however, the inviscid solver regains its supremacy within 3 % of reaching
sonic conditions. As for the absolute deviations of centreline velocities shown in
figure 10(b), the ability of the inviscid solver to mimic the integral formulation
remains consistent, although it is eclipsed by the Spalart–Allmaras model over a
short, annular range that extends from about 42 % to 92 % of the chamber radius. As
the sidewall is approached, the k–ω deviation, once more, falls below the inviscid
solver’s prediction, albeit by a barely perceptible amount.

From a global predictive sense, it may be safely argued that the inviscid solver
remains the most consistent in simulating the integral formulation, although it can be
at times superseded locally by the more practical k–ω or Spalart–Allmaras models. In
fact, it may be gratifying to note the confluence of all three models, as manifested
by their modest deviations from the integral approach, in supporting the practicality
of the present solution and its possible extension to more realistic flows.

4. Exact inversion using an Abel transformation
In lieu of a numerical solution, our integral equation can be solved exactly, for

specific values of γ , to the extent of producing closed-form expressions for the
pressure distribution. This may be accomplished by means of an Abel inversion,
which is defined between two functions f (s) and g(t), given a parameter α ∈ ] 0, 1 [.
Starting with the definite integral,

f (s)=
∫ s

0

g(t)
(s− t)α

dt; 0<α < 1 (4.1)

its Abel inversion takes the form,

g(t)=
sin(πα)

π

d
dt

∫ t

0

f (s) ds
(t− s)1−α

. (4.2)

To make use of this formulation, we first rearrange (2.28) into

P(X)1/γ = 2

√
γ − 1
γ

∫ P(ζ )

1

P(ζ )(n−1)+(γ+1/2γ )√
P(ζ )(γ−1)/γ

− P(X)(γ−1)/γ

[
dζ

dP(ζ )

]
dP(ζ ). (4.3)

A dual variable transformation in s and t may then be inserted into (4.3), with the aim
of converting the integrand into a form that conforms to (4.2). This may be achieved
by introducing

s= 1− P(X)(γ−1)/γ , t= 1− P(ζ )(γ−1)/γ (4.4a,b)

and substituting these two quantities back into (4.3). This enables us to recognize that
α = 1/2 must be used to accompany

f (s)= P(X)1/γ = (1− s)1/(γ−1),

g(t)=−2
√

γ

γ − 1
P(ζ )1/2(γ+3)/γP(ζ )n−1 dζ

dP(ζ )
.

 (4.5)
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With the two Abel functions in hand, application of the integral inversion given by
(4.2) leads to

g(t)=
1
π

d
dt

∫ t

0

(1− s)1/(γ−1)

√
t− s

ds. (4.6)

At this juncture, it may be useful to note that (4.6) is integrable for integer values of
k ≡ 1/(γ − 1). This particular constraint translates into a finite set of γ values that
bracket the physical range of specific heat ratios, i.e. 1.10, 1.11, . . . , 2.0. For example,
when γ = 1.5, we are left with

dζ
dP(ζ )

=
1− 8[P(ζ )]2/3 + 4[P(ζ )]1/3

6π[P(ζ )]n+1/2
√

3− 3[P(ζ )]1/3
. (4.7)

Equation (4.7) provides a relation between the pressure and the axial distance ζ . Since
the pressure is one-dimensional, it is appropriate to replace ζ with the axial coordinate,
and then integrate the resulting form of (4.7) to obtain:

n= 0 : X =
(3+ 8P2/3

+ 4P1/3)P1/6
√

1− P1/3 − 3 sin−1(P1/6)

6π
√

3
+C1, (4.8)

n= 1 : X =−
(1+ 14P1/3)

√
1− P1/3 + 24

√
P sin−1(P1/6)

3π
√

3P
+C2. (4.9)

At the headwall, the boundary condition, P= 1, may be readily applied to determine
C1 =

√
3/12 and C2 = (4/3)

√
3. In view of (4.8) and (4.9), we emerge with two

distinct solutions for the case of γ = 3/2. As for other values of γ , the corresponding
expressions may be retrieved from a recursive formulation. After some effort, it may
be shown that the n= 0 case yields:

X(P, k) =

√
P1/(k+1) − P2/(k+1)

2π
√

k+ 1

(
k−1∏
l=0

2+ 2l
1+ 2l

)
k∑

m=0

(
Pm/(k+1)

k−m−1∏
l=0

1+ 2l
2+ 2l

)

−
arcsin P1/(2(k+1))

2π
√

k+ 1
+

1
4
√

k+ 1
, (4.10)

where γ = 1+ 1/k; 1 6 k 6 10. The requirement for k to be an integer enables us to
extract solutions over a working range of 1.10 6 γ 6 2.00. For the particular case of
n= 1, the list of exact solutions is presented in Table 1.

