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Executive Summary

Introduction

This cross-chapter paper on ‘Deserts, semiarid areas and desertification’ 
updates and extends Chapter 3 on ‘Desertification’ in the IPCC Special 
Report on Climate Change and Land (SRCCL) (Mirzabaev et al., 2019). 
It assesses new information and links it to the findings across the 
chapters of Working Group II’s contribution as well as relevant chapters 
of Working Group I’s contribution to the IPCC Sixth Assessment Report 
(AR6), with an added focus on deserts which were outside the scope 
of the SRCCL.

Where are we now: Observed impacts and adaptation responses

Deserts and semiarid areas have already been affected by 
climate change, with some areas experiencing increases in 
aridity. Mixed trends of decreases and increases in vegetation 
productivity have been observed, depending on the time period, 
geographic region, detection methods used and vegetation type 
under consideration (high confidence1). These changes have 
had varying and location-specific impacts on biodiversity, and 
have altered ecosystem carbon balance, water availability and 
the provision of ecosystem services (high confidence). There is 
no evidence, however, of a global trend in dryland expansion 
based on analyses of vegetation patterns, precipitation and soil 
moisture, with overall, more greening than drying in drylands 
since the 1980s (medium confidence). Deserts and semiarid areas 
host unique biodiversity, rich cultural heritage and provide globally 
valuable ecosystem services. They are also highly vulnerable to climate 
change. The vitality of natural ecosystems in arid and semiarid regions 
greatly depends on water availability, as they are highly sensitive to 
changes in precipitation and potential evapotranspiration, as well 
as to land management practices. Multiple lines of evidence from 
1920–2015 indicate that surface warming of 1.2°C–1.3°C over global 
drylands (Section 1.1.1) exceeded the 0.8°C–1.0°C warming over humid 
lands. From 1982 to 2015, unsustainable land use and climate change 
combined caused desertification of 6% of the global dryland area, 
while 41% showed significant increases in vegetation productivity 
(greening) and 53% of the area had no notable change, although 
greening rates are slowing or declining in some locations. Greening 
may cause biodiversity loss and ecosystem service degradation in 
relation to livelihood systems. Observed trends in deserts and semiarid 
areas have led to varying impacts on flora, fauna, soil, nutrient cycling, 
the carbon cycle and water resources. Ecological changes in dryland 
ecosystems detected and attributed primarily to climate change 
include tree mortality and losses of mesic tree species at specific sites 
in the African Sahel, particularly during the droughts of the 1970s 
and 1980s, and in North Africa from 1970 to 2007; and losses of bird 
species in the Mojave Desert of North America from 1908 to 2016. In 
contrast, growth in herbaceous vegetation production has increased 

1 In this Report, the following summary terms are used to describe the available evidence: limited, medium, or robust; and for the degree of agreement: low, medium, or high. A level of confidence is 
expressed using five qualifiers: very low, low, medium, high, and very high, and typeset in italics, e.g., medium confidence. For a given evidence and agreement statement, different confidence levels 
can be assigned, but increasing levels of evidence and degrees of agreement are correlated with increasing confidence.

2 In this Report, the following terms have been used to indicate the assessed likelihood of an outcome or a result: virtually certain 99–100% probability, very likely 90–100%, likely 66–100%, about as 
likely as not 33–66%, unlikely 0–33%, very unlikely 0–10%, and exceptionally unlikely 0–1%. Additional terms (extremely likely: 95–100%, more likely than not >50–100%, and extremely unlikely 
0–5%) may also be used when appropriate. Assessed likelihood is typeset in italics, e.g., very likely). This Report also uses the term ‘likely range’ to indicate that the assessed likelihood of an outcome 

in some drylands since the 1980s. Widespread woody encroachment 
has occurred in many shrublands and savannas in Africa, Australia, 
North America and South America, due to a combination of land 
use change, changes in rainfall, fire suppression and CO2 fertilization 
which, together with unsustainable management, alters biodiversity 
and reduces ecosystem services, such as water availability and grazing 
potential {3.2.1, 3.2.2}.

The impacts of climate change have affected the ecosystem 
services that humans can harness from drylands, with largely 
negative implications for livelihoods, human health and well-
being, particularly in deserts and semiarid areas with lower 
adaptive capacities (high confidence). Ecosystem degradation 
(Section  16.5.2.3.2) and desertification threaten the abilities of 
both natural and human systems to adapt to climate change (high 
confidence). Changes in desert and semiarid ecosystem services 
most acutely affect people who are directly dependent on natural 
resources for their livelihoods and survival. These groups also often 
have lower capacities to adapt, particularly given structural limitations 
of some drylands where healthcare, sanitation, infrastructure and 
efficient markets are lacking, reinforcing existing inequalities (high 
confidence). In rural drylands in tropical and Mediterranean areas, 
human populations are steadily expanding with mixed implications 
for ecosystem services under climate change, while rapid urbanisation 
in new and existing dryland megacities puts additional pressure on 
water ecosystem services (high confidence). Impacts resulting from 
consumption of dryland ecosystem services elsewhere, alongside other 
teleconnections associated with health, trade, conflict and migration, 
mean that dryland adaptive capacities have far reaching implications 
for other locations, while other locations affect dryland adaptation 
options. {3.1.1, 3.2.1, 3.2.2, 3.4}.

Where are we going? Risks and adaptation under warming pathways

Some drylands will expand by 2100, while others will shrink 
(high confidence). Climate change affects drylands through 
increased temperatures and more irregular rainfall, with 
important differences between areas with different rainfall 
distributions linked to the dominant climate systems in each 
location. Projections are nevertheless uncertain and not well 
supported by observed trends, while different methodological 
approaches and indices exhibit different strengths and 
weaknesses (medium confidence). A fundamental methodological 
challenge is how to attribute projected impacts to climate change 
when background climate variability in drylands is so high. Some 
projections show aridity (as measured by the Aridity Index, AI) to 
expand substantially on all continents, except Antarctica. Expansion 
of arid regions is probable in southwest North America, the northern 
fringe of Africa, southern Africa and Australia. The main areas of 
semiarid expansion are likely2 to occur on the north side of the 
Mediterranean, southern Africa and North and South America. India, 
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parts of northern China, eastern equatorial Africa and the southern 
Saharan regions are projected to have shrinking drylands. Under 
Representative Concentration Pathway (RCP) 8.5, aridity zones could 
expand by one-quarter of the 1990 area by 2100, increasing to over 
half the global terrestrial area. Lower greenhouse gas emissions, 
under RCP4.5, could limit expansion to one-tenth of the 1990 area by 
2100. Nevertheless, the utility of the AI in delineating dryland biomes 
is limited under an increasing CO2 environment (medium confidence) 
and how well the index fits observed trends has been questioned 
in recent research. The impacts of climate change on sand and dust 
storm activity are projected to be substantial, however, there is large 
regional variability in terms of rainfall seasonality, land management 
practices and differences in rates of change and the scales at which 
the projections are undertaken. The characteristics and speed of 
human responses and adaptations also affect future risks and impacts 
(high confidence). Increased temperature and rainfall variability will 
significantly change the interannual variability in the global carbon 
cycle, which is strongly influenced by the world’s drylands and the 
ways they are managed (medium confidence). Increased variability of 
precipitation would generally contribute to increased vulnerability for 
people in drylands, intensifying the challenges that people living in 
deserts and semiarid areas will face for their sustainable development 
(medium confidence). {3.3.1, 3.3.2}

Contributions of adaptation measures to climate resilient 
development

Drivers of desert expansion and greening are numerous, are 
attributed to environmental and human processes and differ 
across dryland types, yet a suite of adaptations can help to 
address human drivers of change, support resilience and build 
the adaptive capacity of dryland people (medium confidence). 
Deserts and semiarid areas have a rich cultural heritage, and Indigenous 
knowledge and local knowledge (IKLK) which enrich and influence 
sustainability and land use globally. Growing research evidence and 
experience highlight the necessary features of an enabling environment 
for dryland adaptation (Section 8.5.2). Key enablers include supportive 
policies, institutions and governance approaches that strengthen the 
adaptive capacities of dryland farmers, pastoralists and other dryland 
resource users (high confidence), addressing drivers (proximate and 
underlying) as well as symptoms of desertification. For instance, the 
skills and capacities held by the mobile and adaptive approach of 
pastoralists may provide lessons for society at large in adapting to 
climate change and dealing with increased uncertainty. Such a policy 
would stand in contrast to previous attempts at settling pastoralists. 
There is a persistent gap in terms of scaling-up already known good 
practices, combining nature-based, land-based and ecosystem-
based approaches that facilitate sustainable land management, with 
contextually appropriate and responsible governance systems (e.g., 
including those supporting communal land tenure arrangements 
and IKLK; medium confidence). Land-based adaptations can help 
manage dryland changes, including sand and dust storms and 
desertification (high confidence), while technological options linked 
to water management draw from both traditional practices and 
new innovations. Adequate financing and investment is required to 

lies within the 17–83% probability range.

harness multiple benefits for managing the impacts of climate change 
and desertification while accelerating progress towards sustainable 
development in deserts and semiarid areas. {3.4}
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CCP3.1 Introduction

CCP3.1.1 Concepts, Definitions and Scope

Deserts and semiarid areas are in ‘drylands’, which comprise hyper-
arid, arid, semiarid and dry sub-humid areas (Figure CCP3.1). Drylands 
cover about 45–47% of the global land area (Prăvălie, 2016; Koutroulis, 
2019) and are home to about 3  billion people residing primarily in 
semiarid and dry sub-humid areas (van der Esch et al., 2017). Drylands 
host unique, rich biodiversity (Maestre et  al., 2015) and provide 
important ecosystem services (Bidak et  al., 2015; Lu et  al., 2018), 
while dryland people have a rich cultural and historical heritage. Rural 
human populations are growing in some Mediterranean and tropical 
drylands, while many are rapidly urbanising (Guengant Jean-Pierre, 
2003; Tabutin and Schoumaker, 2004; Denis and Moriconi-Ebrard, 
2009), with varying impacts on ecosystem services and adaptive 
capacities. In recent decades, 6% of global megacities have been 
established in arid areas and 2% in hyper-arid desert areas (Cherlet 
et  al., 2018), with many of these areas suffering from severe water 
security challenges (Stringer et al., 2021). Dryland inhabitants in many 
developing countries are also experiencing poverty (Section 16.1.4.3), 
hunger, poor health, land degradation, and economic and political 
marginalisation (Mbow et  al., 2019; Mirzabaev et  al., 2019), which 
sometimes limits their access to common pool resources. These 
challenges, together with a weak enabling environment, threaten 
opportunities to adapt to climate change.

The terms ‘desert’ and ‘desertification’ are subject to various 
interpretations due to the diverse components, processes and states 
they denote. Recognising ‘land degradation’ as a contested and 
perceptual term (Blaikie and Brookfield, 1987; Behnke and Mortimore, 
2016; Robbins, 2020), this cross-chapter paper (CCP), defines land 
degradation as ‘a negative trend in land condition, caused by direct 
or indirect human-induced processes including climate change, 
expressed as long-term reduction or loss of at least one of the 
following: biological productivity, ecological integrity or value to 
humans’ (Olsson et  al., 2019). Desertification is land degradation in 
arid, semiarid and dry sub-humid areas (UNCCD, 1994). Following the 
above definitions, desertification is more common in arid and semiarid 
climates than in hyper-arid climates. When desertification does occur 
in arid and hyper-arid ecosystems it is often in oases and irrigated 
cultivated lands (Ezcurra, 2006; Dilshat et al., 2015). Hyper-arid areas, 
except wetlands such as oases, wadis and riverbanks, are excluded 
in the United Nations Convention to Combat Desertification (UNCCD) 
definition of desertification used here, yet many of the world’s deserts 
are in hyper-arid areas. Hyper-arid areas are therefore included when 
discussing deserts but not when discussing desertification. Deserts 
are not the end point in a desertification process (Ezcurra, 2006). 
There is robust evidence of desertification in deserts, mostly driven by 
human activities and climate variability, expressed as loss of biological 
productivity, ecological integrity or value to humans to below their 
natural levels (Moridnejad et al., 2015).

Interactions between climate change and desertification in drylands 
create challenges for both ecosystem and human resilience, affecting 
ecosystem services, biodiversity, food security, human health and well-
being (Reed and Stringer, 2016). Dryland livelihoods that heavily rely on 

natural ecosystems face pressures, including high population growth 
rates, weak or poor governance, low investment, unemployment and 
poverty, market distortions and underestimates of the value of drylands 
(Stringer et al., 2017; Bawden, 2018). These pressures intersect with 
broader societal challenges such as conflict and civil unrest (Okpara 
et  al., 2015; Almer et  al., 2017), which together, can contribute to 
human displacement (Section  16.2.3.10) in some drylands (Warner, 
2010; Abel et al., 2019). Nevertheless, evidence linking conflict with 
climate change and desertification is weak (Benjaminsen et al., 2012) 
and data are insufficient to draw robust conclusions.

Drylands yield important opportunities for adapting to and mitigating 
climate change. They offer abundant solar energy, which could support 
mitigation efforts, opportunities for cultural and nature-based tourism, 
rich plant biodiversity in some areas (e.g. Namibia), and extensive 
Indigenous knowledge and experience of adapting to dynamic 
climates (Christie et al., 2014; Stringer et al., 2017); for example, across 
West Asia and North Africa (Louhaichi and Tastad, 2010; Hussein, 
2011). Improved understanding of challenges and opportunities in 
drylands can be achieved by transdisciplinary, multi-scale and inter-
sectoral approaches encompassing links between physical, biological, 
socioeconomic and institutional systems (Reynolds et  al., 2007; 
Stringer et al., 2017).

Chapter 3 of the IPCC Special Report on Climate Change and Land 
(SRCCL) focused on desertification (Mirzabaev et al., 2019), but links 
between climate change and deserts, desertification and semiarid 
areas have not been extensively considered in recent IPCC assessment 
cycles. Working Group II Assessment Report 5 noted that desertification 
contributes to atmospheric dust production, identifying desertification 
as needing consideration within climate change mitigation and 
adaptation governance and decision making (Boucher et  al., 2013; 
Myhre et al., 2013). This cross-chapter paper focuses on environmental 
and human aspects, finding that climate change impacts will intensify 
the challenges faced by dryland populations in advancing sustainable 
development. However, viable options exist for adapting to climate 
change, reducing desertification and supporting progress towards 
the Sustainable Development Goals (SDGs), particularly by combining 
modern science, IKLK, and livelihood and land management strategies 
that enable land-based adaptation, mitigation and nature-based 
solutions (Section 16.3.2.3).

CCP3.1.2 Key Measurement Challenges and Observed 
Dryland Dynamics

Maps of dryland extent commonly employ a climate-based approach 
measured using the Aridity Index (AI), or consider the extent of 
dryland vegetation. The two approaches sometimes do not demarcate 
the same geographical areas as being drylands, particularly when 
projecting future changes (Stringer et  al., 2021). Dryland dynamics 
therefore need to be viewed specifically in relation to the definitions 
and measurements being used. From 1982 to 2015, unsustainable 
land use and climate change combined caused desertification of 6% 
of the global dryland area, while 41% showed significant greening 
(i.e., increased vegetation productivity), and 53% of the area had no 
notable change (Figure CCP3.1; Burrell et al., 2020). In contrast Yuan 
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et  al. (2019) conclude that during 1999–2015, trends of vegetation 
production reversed globally, and in drylands, showing extensive 
declines. Thus, while overall greening has occurred, this trend now 
appears to be declining. Analyses of vegetation, soil, and physical 
characteristics of over 50,000 sample points in drylands around the 
world indicate that aridification causes ecological degradation at three 
successive thresholds: vegetation decline at AI = 0.56, soil disruption 
at AI = 0.3 and loss of plant cover at AI = 0.2 (Berdugo et al., 2020). 
Drylands nevertheless show different dynamics depending on the 
index used and the variables assessed.

Based on the AI, some drylands are projected to expand and others 
to contract due to climate change. However, there is no evidence of 
a global trend in dryland expansion based on vegetation patterns, 
precipitation and soil moisture, based on the satellite record from 
the 1980s to the present (medium confidence). The AI will also be of 
limited use under a changing CO2 environment due to higher water use 
efficiency by some plants (Mirzabaev et al., 2019), and it overvalues 
the role of potential evapotranspiration (PET) relative to rainfall. 
It also does not account for CO2 impacts on evapotranspiration, 
and seasonality in rainfall and evapotranspiration. Higher annual 

PET because of increased temperatures will have little impact if 
temperature and actual evapotranspiration are not rising during the 
period of vegetation growth (Stringer et al., 2021).

CCP3.2 Observed Impacts of Climate Change 
Across Sectors and Regions

CCP3.2.1 Observed Impacts on Natural Systems in Arid 
and Semiarid Areas

CCP3.2.1.1 Temperature and Rainfall

Significant warming has occurred across drylands globally (IPCC, 
2021). Surface warming (1920–2015) of 1.2°C–1.3°C in global drylands 
has exceeded the 0.8°C–1.0°C warming over humid lands (Huang et al., 
2017). As measured by the AI, this has expanded the area of drylands by 
~4% from 1948–2004 (Ji et al., 2015; Spinoni et al., 2015; Huang et al., 
2016). However, as mentioned in Figure  CCP3.1, the AI has various 
limitations in assessing drylands expansion. Increases in potential 
evapotranspiration have exceeded increases in precipitation in the last 

Dry sub-humid
(0.5–0.65)

Semi-arid
(0.2–0.5)

Hyper-arid
(0–0.05)

Arid
(0.05–0.2)

Aridity zone extent and observed changes in dryland areas as defined by the Aridity Index

Aridity Index 1988–2017

Area expansion
Area contraction

Observed change in dryland area
between 1901–1930 and 1988–2017

Figure CCP3.1 |  Aridity zone extent and observed changes in dryland areas as defined by the Aridity Index (AI). Aridity zones, according to UNESCO (1979) and 
UNEP (1992) classifications, defined by the AI, consider the ratio of average annual precipitation to potential evapotranspiration: (i) dry sub-humid (0.5 ≤ AI < 0.65), (ii) semiarid 
(0.2 ≤ AI < 0.5), (iii) arid (0.05 ≤ AI < 0.2) and (iv) hyper-arid (AI <0.05). Drylands include land with AI <0.65, humid lands are those with AI >0.65 (UNEP, 1992). Deserts represent 
a major part of the hyper-arid and arid zones. The aridity zones are shown for climate in the period 1988–2017 and changes in dryland area (combined area of four aridity zones) 
are shown between the periods 1901–1930 and 1988–2017, based on climate time series at 50 km spatial resolution (Harris et al., 2020). The AI has various limitations in assessing 
dryland expansion and different indices highlight different areas and different changes. This is known as the aridity paradox (Greve et al., 2019). See SRCCL Section 3.2.1 (Mirzabaev 
et al., 2019) for an in-depth analysis of limitations, and Stringer et al. (2021) for a summary of different measures and indices used in the literature.
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half of the period 1901–2017 (Pan et  al., 2021). Observations from 
the Sahel demonstrated that temperature seasonality changes differ 
from rainfall seasonality changes (Guichard et al., 2015), and there has 
been an increase in surface water and groundwater recharge in the 
Sahel since the 1980s, referred to as ‘the Sahel paradox’ (Favreau et al., 
2009; Gardelle et al., 2010; Descroix et al., 2013; Wendling et al., 2019). 
Research from the USA suggests that historical soil moisture levels can 
contribute to such variability (Heisler-White et al., 2009). Studies from 
the Middle East show rising temperatures and declining rainfall trends 
(ESCWA, 2017), with most decreasing aridity trends in north Sudan 
and most increasing aridity trends in eastern Arabia over the period 
1948–2018 (Sahour et al., 2020).

CCP3.2.1.2 Ecosystem Processes

Semiarid ecosystems have a disproportionately large role in the global 
carbon cycle, driving trends and interannual variability of the global 
carbon sink (Alstrom et al., 2015). These systems are highly sensitive 
to annual precipitation and temperature variations (high confidence) 
(Alstrom et al., 2015, Poulter et al., 2014). The positive trend in semiarid 
regions is consistent with widespread woody encroachment and 
increased vegetation greenness (Andela et al., 2013; Piao et al., 2019; 
Piao et al., 2020) driven by CO2 fertilization and rainfall increases (Sitch 
et al., 2015; Piao et al., 2020), although some trends are complicated 
by irrigation practices (He et al., 2019). Increases in temperature and 
drought diminish this trend through reduced vegetation productivity 
and increased vegetation mortality (Brandt et al., 2016; Ma et al., 2016; 
Fernández-Martínez et al., 2019; Maurer et al., 2020) with indications 
that this trend is declining or reversing in some locations (Yuan et al., 
2019; Wang et al., 2020).

Changed climates have increased water constraints of vegetation 
growth most notably in the Mediterranean (Sections CCP1.2.3.2; 
CCP4.2.1) and West and Central Asia (Jiao et al., 2021). Climate change 
and elevated CO2 have both increased and decreased vegetation 
sensitivity to rainfall throughout drylands, with the degree of variation 
shaped by region, land use and vegetation traits (Haverd et al., 2017; 
Abel et al., 2021). Mineral nitrogen production in drylands may become 
increasingly decoupled from consumption by plants over prolonged 
dry periods, and more extreme hydrological events can drive multiple 
changes to nutrient cycling (Manzoni et  al., 2019). Soil biocrusts 
(composed of lichens, bryophytes and soil microorganisms), which 
contribute to dryland ecosystem function, including carbon uptake 
and soil stabilisation (Reed et al., 2019), are sensitive to warming and 
altered rainfall in a shift in biocrust communities of mosses and lichens 
in favour of early successional cyanobacteria-dominated biocrusts 
(Escolar et  al., 2012; Reed et  al., 2012), which can increase surface 
albedo (Rutherford et al., 2017).