Equation (4.10) embodies the one-dimensional pressure distribution as a function of
the axial distance. Its range of applicability ends at the point where choking occurs,
which is accompanied by dP/dX→∞, i.e. a condition that enables us to calculate
the critical distance. Although not shown, the foregoing approximations obtained
through an Abel inversion have been thoroughly verified numerically. Their use can
provide an equivalent avenue for characterizing the flow field. For example, with
the pressure distribution in hand, one can sample the data and solve for the radial
distance numerically using

( r
a

)2
= 2

√
γ − 1
γ

∫ ζ

0
[P(ζ ′)]n−1

[
P(ζ ′)
P(X)

]1/γ
[

1−
(

P(X)
P(ζ ′)

)(γ−1)/γ
]−1/2

dζ ′, (4.11)
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γ X(P)

n= 0 (constant injection mass flux)

[1.1, 2]

√
P1/(1+k) − P2/(1+k)

2π
√

1+ k

(
k−1∏
l=0

2+ 2l
1+ 2l

)
k∑

m=0

(
Pm/(1+k)

k−m−1∏
l=0

1+ 2l
2+ 2l

)

−
arcsin P1/(2(1+k))

2π
√

1+ k
+

1
4
√

1+ k

n= 1 (constant injection velocity)

2 −

√
2

πP1/4

[√
1− P1/2 − 2P1/4 arccos(P1/4)

]
3
2

−
1

3π
√

3P

[
(1+ 14P1/3)

√
1− P1/3 − 24

√
P arccos(P1/6)

]
4
3

−
2

75πP5/8

[(
3+ 14P1/4

+ 148
√

P
)√

1− P1/4 − 240P5/8 arccos(P1/8)
]

5
4

−
1

735π
√

5P7/10

[
(75+ 258P1/5

+ 904P2/5
+ 8528P3/5)

√
1− P1/5

− 13 440P7/10arccos(P1/10)
]

6
5

−

√
2/3

6615πP3/4

[
(245+ 730P1/6

+ 1884P1/3
+ 5872

√
P+ 52 064P2/3)

√
1− P1/6

− 80 640P3/4 arccos (P1/12)
]

7
6

−
1

114 345π
√

7P11/14

[ (
6615+ 18 130P1/7

+ 40 520P2/7
+ 92 976P3/7

+ 271 808P4/7
+ 2 317 696P5/7

)√
1− P1/7 − 3 548 160P11/14arccos(P1/14)

]
8
7

−
2
√

2
19 324 305πP13/16

[ (
114 345+ 296 730P1/8

+ 609 980P1/4
+ 1 211 920P3/8

+ 2 607 456
√

P+ 7 320 448P5/8
+ 60 766 976P3/4

)√
1− P1/8

− 92 252 160P13/16 arccos (P1/16)
]

9
8

−
1

96 621 525πP5/6

[ (
1 288 287+ 3 216 906P1/9

+ 6 261 192P2/9

+ 11 441 360P1/3
+ 21 312 640P4/9

+ 44 025 600P5/9
+ 120 202 240P2/3

+ 978 421 760P7/9
)√

1− P1/9 − 1 476 034 560P5/6 arccos (P1/18)
]

10
9

−

√
2/5

1 861 574 715πP17/20

[(
32 207 175+ 78 156 078P1/10

+ 146 371 764P1/5

+ 253 240 848P3/10
+ 433 851 040P2/5

+ 775 880 960
√

P
+ 1 558 371 840P3/5

+ 4 168 878 080P7/10
+ 33 430 343 680P4/5

)√
1− P1/10

− 50 185 175 040P17/20 arccos(P1/20)
]

TABLE 1. Continued on next page.
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11
10

−
1

61 093 497 465π
√

11P19/22

[(
1 861 574 715+ 4 418 824 410P1/11

+ 8 042 346 312P2/11
+ 13 388 468 016P3/11

+ 21 716 356 032P4/11

+ 35 717 180 800P5/11
+ 62 103 526 400P6/11

+ 122 200 147 968P7/11

+ 321 853 251 584P8/11
+ 2 550 743 154 688P9/11

)√
1− p1/11

+ 3 814 073 303 040P19/22 arccos(P1/22)
]

TABLE 1 (cntd). Pressure relations for different values of the heat capacity ratio γ .

where all quantities on the right-hand side are known. The temperature may be simi-
larly extracted from the isentropic relation, T(x, ξ)/[p(x)](γ−1)/γ

= Tw(ξ)/[p(ξ)](γ−1)/γ .
This enables us to retrieve the axial velocity using energy conservation,

u(x, ξ)=
√

2cp[Tw(ξ)− T(x, ξ)]. (4.12)

Subsequently, the radial component of the velocity may be evaluated from the
continuity equation using forward-difference discretization. Finally, to calculate the
Mach number, one may use (2.29).