CCP3.2.1.3 Vegetation Changes

CCP3.2.1.4 Woody Cover Increase

Dryland ecosystems have shown mixed trends of decreases and 
increases in vegetation and biodiversity, depending on the time period, 
geographic region and vegetation type assessed (see Table CCP3.1 for 
examples of observed environmental changes and impacts in drylands 

and the role of climate change and non-climatic factors in causing 
these changes).

Increases in shrub cover in arid deserts and shrublands have been 
recorded in the North American drylands (Caracciolo et  al., 2016; 
Archer et al., 2017; Chambers et al., 2019), the Namib desert (Rohde 
et al., 2019), the Karoo (Ward et al., 2014; Masubelele et al., 2015b), 
north and central Mexico (Pérez-Sánchez et al., 2011; Báez et al., 2013; 
Castillón et al., 2015; Sosa et al., 2019), large parts of the West African 
Sahel with some local exceptions (Brandt et al., 2016) and Central Asia 
(Jia et al., 2015; Li et al., 2015; Deng et al., 2016; Jiao et al., 2016; Wang 
et al., 2016). Increasing woodiness in the Namib is consistent with an 
increase in rainfall extremes and westward expansion of convective 
rainfall (Haensler et al., 2010; Rohde et al., 2019). Increasing rainfall 
and rising CO2 concentrations (which improves water use efficiency) 
benefits some shrubs (Polley et al., 1997; Morgan et al., 2004; Donohue 
et al., 2013). Together with changes in land use (Hoffman et al., 2018), 
improved land management (Reij et al., 2005) and improved irrigation 
(He et al., 2019), this contributes to woody cover increases. Extensive 
woody encroachment has been recorded in savannas (measured 
between 1920–2015, over the past century) in Africa (2.4% woody 
cover increase per decade), Australia (1% increase per decade), and 
South America (8% increase per decade) (O’Connor et al., 2014; Stevens 
et  al., 2016; Skowno et  al., 2017; Venter et  al., 2018; Zhang et  al., 
2019). Following drought in the Sahel (1968–1973 and 1982–1984), 
a rainfall increase since the mid-1990s has been linked to increases of 
woody cover between 1992–2011/2012 (Brandt et al., 2016; Brandt 
et  al., 2017; Brandt et  al., 2019). See SRCCL Section  3.2.1.1 for an 
evaluation of the normalized difference vegetation index (NDVI) and 
remote sensing approaches used in these studies. Tree regeneration by 
farmers has also increased woody cover, particularly next to villages 
(high confidence) (Reij et  al., 2005; Reij and Garrity, 2016; Brandt 
et al., 2018). Otherwise, savanna encroachment has been attributed 
to combinations of increased rainfall (Venter et al., 2018; Zhang et al., 
2019), warming (Venter et al., 2018) and CO2 fertilization (Kgope et al., 
2010; Bond and Midgley, 2012; Buitenwerf et al., 2012; Stevens et al., 
2016; Quirk et al., 2019) interacting with changing land use (Archer 
et al., 2017; Venter et al., 2018), where herbivory and fire regimes are 
altered (O’Connor et al., 2014; Archer et al., 2017; see also discussion 
on fire and herbivory in Section 2.4.3.1). In some cases, woody increase 
has been balanced locally by changes in runoff (Trichon et al., 2018) or 
by land clearing and fuel wood harvesting, as seen in western Niger, 
northern Nigeria, and at the periphery of major towns (Montagné 
et al., 2016).

CCP3.2.1.5 Tree Death and Woody Cover Decline

Field measurements have also detected tree mortality and loss of 
mesic tree species at some Sahel sites during drought periods 
(Gonzalez et al., 2012; Kusserow, 2017; Brandt et al., 2018; Ibrahim 
et al., 2018; Trichon et al., 2018; Zwarts et al., 2018; Bernardino et al., 
2020; Zida et al., 2020) and a reduction of mesic species in favour 
of drought-tolerant species (high confidence) (Hänke et  al., 2016; 
Kusserow, 2017; Ibrahim et al., 2018; Trichon et al., 2018; Dendoncker 
et al., 2020; Zida et al., 2020b), with attribution to climate change 
(Gonzalez et  al., 2012). Furthermore, vegetation productivity per 
unit of rainfall showed a net decline of 4% in the period 2000–2015 
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Table CCP3.1 |  Observed ecological changes in drylands.

Region Observed change
Climate change 

factors
Attribution to 

climate change
Non-climate 

change factors
Confidence in 

observed change
References

Hyper-arid

Asian hyper-arid 
regions (Gobi)

Loss of shallow rooted desert 
plants

Increase in extreme 
warm temperatures

medium Li et al. (2015)

North America—
Mojave Desert

Loss of mesic bird species Decreased rainfall

Yes. Analyses of 
causal factors find 
decreased rainfall 
more important than 
non-climate factors.

Livestock, 
human-ignited fires

medium
Iknayan and Beissinger 
(2018); Riddell et al. 
(2019)

Decline of desert tortoise 
(Gopherus agassizii) 
population by 90% from 1993 
to 2012 at one site in the 
Mojave

Decreased rainfall Lovich et al. (2014)

Reduced perennial vegetation 
cover, including trees and cacti, 
in the Mojave and Sonoran 
deserts of the southwestern 
USA

Increased temperature, 
decreased rainfall, 
wildfire

Land use change, 
invasive plant species

high
Defalco et al. (2010); 
Munson et al. (2016b); 
Conver et al. (2017)

Arid

African Sahel

Woody cover increase in parts 
of the Sahel

Increase in rainfall 
since the mid-1990s 
(compared to 
1968–1993)and 
increased CO2

Restoration planting, 
agroforestry

high

Increase in grass production 
across the Sahel

Increases in rainfall 
since the mid-1990s 
(compared to 
1968–1993) and 
increased CO2

medium

Hiernaux et al. (2009a; 
2009b); Dardel et al. 
(2014); Venter et al. 
(2018); Zhang et al. 
(2018); Brandt et al. 
(2019); Bernardino 
et al. (2020)

Decline of mesic tree species at 
field sites across the Sahel

Decreased rainfall 
from 1901 to 2002 
increased temperature

Yes. Multivariate 
statistical analyses 
find climate factors 
more important than 
non-climate factors.

Land clearing for 
cropland expansion,
increased pressure 
on wood resources 
(rural demography, 
urbanisation)

high

Gonzalez (2001); 
Wezel and Lykke 
(2006); Maranz (2009); 
Gonzalez et al. (2012); 
Hänke et al. (2016); 
Kusserow (2017); 
Ibrahim et al. (2018); 
Zida et al. (2020b)

Increased tree mortality at field 
sites across the Sahel

Decreased rainfall 
from 1901 to 2002, 
increased temperature

Yes. Multivariate 
statistical analyses 
find climate factors 
more important than 
non-climate factors.

Agricultural expansion, 
modified runoff on 
shallow soils

high

Helldén (1984); 
Gonzalez, (2001); Wezel 
and Lykke (2006); 
Maranz (2009); Vincke 
et al. (2010); Hänke 
et al. (2016); Trichon 
et al. (2018); Zwarts 
et al. (2018); Wendling 
et al. (2019); Bernardino 
et al. (2020); Zida et al. 
(2020a)

Latitudinal biome shift of the 
Sahel

Decreased rainfall, 
increased temperature

Yes. Multivariate 
statistical analyses 
find climate factors 
more important than 
non-climate factors.

high

Boudet (1977); 
Tucker and Nicholson 
(1999); Gonzalez, 
(2001); Hiernaux and 
Le Houérou (2006); 
Hiernaux et al. (2009a); 
Maranz (2009); 
Gonzalez et al. (2012)
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Region Observed change
Climate change 

factors
Attribution to 

climate change
Non-climate 

change factors
Confidence in 

observed change
References

Namib desert
Increase in woody plant cover 
and a shift of mesic species 
into more arid regions

Increase in amount 
of fog from westward 
expansion of 
convective rainfall and 
increase in number of 
extreme rainfall events; 
elevated CO2 and 
warming effects on the 
Benguela upwelling 
system

medium

Morgan et al. (2004); 
Haensler et al. (2010); 
Donohue et al. (2013); 
Rohde et al. (2019)

Southern Africa— 
Nama-Karoo

Shifting rainfall 
seasonality (debate 
over whether it is 
cyclical or directional); 
elevated CO2

medium

Du Toit and O’Connor 
(2014); Du Toit et al. 
(2015); Masubelele 
et al. (2015a; 2015b)

Eastern Karoo has experienced 
a significant increase in the 
end of the growing season 
length

Shift in rainfall 
seasonality and 
increase in Mean 
Annual Precipitation

low Davis-Reddy (2018)

Woody encroachment observed 
throughout the Nama-Karoo 
in valley bottoms, ephemeral 
stream banks and the slopes of 
Karoo hills

Rising concentration 
of CO2

Changing land use and 
herbivore management

medium

Polley et al. (1997); 
Morgan et al. (2004); 
Donohue et al. (2013); 
Ward et al. (2014); 
Masubelele et al. 
(2015a); Hoffman et al. 
(2018)

Southern Africa— 
Succulent Karoo

Range shift in tree aloe 
Aloidendron dichotomum 
with mortality in the warmer 
and drier range and increase 
in recruitment in the cooler 
southern range, populations 
have positive growth rates, 
possibly due to warming, 
although this finding has been 
challenged

Warming and drying medium
Foden et al. (2007a); 
Jack et al. (2016)

Northern Africa—
Morocco

Increased vulnerability of oases 
and reduced ecosystem service 
provision

High temperature and 
reduced precipitation 
causing soil and water 
salinisation, drying up 
of surface water; hot 
winds and sandstorms

Agricultural growth, 
high population 
growth and 
unregulated and 
indiscriminate land 
development

medium Karmaoui et al. (2014)

Reduced surface water 
availability

Increased temperature 
and reduced 
precipitation

High demand 
(population growth) 
and land use change

medium
Rochdane et al. (2012); 
Choukri et al. (2020)

Reduction of resilience of Abies 
pinasapo–Cedrus atlantica 
forests to subsequent droughts

Successive droughts medium
Navarro-Cerrillo et al. 
(2020)

North American 
drylands

Drought adapted species are 
increasing in Chihuahuan 
deserts

Increase in aridity and 
increased interannual 
variation in climate 
trends

medium
Collins and Xia (2015); 
Rudgers et al. (2018)

Widespread woody plant 
encroachment; Prosopis sp. 
encroachment in arid desert 
regions (Chihuahuan and 
Sonoran Desert) at a rate of 
~3% per decade

Increasing 
temperature, elevated 
CO2 and changing 
rainfall

Fire suppression 
and altered grazing/
browsing regimes

high
Caracciolo et al. (2016); 
Archer et al. (2017)

Plant desert community shift 
changes the albedo through 
the reduction in dark biocrusts

Warming and drought medium Rutherford et al. (2000)
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Region Observed change
Climate change 

factors
Attribution to 

climate change
Non-climate 

change factors
Confidence in 

observed change
References

South 
Chihuahuan 
Desert— North 
and Central 
Mexico

Shrub encroachment of 
grassland (Berberis trifoliolata, 
Ephedra aspera, Larrea 
tridentata) changes dominant 
species in shrub areas; loss of 
less resistant shrubby species 
(Leucophyllum laevigatum, 
Lindleya mespiloides, 
Setchellanthus caeruleu); shrub 
encroachment of mesic and 
temperate areas

Decreased rainfall, 
increase in 
temperature and
increase CO2

Urban growth, 
mechanised agriculture 
and changes in land 
use

high

Pérez-Sánchez et al. 
(2011); Castillón et al. 
(2015); Sosa et al. 
(2019)

Shifts in soil microbial 
community to being more 
abundant in fungi (Ascomycota 
and Pleosporales)

Decreased rainfall 
and increase in 
temperature

Changes in land use low
Vargas-Gastélum et al. 
(2015)

Limited ecological connectivity 
of shrubby populations

Decreased rainfall 
and increase in 
temperature

medium Sosa et al. (2019)

Loss of cacti species 
(Echinocactus platyacanthus, 
Pediocactus bradyi, 
Coryphantha werdermannii, 
Astrophytum) due to decline 
in physiological performance, 
loss of seed banks and lower 
germination rates

Decreased rainfall 
and increase in 
temperature

Cattle grazing, looting high

Aragón-Gastélum et al. 
(2014); Shryock et al. 
(2014); Martorell et al. 
(2015); Carrillo-Angeles 
et al. (2016); 
Aragón-Gastélum et al. 
(2018)

Arid and semiarid 
territories in 
Argentina

Decreases in vegetation 
indexes

Decreased rainfall
Human-induced land 
degradation

low Barbosa et al. (2015)

Argentina Chaco 
Region

Dryland salinity Changes in rainfall
Land use change, 
overexploitation of 
water resources

medium
Amdan et al. (2013); 
Marchesini et al. (2017)

South America 
Arid Diagonal

Marked reduction in 
streamflow from the Andes 
mountain ‘water towers’ due 
to the persistent reduction in 
precipitation

Decrease in 
precipitation in the 
upper Andes; the 
unprecedented 10-year 
extreme dry period has 
been called the ‘Mega- 
drought’

high

Bianchi et al. (2017); 
Rivera and Penalba 
(2018); Masiokas 
et al. (2019); 
Rodríguez-Morales 
et al. (2019)

South American 
Andes

Extensive glacier retreat across 
the Andes

Increasing 
sub-continental 
temperature and 
regional reduction in 
snow precipitation

high

Dussaillant et al. 
(2019); Falaschi et al. 
(2019); Masiokas et al. 
(2019)

Patagonian Andes

Widespread tree mortality of 
Austrocedrus and Nothofagus 
forests in the dry ecotone 
forest-steppe across Patagonia

Increase in extreme 
drought events

high
Rodríguez-Catón et al. 
(2019)

Increase in elevation of the 
upper-forest Nothofagus 
treeline across Patagonia

Increase in 
temperature and 
duration of the 
growing season at 
high elevation in the 
Patagonian Andes

high Srur et al. (2016; 2018)

Central Asian arid 
lands

Shrub encroachment into arid 
grasslands within the past 
10 years

Temperature of central 
Asian arid regions 
experienced a sharp 
increase in 1997 and 
has been in a state of 
high variability since 
then

medium Li et al. (2015)
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Region Observed change
Climate change 

factors
Attribution to 

climate change
Non-climate 

change factors
Confidence in 

observed change
References

Loess Plateau, 
China

Widespread vegetation 
greening in the Loess Plateau 
region; soil moisture declining 
widely, and deficit in forests 
and orchards; Yellow River 
runoff declining

Significant warming, 
slight increase in 
precipitation

Land use and cover 
change, ecological 
restoration, mainly 
induced by Grain for 
Green Project

high

Jia et al. (2015); Wang 
et al. (2015); Deng 
et al. (2016); Jiao et al. 
(2016)

The Three-River 
Source Region 
of the Tibetan 
Plateau, China

Runoff increases, total water 
storage and groundwater 
increasing, Net Primary 
Productivity increase

Precipitation increasing 
and evapotranspiration 
slightly decreasing

Grassland protection high Xu et al. (2019)

Semiarid

Australian arid 
lands

Widespread greening Elevated CO2 medium Donohue et al. (2013)

African savanna

Doubling of tree cover from 
1940–2010 in South Africa, 
changing land use and 20% 
increase in spread of woody 
areas into previously open 
areas in the last 20 years

Warming, elevated 
CO2, altered rainfall 
regimes

Removal of 
mega-herbivores, fire 
suppression, changed 
herbivore regime

high

Skowno et al. (2017); 
Stevens et al. (2017); 
Venter et al. (2018); 
García Criado et al. 
2020)

African savanna

Widespread increase in tree 
cover across Africa with only 
three countries across the 
continent experiencing a net 
decline in tree cover

Warming, changing 
rainfall, mention of CO2

Fire suppression high Venter et al. (2018)

African savanna

Biodiversity responses to 
changes in vegetation structure 
(woody encroachment) causing 
declines in functional groups 
that are open area specialists, 
records for birds, rodents, 
termites, mammals, insects

Woody encroachment medium

Blaum et al. (2007); 
Blaum et al. (2009); 
Sirami and Monadjem 
(2012); Gray and Bond 
(2013); Péron and 
Altwegg (2015); Smit 
and Prins (2015)

African semiarid 
regions (savanna)

Reduced tourism experience 
due to woody encroachment

Woody encroachment low Gray and Bond (2013)

North American 
drylands – 
sagebrush 
steppes

Sagebrush steppes are being 
invaded by non-native grasses

Increase in 
temperature and 
favourable climates

high

Bradley et al. (2016); 
Hufft and Zelikova 
(2016); Chambers 
(2018)

Shrub encroachment,(Prosopis 
glandulosa, Juniper ashei and 
Juniper pinchotti) occurring in 
the semiarid grasslands of the 
southern Great Plains at a rate 
of ~8% per decade

Increasing 
temperature, elevated 
CO2 and changing 
rainfall

Fire suppression 
and altered grazing/
browsing regimes

high
Caracciolo et al. (2016); 
Archer et al. (2017)

Woody encroachment in 
sagebrush steppes (cold 
deserts) (Juniper occidentalis) 
at a rate of 2% per decade

Warming and 
associated decline 
in snowpack, less 
precipitation falling as 
snow and an increase 
in the rain fraction in 
winter

high
Chambers et al. (2014); 
Mote et al. (2018)

Central Mexico
Desertification (as decreases in 
vegetation indexes)

Decreased rainfall 
and increase in 
temperature

Land use change and 
intensification

medium

Becerril-Pina 
et al. (2015); 
Noyola-Medrano and 
Martínez-Sías (2017)
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across drylands globally, with the greatest net declines in Africa 
(16%) and Asia (33%) (Abel et al., 2021), but with location-specific 
increases in vegetation-rainfall sensitivity, for example, in southern 
and eastern Africa and parts of the Sahel. Furthermore, NDVI declines 
were reported across the Sahel from 1999 to 2015 (Yuan et al., 2019; 
Zida et al., 2020a). However, field site monitoring showed a strong 
regeneration of the decimated woody populations except on shallow 
soil where the runoff system had evolved towards a web of gullies 
(Hiernaux et al., 2009a; Trichon et al., 2018; Wendling et al., 2019) .

Other site-specific impacts include tree mortality in southwestern 
Morocco (Le Polain de Waroux and Lambin, 2012), mortality of 
Austrocedrus and Nothofagus forests in the dry Patagonia forest-
steppe (Rodríguez-Catón et al., 2019) and a tree range contraction of 
Aloidendron dichotmum in southern Africa (Foden et  al., 2007b). In 
Morocco, tree mortality was most highly correlated to an increase in 
aridity, measured by the Palmer Drought Severity Index (PDSI), which 
showed a statistically significant increase since 1900 due to climate 
change (Dai et al., 2004; Esper et al., 2007; Dai, 2011).

In deserts of the southwestern USA, a drought since 2000, mainly 
due to climate change (Williams et al., 2020), together with land use 
change, invasive plant species and wildfire (Syphard et al., 2017), has 
led to reductions in native desert plant species (Defalco et al., 2010; 
Conver et  al., 2017) and perennial vegetation cover (Munson et  al., 
2016a; 2016b). An increase in invasive exotic grasses has increased 

wildfires in these desert ecosystems in which fire had been rare 
(Brooks and Matchett, 2006; Abatzoglou and Kolden, 2011; Hegeman 
et al., 2014; Horn and St. Clair, 2017). In the Mojave Desert in the USA, 
a loss of bird biodiversity has also been detected and attributed to 
increased aridity caused by climate change (Iknayan and Beissinger, 
2018; Riddell et al., 2019).