5. Flow driven by oscillatory wall injection
Having verified the present formulation, its ability to accommodate various injection

profiles can be immediately tested. Originally, the solution is developed for a
propellant burning-rate behaviour that follows Saint-Robert’s power law. However,
in modelling erosive burning of propellants, it is useful to explore the effects of
varying the velocity profile along the injecting surface (Zhang & Jackson 2010;
Topalian et al. 2011). This may be accomplished by first normalizing the variables
P(X), X and ζ with no pressure dependency. For this, we let:

P(X)=
p(x)
p0
, (5.1)

X =
√

γ

γ − 1
1
a

∫ x

0

Uw(x′)√
2cpTw(x′)

dx′ (5.2)

and

ζ =

√
γ

γ − 1
1
a

∫ ξ

0

Uw(x′)√
2cpTw(x′)

dx′. (5.3)

Except for P, the normalization process for X and ζ requires the use of their upper
integral bounds. This group of coordinate distortions transforms (4.11) and (2.28) into

( r
a

)2
= 2

√
γ − 1
γ

∫ ζ

0

[
P(ζ ′)
P(X)

]1/γ
{

1−
[

P(X)
P(ζ ′)

](γ−1)/γ
}−1/2

dζ ′ (5.4)

and √
γ

γ − 1
= 2

∫ X

0

[
P(ζ )
P(X)

]1/γ
{

1−
[

P(X)
P(ζ )

](γ−1)/γ
}−1/2

dζ . (5.5)
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0.2 0.4 0.6 0.8 1.00

U

FIGURE 11. Spatially oscillatory wall injection profile.

Equations (5.4) and (5.5) can be reproduced from (2.28) and (4.11) by suppressing
the pressure dependency of the wall mass flux and setting n = 1. For the reader’s
convenience, the resulting solutions are appended to Table 1.

At this stage, an oscillatory velocity profile at the injecting wall may be imposed
according to Zhang & Jackson (2010), as depicted in figure 11, using

Uw(x)=U
[

1+ β sin
(

2πη
x
Ls

)]
, (5.6)

where β and η are parameters that control the amplitude and the number of spatial
wavelengths between x = 0 and Ls. Assuming a constant temperature along the
sidewall, equation (5.2) can be integrated, given that U and Tw are quantities which
may be deduced from the characteristic wall Mach number. Next, the axial velocity
may be determined in terms of x to account for the spatial oscillations.

To examine the effect of the propellant burning-rate fluctuations on the flow, we
start by computing the velocities with an oscillation amplitude of 30 % of the blowing
speed (i.e. β = 0.3). We then subtract the outcome from a flow field driven by a
uniform injection profile (of magnitude U). Results are given in figure 12 at different
axial locations for (a) η = 5 and (b) η = 10. In this graph, the velocity magnitude
is rescaled with respect to the centreline velocity; this auxiliary step makes it easier
for us to visualize and infer the effects of burning-rate fluctuations. Axially, the
propagation of disturbances becomes magnified in the streamwise direction, thus
reaching a maximum decrement of 9.3 % (at the choking length) for η = 5 and
6.1 % for η= 10. Conversely, the radial propagation of disturbances originating at the
sidewall becomes less pronounced while moving downstream. Although the amplitude
of oscillations is taken to be the same for both cases, higher wavenumbers lead to a
more rapid attenuation of sidewall disturbances.

One can also study the pressure perturbations arising from this undulating boundary.
Figure 13 showcases the pressure fluctuations being subtracted from the flow driven by
uniform injection. On the one hand, results show an increase in pressure of up to 9.1 %
for η=5, while, on the other hand, the pressure is decreased by 1.6 % for η=10. This
unpredictable response of the pressure to surface irregularities or propellant burning-
rate fluctuations warrants further examination. It also explains some of the challenging
aspects that are often encountered when seeking to describe complex mechanisms such
as erosive burning or resonant behaviour.

To explain the seemingly unpredictable response of the pressure, it is possible to
evoke a concept that is traditionally used in stability characterization. Realizing that
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FIGURE 12. Axial velocity fluctuations due to spatially oscillatory injection using (a) η=
5 and (b) 10. Here β = 0.3 and γ = 1.33.
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P
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FIGURE 13. Pressure fluctuations due to spatially oscillatory injection using (a) η= 5 and
(b) 10. Here β = 0.3 and γ = 1.33.

the amplitudes of the oscillatory pressure grow in one case and decay in the other,
the fluctuations in question may be likened to the spatial coupling observed in the
vicinity of resonant modes that arise in acoustical or vibrational analysis. Although
the time-dependent formulation is not concerned with stability, it displays a behaviour
that is characteristic of spatial stability problems. To better understand this analogy, we
identify the resonant modes associated with a cylindrical cavity in which the acoustic
frequencies correspond to the roots of J′θ(kθη)= 0, where J and k denote the Bessel
function of the first kind and the frequency, whereas θ and η allude to the tangential
and radial mode numbers, respectively. In the axisymmetric case, where the tangential
component is ignored, one takes θ = 0. In this context, the cases of η = 5 and 10
display frequencies that fall close to the 10th and 20th modes, and these can naturally
couple with the undulating injection velocity. It can thus be seen that the coupling
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5
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0 0.2

Uniform injection

0.4 0.6 0.8 1.0

FIGURE 14. Comparison of the shear deformation rate along the injecting surface for three
cases corresponding to: uniform injection, oscillatory injection with η= 5, and oscillatory
injection with η= 10.

between the spatial velocity oscillations and acoustic frequencies warrants a dedicated
study that we hope to undertake in future work.

A reacting solid propellant in a crossflow can suffer variations in its local burning
rate, thus leading to erosive burning. Naturally, the wall shearing deformation rate
becomes a parameter of interest when studying such variations along solid propellant
grains (Jackson 2012). As defined by Topalian et al. (2011), the wall shearing rate
may be evaluated as the gradient of the streamwise velocity in the normal direction
to the injecting surface, (du/dy)w. In our case, figure 14 is used to compare the shear
rate along the injecting surface for uniform wall injection as well as two undulating
flows corresponding to η = 5 and 10. Unsurprisingly, the uniformly injected motion
displays the highest shearing rates at the endwall as the flow approaches choking
conditions, where the streamwise-to-crossflow velocity ratio reaches its peak value. As
for the undulating flow models, they too undergo a similar steepening of their shearing
rates, with visible differences occurring between the η = 5 and 10 models as x/Ls
starts to exceed approximately 0.3. Physically, as the oscillatory frequency increases,
the solution tends to approach that of a uniformly injected flow. This behaviour may
be attributed to the reduced velocity oscillation amplitudes that accompany successive
increases in η, as confirmed in figure 12(b).

By virtue of this example, the effectiveness of the present framework in reproducing
variable surface injection conditions is showcased using a spatially oscillatory sidewall
injection pattern. In a more dedicated study, such capability may be more thoroughly
invested in modelling the erosive burning mechanism that affects propellant regression.
For example, by comparing the velocity and pressure fluctuations at different spatial
wavenumbers, it may be seen that a lower wavenumber can have a greater impact on
the pressure amplitude.

6. Conclusions
In this article, the integral formulation of the axisymmetric porous cylinder, which

was initiated by Traineau et al. (1986) in the context of a planar, two-dimensional
flow analogue, is carefully reconstructed and compared to one- and two-dimensional
analytical solutions obtained under isentropic and homentropic flow conditions. At the
outset, we find that the level of agreement between the closed-form approximations
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and the integral representation is consistent with the sidewall boundary conditions
associated with each of these models. Being derived for a uniform mass flux at
the sidewall, the one-dimensional model seems to provide a better estimate of the
inverted integral at a pressure exponent of n = 0. Such a condition suppresses the
velocity dependence on the pressure and ensures a constant mass flux at the sidewall.
Conversely, the n= 1 case leads to a constant wall-normal velocity, which coincides
with one of the boundary conditions used in constructing the axisymmetric analytical
model of Majdalani (2007). Numerical predictions for this case using a strictly
inviscid, compressible solver fall in close agreement with the present formulation.