CCP3.2.1.6 Change in Herbaceous Cover

Changes in aridity (Rudgers et al., 2018) have caused some expansion 
of dominant grasses (often invasive) into desert shrublands. The 
spread of invasive Bromus tectorum may be enhanced by altered 
precipitation and freeze–thaw cycles (low confidence) (Collins 
and Xia, 2015; Rudgers et al., 2018). Arid grassland has expanded 
(between 10–100 km) into the eastern Karoo, South Africa (high 
confidence) (du Toit et al., 2015; Masubelele et al., 2015a; 2015b). 
Observations from 100-year-old grazing trials demonstrate that the 
increase in grassiness is a product of shift in rainfall seasonality and 
an increase in rainfall (Du Toit and O’Connor, 2014; du Toit et  al., 
2015; 2018; Masubelele et  al., 2015a;, 2015b). These changes are 
causing an increase in fire frequency in these seldom burnt areas (du 
Toit et al., 2015). The Sahara was suggested to have expanded 10% 
from 1902 to 2013 (Thomas and Nigam, 2018), although herbaceous 
vegetation production has increased in general in the Sahel since 
the dry 1980s (Eklundh and Olsson, 2003; Anyamba and Tucker, 
2005; Herrmann et al., 2005; Hutchinson et al., 2005; Olsson et al., 

Region Observed change
Climate change 

factors
Attribution to 

climate change
Non-climate 

change factors
Confidence in 

observed change
References

Chinese drylands

Widespread greening trend of 
vegetation in China over the 
last three decades; regional 
differences

Warming, CO2 increase
Rising atmospheric 
CO2 concentration and 
nitrogen deposition 
are identified as the 
most likely causes of 
the greening trend 
in China, explaining 
85% and 41% of 
the average growing 
season Leaf Area Index 
trend
Negative impacts of 
climate change in 
north China and Inner 
Mongolia and and 
positive impacts in 
the Qinghai-Xizang 
plateau

Ecological protection medium Piao et al. (2015)

Dry subhumid

African mesic 
savannas

Forest expansion into mesic 
savannas

Increased rainfall, 
elevated CO2

Fire suppression medium
Baccini et al. (2017); 
Aleman et al. (2018)

South American 
cerrado

8% rate of woody cover 
increase

Elevated CO2 Fire exclusion high
Stevens et al. (2017); 
Rosan et al. (2019)

South American 
cerrado

Expansion of forest into 
cerrado

Elevated CO2 Fire exclusion high
Passos et al. (2018); 
Rosan et al. (2019)

Australian 
savannas

2% rate of woody cover 
increase and greening of 
drylands

high
Donohue et al. (2013); 
Stevens et al. (2017); 
Bernardino et al. (2020)

https://doi.org/10.1017/9781009325844.020
Downloaded from https://www.cambridge.org/core. IP address: 18.224.59.238, on 08 Jun 2024 at 16:53:42, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009325844.020
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


CCP3

2207

Deserts, Semiarid Areas and Desertification  Cross-Chapter Paper 3

2005; Fensholt et al., 2006; Dardel et al., 2014; Hiernaux et al., 2016; 
Stith et  al., 2016; Benjaminsen and Hiernaux, 2019; Hiernaux and 
Assouma, 2020).

Trends of land degradation (Section 16.4.1.2) and desertification (as 
demonstrated by loss of cover or reduced vegetation productivity) as 
an impact of changing climatic trends have been reported in Burkina 
Faso (Zida et  al., 2020), the northwestern regions of China during 
1975–1990 (Zhang et al., 2020) in Afghanistan (Savage et al., 2009), 
Iran (Mahmoudi et al., 2011; Kamali et al., 2017), Argentina (Barbosa 
et al., 2015) and India (Javed et al., 2012). Encroachment, re-greening 
and an increase of unpalatable plant species into rangeland areas 
(e.g., in East Africa and southern Africa’s Kalahari) all contribute to 
dryland degradation through the loss of open ecosystems and their 
services (Reed et al., 2015; Le et al., 2016; Chen et al., 2019b).

CCP3.2.1.7 Sand and Dust Storms

Soil dust emissions are highly sensitive to changing climate conditions 
but also to changing land use and management practices (high 
confidence). Distinguishing between the effects of these drivers is 
not straightforward, even in well-documented locations (Middleton, 
2019). There is limited evidence and low agreement about the impacts 
of climate change on sand and dust storms (SDS), with studies pointing 
to either substantial increases (+300%) or decreases (-60%) (Boucher 

et  al., 2013). Current climate models cannot adequately model the 
impact of climate change on SDS activity (Mirzabaev et  al., 2019). 
However, there is high confidence that land degradation, loss of 
vegetative cover and drying of water bodies in semiarid and arid areas 
will contribute to sand and dust activity (Mirzabaev et al., 2019).

SDS remain a major concern for desert areas under conditions of 
climate change and desertification (Middleton, 2017). Only about 20% 
of deserts are covered by sand, but desert SDS provide an important 
feedback mechanism to climate (Pu and Ginoux, 2017), with literature 
showing that some areas have very frequent dust days (Figure CCP3.2; 
Ginoux et  al., 2012). In some locations, such as the USA, desert dust 
can be deposited downwind on snowpacks, hastening snowmelt and 
altering river hydrology (Painter et al., 2010). Deserts and other natural 
dryland surfaces produced 75–90% of atmospheric dust globally in the 
early 21st century, with the remainder from agricultural and other land 
dominated by human land use (Ginoux et al., 2012; Stanelle et al., 2014).

Recent changes in dust emissions and their attributions vary 
geographically. Warming in Iran over the period 1951–2013 has been 
associated with an increased frequency of dust events (Alizadeh-
Choobari and Najafi, 2018) and a trend (2000–2014) towards 
increased fine atmospheric mineral dust concentrations in the US 
southwest has been linked to increasing aridity (Hand et  al., 2017). 
Conversely, increases in rainfall, soil moisture and vegetation linked to 

Natural areas

Observations 2003–2009

60% 40% 20% 0 20% 40% 60%

Agricultural lands

Frequency of high dust days during the dust season

Figure CCP3.2 |  Frequency of high dust days (dust optical depth >0.2) during the dust season, based on 2003–2009 remote sensing, the most recent data 
analysed, and divided into areas primarily under agriculture and areas dominated by natural land cover (Ginoux et al., 2012). Dust seasons: Africa (North), 
Year-round; Africa (South), September–February; America (North), March–May; America (South), December–February), Asia, March–May; Australia, September–February.
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changes in circulation strength of the Indian summer monsoon since 
2002 have led to a substantial reduction of dust in the Thar Desert and 
surrounding region, showing agreement with findings from the Sahel 
and the West African Monsoon (Kergoat et  al., 2017). A decreasing 
trend in the number and intensity of SDS in spring (2007–2016) in 
East Asia has also responded to higher precipitation and soil moisture, 
related to a decrease in the intensity of the polar vortex, favouring 
higher vegetation cover during the period studied (An et  al., 2018). 
Global climate change, transboundary movement of aeolian material 
by atmospheric flows from Central Asia, dynamics of the Caspian Sea 
regime, erosion, salinisation and the loss of land as a result of the 
placement of industrial facilities have expanded the land area prone 
to desertification in Russia. Desertification has been observed to some 
extent in 27 sub-regions of the Russian Federation on territory of more 
than 100 million hectares (Kust et al., 2011; also recently confirmed by 
National Report, 2019). Eastern and south-eastern regions of Kalmykia, 
Russia, serve as dust sources, while dust and sand masses from areas 
of the Black Land sometimes move far beyond to parts of Rostov, 
Astrakhan, Volgograd and Stavropol regions. Agricultural land in these 
areas can become covered with dust and sand 10 cm or more thick, 
with negative impacts on yields (Tsymbarovich et al., 2020). High dust 
day frequency is also occurring in the High Latitude Dust (HLD) source 
areas not reported in Figure  CCP3.2, such as in Iceland, Patagonia, 
Canada, Alaska and, based on in situ measurements, in Antarctica 
(Dagsson-Waldhauserová et al., 2014; Bullard et al., 2016; Dagsson-
Waldhauserova and Meinander, 2019; Bachelder et al., 2020). Active 
HLD sources cover at least 500,000 km2 and produce at least 5% of 
global dust budget (Bullard et al., 2016). HLD has negative impacts on 
the cryosphere via albedo changes and snow/ice melting (Boy, 2019; 
Dagsson-Waldhauserova and Meinander, 2019).

CCP3.2.1.8 Water Scarcity

Climate change and desertification have been linked to water loss 
(Bayram and Öztürk, 2014; Schwilch et  al., 2014; Mohamed et  al., 
2016), decreases in water quantity for irrigation and contamination 
of surface water bodies (Middleton, 2017). Increased runoff in areas 
in the Sahel with shallow soils increased water flows to lakes and 
the recharge of water tables (Favreau et  al., 2009; Gardelle et  al., 
2010; Descroix et  al., 2013; Kaptué et  al., 2015; Gal et  al., 2017). 
Water scarcity (Section  16.5.2.3.7) was among the first impacts 
of climate change recognised in North African countries such as 
Morocco which have extensive dryland areas, with countries such as 
Turkey, Libya, USA and China carrying out large-scale water transfer 
projects (Sternberg, 2016; Stringer et al., 2021). The decrease in water 
availability in Morocco was substantial in terms of both surface water 
supply (Rochdane et al., 2012; Choukri et al., 2020) and groundwater 
(Bahir et al., 2020), threatening agricultural production.

CCP3.2.2 Observed Impacts of Climate Change on Human 
Systems in Desert and Semiarid Areas

Climate change and desertification, alongside other drivers of degra-
dation, reduce dryland ecosystem services, leading to losses of bio-
diversity, water, food and impacts on human health (Section CCP4.2.3) 
and well-being (high confidence) (Mirzabaev et al., 2019) resulting in 

disruption to the economic structures and cultural practices of affected 
communities (Elhadary, 2014; Middleton, 2017).

CCP3.2.2.1 Sand and Dust Storms

Desertification and SDS can cause substantial socioeconomic damage 
in drylands (UNEP, 1992; Opp et  al., 2021) over both the short and 
long term. Short-term impacts occur on health, food production 
systems, infrastructure (damaging buildings, energy systems and 
communications), transport and related economic productivity, air 
and road traffic, and costs incurred in clearing sand and dust from 
deposition areas (Mirzabaev et al., 2019). In the Arab region increasing 
frequency of SDS events is projected to further exacerbate water 
scarcity and drought (ESCWA, 2017). Longer-term costs include loss of 
ecosystem services, biodiversity and habitat, chronic health problems, 
soil erosion and reduced soil quality (particularly through nutrient 
losses and deposition of pollutants), and disruption of global climate 
regulation (Middleton, 2018; Allahbakhshi et al., 2019). Dust deposition 
nevertheless can offer environmental and economic benefits, bringing 
important nutrients that improve and sustain soil fertility (Marticorena 
et al., 2017). Preventing and reducing SDS entails upfront investment 
costs but full benefit–cost analyses of different measures compared 
to the costs of inaction are scarce and need to consider the likely 
frequency and magnitude of SDS events (Tozer and Leys, 2013).

CCP3.2.2.2 Human Health

The potential impacts of climate change, recurrent droughts and 
desertification on human health in drylands include: higher risks from 
water scarcity (linked to deteriorating surface and ground water quality 
and water-borne diseases; Stringer et al., 2021), food insecurity and 
malnutrition (Section  16.2.3.4) in the absence of sufficient imports, 
respiratory, cardiovascular and infectious diseases caused by SDS 
(Mirzabaev et  al., 2019), potential displacement and migration and 
mental health consequences (Chapter 7; Stringer et al., 2021) and heat 
stress (Dunne et al., 2013; Zhao et al., 2015; Russo et al., 2016). SDS 
negatively impact human health through various pathways, causing 
respiratory, cardiovascular diseases and facilitating infections (high 
confidence) (Díaz et al., 2017; Goudarzi et al., 2017; Allahbakhshi et al., 
2019; Münzel et al., 2019). SDS can cause mortality and injuries related 
to transport accidents (Goudie, 2014). Research from China suggests 
that prenatal exposure to SDS can affect children’s cognitive function 
(Li et  al., 2018). The pollutants that are entrained and ingested or 
inhaled closely link to the land management strategies in source areas.

Droughts are among the natural hazards with the highest adverse 
impacts on human populations (Mishra and Singh, 2010; Arias et al., 
2021). Although droughts represented just 4% of hazard events, their 
impacts amounted to 31% of affected people (29 million) (Louvain, 
2019). Drought exposure relates to a higher risk of undernutrition 
(Section  16.5.2.3.6), among vulnerable populations (Kumar, 2016), 
particularly children (IFPRI, 2016) for whom the impacts can lead to 
lifelong consequences through stunted growth, impaired cognitive 
ability and reduced future educational and work performance (UNICEF/
WHO/WBG, 2019). The corresponding costs of children stunting in 
terms of lost economic growth can be of the order of 7% of per capita 
income in developing countries (Galasso and Wagstaff, 2018).
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CCP3.2.2.3 Agro-ecological Food Systems, Livelihoods and Food 
Security

Rising temperatures, variation in rainfall patterns and frequent extreme 
weather events associated with climate change have adversely 
affected agro-ecological food systems and pastoral systems in some 
drylands (Zhu et al., 2013; Amin et al., 2018), especially in developing 
countries (Haider and Adnan, 2014; Ahmed et  al., 2016; ur Rahman 
et  al., 2018) where desertification is a key challenge to agricultural 
livelihoods. Recurrent droughts in recent decades, coupled with wind 
erosion (particularly of fine sediment which gives soil its water-holding 
capacity and nutrients), affected vast areas in Argentina, leading to land 
abandonment and agricultural fields being covered by sand and invasive 
plants (Abraham et al., 2016). Temperature increases have contributed 
to reduced wheat yields in arid, semiarid and dry sub-humid zones of 
Pakistan (Sultana et al., 2019). Agricultural production in the drylands 
of South Punjab is experiencing irreversible impacts since the grain 
formation phase has become swifter with a warmer climate, leading to 
improper growth and reduced yields (Rasul et al., 2011).

Aslam et  al. (2018) regard climate change impacts as particularly 
threatening to the livestock sector, water and food security, and 
the economy beyond agriculture in South Punjab, particularly as 
yields decrease. In the livestock sector across global drylands (WGI 
TS.4.3.2.10), observed impacts include reduction of plant cover in 
rangelands, reduced livestock and crop yields, loss of biodiversity 
and increased land degradation and soil nutrient loss (Van de Steeg, 
2012; Mganga et al., 2015; Ahmed et al., 2016; Mohamed et al., 2016; 
Eldridge and Beecham, 2018, Arias et  al., 2021), as well as injury 
and livestock death due to SDS. This is particularly worrisome for 
traditional pastoralists who find themselves with fewer safety nets 
and more limited adaptive capacities than in the past, particularly 
where mobility, access and tenure rights are becoming restricted 
(Box CCP3.1) and where use of technologies such as mobile phones 
can result in mixed effects, as found in Morocco (Vidal-González and 
Nahhass, 2018). Observed SDS impacts can increase food production 
costs and threaten sustainability more generally (Middleton, 2017).

Woody plant encroachment and greening may be masking underlying 
land degradation processes and losses of ecosystem services, 
livelihood and adaptation options in pastoral livelihood systems (Reed 
et al., 2015; Chen et al., 2019a). Woody encroachment alters ecosystem 
services, particularly in rangelands, resulting in reduction of grass 
cover, hindering livestock production (Anadón et  al. 2014), reducing 
water availability (Honda and Durigan 2016, Stringer et al., 2021) but 
increasing availability of wood (Mograbi et al., 2019).

CCP3.2.2.4 Gender Differentiated Impacts

Impacts of desertification, climate change and environmental 
degradation, as well as vulnerability and capacity to adapt, are 
gendered. Differences are determined by socially structured gender-
specific roles and responsibilities, ownership of, access to and 
control over natural resources and technology, decision making, and 
capacity to cope and adapt to long-term changes (Mirzabaev et al., 
2019; Cross-Chapter Box GENDER in Chapter 18). Assessments of the 
gender dimension of desertification and climate change impacts and 

responses are scarce, and highly context specific. For example, in many 
lower income countries, rural women produce most of the household 
food, and are responsible for food preparation and collecting fuelwood 
and water from increasingly distant sources (Mekonnen et al., 2017; 
Droy, 2020). Drought and water scarcity particularly affect women and 
girls in drylands because they need to spend more time and energy 
collecting water and fuelwood, have less time for education or income-
generating activities, and may be more exposed to violence (Sommer 
et al., 2014) and less able to migrate as an adaptation option. Women 
are also commonly excluded from family and community decision 
making on actions to address desertification and climate change, yet 
their engagement in climate adaptation is critical. International policy 
efforts are currently seeking to better recognise and address this 
challenge (Okpara et al., 2019).

CCP3.2.2.5 Climate Change, Migration and Conflict

Dryland populations pursuing traditional land-based livelihood 
options are generally mobile due to a highly fluctuating resource base 
(Box  CCP 3.1). Many rural dwellers in drylands also move to urban 
areas for seasonal work, which can have positive impacts in terms 
of remittances. While reasons for migration vary and can be positive 
or negative, oppression and human rights abuses, lack of livelihood 
opportunities and food insecurity tend to be among the main push 
factors, while emerging opportunities at the rural–urban nexus present 
lucrative pull factors (Cross-Chapter Box MIGRATE in Chapter 7). In a 
survey in Libya in 2016, 80% of migrants interviewed said they had left 
home because of economic hardship (Hochleithner and Exner, 2018), 
which in drylands under water scarcity linked to climate change, would 
be exacerbated.

Causes of migration and violent conflict need to be seen in a wider 
historical, agrarian, political, economic and environmental context, 
in a multi-scalar perspective integrating levels of analysis from the 
local to the global (Glick Schiller, 2015). Quantitative studies tend to 
conclude that climate change has so far not significantly impacted 
migration including in drylands (Owain and Maslin, 2018), although 
with some disagreement (Lima et al., 2016; Missirian and Schlenker, 
2017). In a study of the climate change–migration–conflict interface, 
Abel et al. (2019) found limited empirical evidence supporting a link 
between climatic shocks, conflict and asylum-seeking for the period 
2006–2015 from 157 countries. The authors found evidence of such a 
link for the period 2010–2012 relating to some countries affected by 
the Arab Spring and concluded that the impact of climate on conflict 
and migration is limited to specific time periods and contexts.

The same lack of general causality is largely concluded on the specific 
link between climate change and conflict (Buhaug et al., 2014; Buhaug 
et al., 2015; von Uexkull et al., 2016; Koubi, 2019), but a minority of 
quantitative studies argue for a stronger causal association (Hsiang 
et al., 2013). Mach et al. (2019) found considerable agreement among 
experts that climate variability and change have influenced the risk 
of organised armed conflict within countries, but they also agreed 
that other factors, such as state capacity and level of socioeconomic 
development, played a much larger role. These factors also play a role 
in determining adaptation possibilities and in shaping the enabling 
environment (Section 8.5.2).
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Qualitative case studies tend to frame conflict and migration within a 
larger political, economic and historical context. A number of studies 
from African drylands find that land dispossession is a key driver of both 
migration and conflict resulting from large-scale resource extraction or 
land encroachment, often associated with processes of elite capture 
and marginalisation (Benjaminsen and Ba, 2009; Benjaminsen et  al., 
2009; Cross, 2013; Glick Schiller, 2015; Nyantakyi-Frimpong and Bezner 
Kerr, 2017; Obeng-Odoom, 2017; Bergius et al., 2020). By undermining 
livelihoods, exacerbating poverty and setting rural population groups 
adrift, land dispossession in the Sahel may lead to increased migration 
to urban areas, to rural sites of non-farm employment (e.g., mines) 
(Chevrillon-Guibert et  al., 2019) or out of the country. In addition, it 
may lead to other types of reactions including violent resistance (Oliver-

Smith, 2010; Cavanagh and Benjaminsen, 2015; Hall et  al., 2015) as 
already seen in the Sahel in terms of the emergence of jihadist armed 
groups (Benjaminsen and Ba, 2019). Major drivers of the current 
crisis in Mali include decades of bureaucratic mismanagement and 
widespread corruption, the spill-over of jihadist groups from Algeria 
after the civil war there in the 1990s and the current civil war in Libya. 
Climate change has played a marginal role as a driver of conflicts in the 
Sahel (Benjaminsen et al., 2012; Benjaminsen and Hiernaux, 2019) but 
has potential to exacerbate the situation in the future with regards to 
migration and conflict (Owain and Maslin, 2018).

Box CCP3.1 | Pastoralism and climate change

Pastoralism is a livestock-keeping system based on the herding of animals. Migrations often take place over long distances to track 
variable and unpredictable plant growth that tends to be patchy in space and variable in time (Homewood, 2018). Pastoralism has a 
considerably lower carbon budget than other livestock-keeping systems. Research on pastoralism in the Sahel concluded that this system 
may be carbon neutral (Assouma et al., 2019), despite contributing directly to greenhouse gas emissions via methane enteric emissions 
and indirectly through faeces-driven CO2, CH4 and N2O emissions during mineralisation (Assouma et al., 2017). Efforts to sedentarise and 
settle pastoralists in villages can lead to land degradation and higher overall emissions from the sector.

Pastoralists migrate with their animals in some of the most remote and marginal environments on the planet. Globally, mobile pastoralists 
number about 200 million households and use about 25% of the Earth’s landmass (Dong, 2016). Many pastoralists operate in non-
equilibrial environments that are unstable, fluctuating and generally uncertain, and are driven more by climatic variation than livestock 
numbers and grazing pressure (Behnke et al., 1993). Examples of such systems are grazing areas in the dry tropics (Sandford, 1983; Turner, 
1993; Sullivan and Rohde, 2002; Benjaminsen et al., 2006; Hiernaux et al., 2016) and rangelands in the Arctic (Behnke, 2000; Tyler et al., 
2008; Benjaminsen et al., 2015; Marin et al., 2020).

Over many generations, pastoralists have accumulated practical experience and knowledge to cope with uncertainty and value variability 
(Krätli and Schareika, 2010), mainly through a mobile and flexible approach. While pastoralists are also at risk of climate change impacts, 
they may be better able to adapt to a changing climate than other land users (Davies and Nori, 2008; Krätli and Schareika, 2010; Jones 
and Gutzler, 2016).

While pastoralists possess substantial adaptive capacity as a result of their Indigenous knowledge, this has been under pressure during 
the last few decades through continued loss of livestock corridors (essential to mobility) and pastures in general due to competing land 
uses, such as farming, mining, crop expansion and the establishment or extension of protected areas (Thébaud and Batterbury, 2001; 
Brockington, 2002; Benjaminsen and Ba, 2009; Upton, 2014; Johnsen, 2016; Tappan, 2016; Homewood, 2018; Weldemichel and Lein, 
2019; Bergius et al., 2020). Many of these competing land uses erect fences and exclude other uses, while property rights often privilege 
sedentary farming.