In all cases considered, the main discrepancies arise near the sonic point, where
disparities may be attributed to the various forms of irreversibilities. Furthermore,
when comparing the level of difficulty needed to reproduce these solutions, the
closed-form analytical approximations seem to substantially outperform the semi-
analytical techniques. The latter require piecewise numerical integrations, sequential
inversions, and backward transformations to retrieve the original variables of interest.
The problem is further exacerbated by the variable extraction process occurring
over a highly non-uniform mesh. The ensuing operation can render simple steps
extraordinarily challenging, especially when attempting to extrapolate related variables
and derivatives that are needed over a uniform grid. Such effort can prove to be
laborious when compared to the ease with which the strictly analytical models are
implemented and resolved. Nonetheless, the integral formulation remains essential for
a number of reasons. For example, unlike the analytical models, it is not limited to
uniform wall injection profiles in mass flux or velocity. On the contrary, it enables
us to expeditiously solve for the compressible motion in the presence of an arbitrary
wall injection pattern. Furthermore, it helps to confirm several useful characteristics
associated with the two-dimensional theory introduced previously (Majdalani 2007).
Among them is the strong, albeit non-exact, self-similarity with respect to the
critical length. This can be realized by rescaling the axial coordinate with respect to
x = Ls. Following such renormalization, numerically obtained streamlines, pressures,
and temperatures at two different Mach numbers become virtually identical when
graphically displayed. The resulting behaviour is consistent with the projections of
two-dimensional theory, namely, that deviations from self-similarity appear at the
order of the wall Mach number squared, a practically small quantity that induces
relative differences that fall below 1 %.

In addition to the numerical treatment of the reduced-order integral formulation, an
Abel transformation is implemented in this study to produce an exact expression for
the pressure distribution at several distinct values of the heat capacity ratio γ . This
enables us to retrieve two sets of explicit solutions linking the pressure and the axial
location within the chamber: the first corresponds to a uniformly injecting mass flux
with n= 0, and, the second, to a uniformly injecting velocity with n= 1. While the
former is shown to be reproducible from a general recursive relation, the latter may
be expressed as a finite-term expansion for each viable ratio of specific heats. Being
exact, the ensuing formulations provide an alternate avenue for verifying the outcome
of numerical integration, thus confirming the steepening of the velocity profiles and
their gradients in the vicinity of the sidewall. They also increase our repertoire of
compressible flow approximations over a generous range of 1.10 6 γ 6 2.0.

In closing, the ability of the present framework to accommodate a variable wall
injection function is illustrated using a spatially undulating velocity. The corresponding
phenomenological problem is connected to the erosive burning phenomenon, which
often arises in the context of combustion instability. Despite the variable injection
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speed along the length of the chamber, a numerical solution is obtained rather
straightforwardly using the model with n= 1. This example showcases the versatility
of the present framework in handling an arbitrarily specified injection pattern that
may be the outcome of an idealized physical mechanism. In future work, we plan
to extend the present formulation to non-isentropic conditions and to other physical
settings that encompass simulated hybrid rocket chambers, and both Beltramian and
Trkalian families of compressible mean-flow solutions that arise in the context of
swirling solid rocket motor flows as well as cyclonically driven, bidirectional vortex
chambers. We also hope to further explore the erosive burning mechanism through
the use of suitably constructed sidewall injection patterns.
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Appendix A
According to Majdalani (2007), the compressible mean-flow motion that develops

under inviscid conditions in a porous tube as a result of a uniformly distributed
sidewall injection velocity may be expressed in dimensionless form using

ψ =Mwψ0
(
1− 1

4Γ
2
[
1+ 1

3 cos(πr2)
]
χ 2
+

1
2 M2

w

)
; ψ0 = x sin

(
1
2πr2

)
(streamfunction)

(A 1)

and

Mc = Γ
2+ 1

3Γ
2χ 2
−M2

w√
4− 2(γ − 1)Γ 2χ 2

χ (centreline Mach number), (A 2)

pc = 1− 1
2γ Γ

2χ 2(1−M2
w)−

1
24γ Γ

4χ 4 (centreline pressure), (A 3)

Tc = 1− 1
2(γ − 1)Γ 2χ 2(1−M2

w)−
1
6(γ − 1)Γ 4χ 4 (centreline temperature), (A 4)

where the sonic length, Ls, also known as the critical distance, is related to the Γ
function through

Γ ≡ πMwLs =
√
λ− 2γ − 2+ 2(2γ 2 + γ − 1)/λ

∼= 0.884622− 0.177299(γ − 1)+ 0.0539119(γ − 1)2 − 0.0180615(γ − 1)3 (A 5)

and

λ=
(

28+ 12γ − 6γ 2
− 8γ 3

+ 6
√

22+ 18γ − 6γ 2 − 14γ 3 − 3γ 4
)1/3

. (A 6)
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