Modern states have typically tried to settle pastoralists and confine their movements within clearly defined boundaries, claiming that 
pastoral land use is neither ecologically sustainable nor economically productive. Based on such negative and often flawed views, stall-
feeding and ranching are often presented by policymakers as successful models of livestock keeping in contrast to the pastoral way of 
life (Steinfeld et al., 2006; Chatty, 2007).

Current pressures and processes of pastoral change are spatially variable and complex, and tend to result in further economic and 
political marginalisation of pastoralists, with adverse effects on livelihoods and landscapes. With climate change, which is projected to 
lead to higher temperatures and more frequent fluctuations in precipitation, maintaining flexibility and resilience in pastoral land use 
is essential. However, current processes of marginalisation, in addition to increased insecurity in some drylands (e.g., the Sahel), make 
pastoralists more vulnerable, and constrain them from fully employing their adaptive capacities (Davies and Nori, 2008). The skills and 
capacities held by pastoralists may, however, offer lessons for society at large in its struggle to adapt to climate change and deal with 
increased uncertainty (Davies and Nori, 2008; Scoones, 2009; Nori and Scoones, 2019).
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CCP3.3 Future Projections

CCP3.3.1 Projected Changes and Risks in Natural Systems

CCP3.3.1.1 Temperature

Globally, warming rates have been twice as high in drylands as in humid 
lands, because the sparse vegetation cover and lower soil moisture of 
dryland ecosystems amplify temperature and aridity increases (Huang 
et al., 2016). This enhanced warming is expected to continue in the 
future. Surface warming over drylands is projected to reach ~6.5°C 
(~3.5°C) under the high Representative Concentration Pathway (RCP) 
8.5 (low-moderate RCP4.5) emissions scenario by the end of this 
century, relative to the historical period (1961–1990) (Huang et  al., 
2016; Huang et al., 2017). Exploring the spatial variations between the 
aeolian desertification response in selected climate change scenarios, 
Wang et al. (2017) reported that temperature rise could trigger aeolian 
desertification in West Asia, Central China and Mongolia. The number 
of extremely hot days with temperatures above 40°C is projected to 
increase considerably across the Arab region by the end of the 21st 
century (ESCWA, 2017).

CCP3.3.1.2 Rainfall, Evaporation and Drought

Drylands are highly sensitive to changes in precipitation and 
evapotranspiration. Potential evapotranspiration (PET) is projected to 
increase in all regions globally, under all RCPs, as a result of increasing 
temperatures and surface water vapour deficit (Mirzabaev et al., 2019). 
Simulations based on coupled land surface, energy, and water and 
vegetation models in the Central Sahel showed a strong response of 
the water budget. Under +2°C and +4°C warming scenarios, decreased 
evapotranspiration, runoff and drainage were found for all scenarios, 
except those with the highest precipitation (Léauthaud et al., 2015).

Globally, soil moisture declined over the 20th century (Gu et al., 2019), a 
trend that is projected to continue under all emissions scenarios (WGI). 
Projected drier soils can further amplify aridity through feedbacks with 
land surface temperature, relative humidity and precipitation (Berg 
et al., 2016).

Drought conditions (frequency, severity and duration) are expected 
to substantially worsen in global drylands, driven by a higher 
saturation threshold and more intense and frequent dry spells under 
rising temperatures (Liu et  al., 2019a; 2019b). In a +1.5°C world, 
historical 50-year droughts (based on the Standardised Precipitation-
Evapotranspiration Index (SPEI)) could occur twice as frequently 
across 58% of global landmasses relative to the 1976–2005 period, 
an area that increases to 67% under 2°C warming (Gu et al., 2020). 
Multi-year drought events of magnitudes exceeding historical baselines 
will increase by 2050 in countries with drylands including Australia, 
Brazil, Spain, Portugal and the USA (Jenkins and Warren, 2015). The 
magnitude of drought stress in different regions differs depending on 
the metric used. Projections based on the PDSI suggest drought stress 
will increase by more than 70% globally, while a substantially lower 
estimate of 37% is found when precipitation minus evapotranspiration 
(P – E) is used (Swann et al., 2016). However, the two metrics agree 
on increasing drought stress in regions with more robust decreases 

in precipitation, such as southern North America, northeastern South 
America (Section 12.3.1.1) and southern Europe (Section 13.1.3; Swann 
et al., 2016).

CCP3.3.1.3 Aridity

Studies based on the AI (the ratio of annual potential evapotranspiration 
to precipitation), almost always project conditions of increasing aridity 
under climate change, and associated widespread expansion of drylands 
(Huang et  al., 2016). The limitations of the AI are widely reported 
(Mirzabaev et al., 2019), with alternative indices that consider different 
variables, including the Ecohydrological Index, PDSI, Standardised 
Precipitation Index and SPEI (Stringer et  al., 2021). AI projections 
indicate potentially severe aridification in the Amazon, Australia, Chile, 
the Mediterranean region, northern, southern and western Africa, 
southwestern USA and South America (medium confidence) (Feng and 
Fu, 2013; Greve and Seneviratne, 2015; Jones and Gutzler, 2016; Park 
et al., 2018). However, the AI does not incorporate potential changes to 
plant transpiration under increasing CO2 concentration and therefore 
overestimates drought conditions and aridity. Additionally, it does not 
reflect seasonality in rainfall and evapotranspiration, which is important 
in regions where temperature and actual evapotranspiration are not 
increasing during the wet season when vegetation growth is occurring. 
Mirzabaev et al. (2019) concluded that while aridity will increase in 
some places (high confidence), there is insufficient evidence to suggest 
a global change in dryland aridity (medium confidence). Nevertheless, 
a comparison of several metrics of aridity showed aridity increases for 
several hotspots such as the Mediterranean region and South Africa 
(Greve et  al., 2019). Under RCP8.5, aridity zones could expand by 
one-quarter of the 1990 area by 2100, increasing to over half of the 
global terrestrial area (Huang et al., 2016; Lickley and Solomon, 2018). 
Lower greenhouse gas emissions, under RCP4.5, could limit expansion 
to one-tenth of the 1990 area by 2100 (Huang et al., 2016). Aridity 
could expand substantially on all continents except Antarctica (Huang 
et  al., 2016), with expansion first manifesting in the Mediterranean 
region, southern Africa, southern South America and western Australia 
(Lickley and Solomon, 2018). In the Northern Hemisphere, aridity zones 
could expand poleward as much as 11° latitude (Rajaud and Noblet-
Ducoudré, 2017). By 2100, the population of dryland areas could 
increase by 700  million people and, under RCP8.5, 3  billion people 
might live in areas with a 25% or greater increase in aridity (Lickley 
and Solomon, 2018). Many studies point to an increasing dryland area 
based on the AI, but there is low agreement on the actual amount 
and area of change (Feng and Fu, 2013; Scheff and Frierson, 2015; 
Huang et al., 2017). The inconsistency between studies is largely due 
to the substantial internal climate variability in regional precipitation. 
Changes in annual precipitation have been shown to range from −30% 
to 25% over drylands. Consistent changes in precipitation are only 
found at high latitudes, while total PET is projected to increase over 
most land areas (Feng and Fu, 2013). This leads to more consistent, 
widespread drying in the tropics, subtropics and mid-latitudes in most 
models (Feng and Fu, 2013; Cook et  al., 2014; Scheff and Frierson, 
2015; Zhao and Dai, 2015).
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CCP3.3.1.4 Dryland Extent

Global dryland area (based on the AI) is projected to expand by ~10% 
by 2100 compared to 1961–1990 under a high emission scenario (Feng 
and Fu, 2013). However, there are significant regional differences in 
the drivers of dryland expansion and subsequent estimates of change 
in dryland extent. Subtropical drylands are projected to expand as 
the climate in these regions shifts from temperate to subtropical and 
aridity increases in currently sub-humid subtropical regions, resulting 
in the loss of temperature-controlled seasonal cycles (Schlaepfer et al., 
2017). Observed and projected warming and drying trends are most 
severe in transitional climate regions between dry and wet climates, 
with some exceptions (Nkrumah et al., 2019), which are often highly 
populated agricultural regions with fragile ecosystems (Cheng and 
Huang, 2016). In contrast, P  –  E predicts decreasing drought stress 
across temperate Asia and central Africa (Swann et  al., 2016). 
Expansion of arid regions is anticipated in southwest North America, 
the northern fringe of Africa, southern Africa and Australia. The main 
areas of semiarid expansion are expected to occur in the north side 
of the Mediterranean, southern Africa, and North and South America. 
In contrast, India, eastern equatorial Africa and other areas of the 
southern Saharan regions are projected to have shrinking drylands 
(Biasutti and Giannini, 2006; Biasutti, 2013; Rowell et al., 2016). Future 
projections may underestimate dryland expansion, since the Coupled 
Model Intercomparison Project 5 (CMIP5) models underestimate 
historical warming (Huang et al., 2016) and overestimate precipitation 
over drylands, particularly in the semiarid and dry sub-humid regions 
(Ji et al., 2015). However, estimates vary depending on the metric used 
(Swann et al., 2016; Berg et al., 2017b). Studies based on off-line aridity 
and drought metrics (calculated from model output of precipitation, 
evapotranspiration or temperature) project strong surface drying trends 
(Cook et  al., 2014; Scheff and Frierson, 2015; Zhao and Dai, 2015), 
while projections based on total soil water availability from CMIP5 
models show weaker and less extensive drying (Berg et  al., 2017a). 
In contrast, projections in southern Africa may overestimate future 
drying, with systematic rainfall biases being found in the present-day 
climatology in models that simulate extreme future drying (Munday 
and Washington, 2019). Improvements in projections of future changes 
in aridity require better understanding of seasonality, land hydrology 
and the feedbacks between projected soil moisture decrease on land 
surface temperature, relative humidity and precipitation (Huang et al., 
2016).

Higher dust emissions are consistent with climate change projections 
indicating an expansion in the global area of drylands (Feng and Fu, 
2013; Huang et al., 2016) and increased drought risk (Cook et al., 2014; 
Xu et al., 2019), but future trends in dust event frequency and intensity 
as a result of climate change are uncertain and will vary geographically 
(Jia, 2019). Combined effects of climate change and anthropogenic 
activities are projected to increase sand encroachment and extreme 
dust storms (Omar Asem and Roy, 2010; Sharratt et al., 2015; Pu and 
Ginoux, 2017) as a result of increased aridity, accelerating soil erosion 
(Section  4.4.8; Sharratt et  al., 2015) and loss of biomass (Sharratt 
et al., 2015; Middleton and Kang, 2017). Shifts in dust storm timings 
are also projected in some regions (Hand et  al., 2016). Dustiness is 
projected to increase in the southern US Great Plains in the late 21st 
century under the RCP8.5 climate change scenario but decrease over 

the northern Great Plains (Pu and Ginoux, 2017). A declining trend 
in dust emission and transport from the Sahara under RCP8.5 was 
detected by Evan et al. (2016), but regional climate model experiments 
conducted by Ji et al. (2018) under the same scenario indicated that 
overall dust loadings would increase by the end of the 21st century 
over West Africa. New dust sources may emerge with changing climate 
conditions, as Bhattachan et al. (2012) indicate for the Kalahari Desert 
in southern Africa, due to vegetation loss and dune remobilisation. 
There is overall low confidence on future atmospheric dust loads at 
the global and regional scale. Models of future dust emissions are 
limited by the low accuracy of models of present anthropogenic dust 
emissions, which range from 10% to 60% of the total atmospheric 
dust load (Webb and Pierre, 2018). A global compilation of data 
from sedimentary archives (ice cores), remote sensing, airborne 
sediment sampling and meteorological station data estimated that 
anthropogenic dust emissions have at least doubled over the past 
250 years (Hooper and Marx, 2018). While future emissions of natural 
dust sources are projected to decrease (Mahowald et  al., 2006) or 
remain stable (Ashkenazy et  al., 2012), when sources of human 
emissions are included, projections of future atmospheric dust loads 
suggest that emissions may increase (Stanelle et al., 2014).

The relative contribution of albedo and evapotranspiration to 
regional trends in surface temperature (Charney, 1975) remains 
unresolved, and may be determined by different mechanisms in 
different systems, depending on site-specific conditions such as snow 
coverage, vegetation and soil moisture (Yu et al., 2017). For example, 
the vegetation–albedo feedback mechanism may dominate in the 
Arctic (Blok et al., 2011; te Beest et al., 2016), while the vegetation–
evaporation feedback may drive change in other regions. Actions that 
increase forest cover across Africa could thus, theoretically, moderate 
projected future temperature increases (Wu et al., 2016; Diba et al., 
2018), but with potentially negative effects on biodiversity (Chapter 
2). Soil drying exacerbates atmospheric aridity, which causes more 
soil drying in a self-reinforcing land–atmosphere feedback that could 
intensify under RCP8.5 (Zhou et al., 2019).

Changes to the composition, structure and functioning of natural 
communities in deserts and dryland ecosystems are key risks 
resulting from water stress, drought intensity and continued habitat 
degradation, greater frequency of wildfire, biodiversity loss and the 
spread of invasive species (Hurlbert et al., 2019). Not all these stresses 
occur at the same time in a particular environment, with some 
areas more exposed to, for example, wildfire than others, especially 
in areas with high amounts of dry herbaceous biomass. Grassland 
composition may shift as C3 plants are replaced by C4 species, which 
have higher optimal temperatures and higher water use efficiency 
(although seasonality of precipitation also plays a role) (Knapp et al., 
2020). Many desert species have morphological, physiological and/
or behavioural adaptations to cope with climatic extremes, including 
rapid regeneration following droughts (Boudet, 1977; Hiernaux and Le 
Houérou, 2006), leaf dropping during the dry season to reduce water 
loss (Santos et  al., 2014), alongside long histories of adaptation to 
climate change (Brooks et al., 2005; Ballouche and Rasse, 2007), while 
many animals live near their physiological limits (Vale and Brito, 2015). 
Substantial ecological effects may occur when extreme events such 
as heatwaves or droughts are superimposed on the warming trend, 

https://doi.org/10.1017/9781009325844.020
Downloaded from https://www.cambridge.org/core. IP address: 18.224.59.238, on 08 Jun 2024 at 16:53:42, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009325844.020
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


CCP3

2213

Deserts, Semiarid Areas and Desertification  Cross-Chapter Paper 3

pushing species beyond their physiological and mortality thresholds 
(Hoover et al., 2015; Harris et al., 2018).

Climate change increases risks of continued range retractions of Karoo 
succulents in South Africa (Young et al., 2016), dry argan woodlands 
in Morocco (Alba-Sánchez et  al., 2015), epiphytic cacti in Brazil 
(Cavalcante and Duarte, 2019; Cavalcante et al., 2020) and other plant 
species exposed to higher aridity. Projected increases in heat and 
aridity could increase mortality of trees and shrubs in Sonoran Desert 
ecosystems in the USA (Munson et al., 2012; 2016b), reduce sagebrush 
in arid ecosystems of the western USA (Renwick et  al., 2018), and 
contribute to the replacement of perennial grasses with xeric shrubs in 
the southwestern USA (Bestelmeyer et al., 2018). CO2 fertilization and 
warmer conditions, combined with changes in timing and availability 
of moisture, could increase invasive grasses and wildfire in desert 
ecosystems of Australia and southwestern USA, where wildfire has 
historically been absent or infrequent (Abatzoglou and Kolden, 2011; 
Horn and St. Clair, 2017; Klinger and Brooks, 2017; Syphard et al., 2017). 
Trends of woody encroachment may continue in some North American 
and African drylands or at least not reverse (Higgins and Scheiter, 2012; 
Caracciolo et al., 2016). Impacts of woody encroachment on drylands 
may show a slight increase in carbon, but a decline in water and huge 
negative impacts on biodiversity, with a tendency for open ecosystem 
species to be most affected (Archer et al., 2017). Expansion of grasses 
into these arid shrublands has the potential to transform them rapidly, 
especially through the acceleration of the fire cycle (Bradley et  al., 
2016). While the impact of increased aridity may be offset by changing 
water use efficiency by plants under high CO2 concentrations, limiting 
the expansion of dryland ecosystems (Swann et al., 2016; Mirzabaev 
et al., 2019), increased plant growth in response to elevated CO2, which 
results in increased water consumption, may counteract this. Increased 
water use efficiency is therefore not expected to counterbalance 
increased evaporative demand (Chapter 8). There is medium confidence 
that succulent species will be particularly vulnerable to increased heat 
and aridity due to reduced physiological performance, loss of seed 
banks, lower germination rates and increased mortality (Table CCP3.1; 
Musil et al., 2005; Aragón-Gastélum et al., 2014; 2017; Shryock et al., 
2014; Martorell et al., 2015; Carrillo-Angeles et al., 2016; Koźmińska 
et al., 2019).

CCP3.3.2 Projected Impacts on Human Systems

Across many drylands, human-induced causes of desertification, 
SDS, climate change and unsustainable land use are projected to 
become more pronounced over the next several decades with global 
consequences. Future climate changes with increasing frequency, 
intensity and scales of droughts and heatwaves, are projected to further 
exacerbate the vulnerability and risk to humans from desertification 
(Hurlbert et al., 2019).

SDS exert a wide range of impacts on people, within deserts and 
semi-deserts but also outside dryland environments because of long-
range dust transport (Middleton, 2017). Research on the economic 
impacts of SDS is lacking, while studies that have been conducted 
lack consistency in data collection methods and analysis (Middleton, 
2019). Although projections are rarely modelled, estimated economic 

damages of increased dust-related health impacts and mortality under 
RCP8.5 could total USD 47 billion/year additional to the 1986–2005 
value of USD  13  billion/year in southwest USA (Allahbakhshi et  al., 
2019).

Projected impacts of climate change on the risk of food insecurity are 
a particular concern for the developing world drylands (Chapter 16; 
Mirzabaev et al., 2019), potentially leading to the breakdown of food 
production systems, including crops, livestock and fisheries, as well as 
disruptions in food supply chains and distribution (Myers et al., 2017; 
Lewis and Mallela, 2018). Developing country drylands are particularly 
vulnerable due to a higher share of populations with lower income, 
lower physical access to nutritious food, social discrimination and 
other environmental factors that link to climate change. For example, 
countries such as Somalia, Yemen and Sudan faced recent and resurging 
challenges from an increase in desert locusts, the effects of which, in 
2020, extended from East Africa through the Arabian Peninsula and 
Iran as far as India and Pakistan. Meynard et al. (2020) note that under 
climate change, some areas suffering from previous outbreaks may see 
changes in formation of swarms of Schistocerca gregaria. Salih et al. 
(2020) recognise that attributing the 2020 swarms as a single event 
to climate change remains challenging, but highlight that projected 
temperature and rainfall increases in deserts and strong tropical cycles 
can create conditions conducive to the development, aggregation, 
outbreak and survival of locusts. Mandumbu et  al. (2017) highlight 
how crop parasites such as Striga spp. in southern Africa may benefit 
from higher temperatures and rainfall activating dormant seeds, while 
high winds aid their dispersal. Combined with increasing risks of 
erosion and soil fertility losses (Striga is able to tolerate drought and 
a low nitrogen environment), this can have important impacts on the 
yields of key dryland crops such as maize and pearl millet.

Human responses can exacerbate desertification processes under 
climate change conditions, even in deserts. Exploitation of mineral 
resources (e.g., lithium mining in Chile’s Atacama Desert) can cause 
human population changes as people flock to the area for work (Liu 
et al., 2019), increasing vulnerability due to, for example, soil erosion 
and salinisation, as well as increasing pressure on potable water for 
human consumption (Stringer et  al., 2021) and exhausting aquifers. 
Salinisation is projected to increase in the drylands due to climate 
change impacts in future (Mirzabaev et  al., 2019). For example, in 
India, about 7 million hectares of arable land area is currently affected 
by salt (Sharma et al., 2015; Sharma and Singh, 2015). It is projected 
that unsustainable use of marginal quality waters in irrigation and 
neglect of drainage, combined with climate change impacts, will 
accelerate land salinisation in India, rendering another 9  million 
hectares salty and less productive by 2050 (ICAR-CSSRI, 2015). This 
has important cost implications given that annually, 16.84  million 
tonnes of farm production valued at INR 230.19 billion is already lost 
in India due to salinity and associated problems (Sharma and Singh, 
2015). The literature further shows evidence of desertification of oases 
and irrigated lands in parts of northern China’s drylands (Wang et al., 
2020), the Indian subcontinent’s deserts, as well as the Mesopotamian 
Arabian Desert (Ezcurra, 2006; Dilshat et al., 2015).
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CCP3.4 Adaptations and Responses

Adaptations to climate change impacts in human systems vary 
depending on exposure to risks, types of risks and responses, 
underlying social vulnerabilities and adaptive capacities, including 
access to resources, the extent of adaptation responses and the 
potential of these responses to reduce risk/vulnerability (Chapter 16; 
Singh and Chudasama 2021). Adaptations tend to be applied locally, 
tackling symptoms of the problem and proximate drivers (e.g., of 
desertification), rather than distant or external drivers (Morris et al., 
2016; Adenle and Ifejika Speranza, 2021). Different groups require 
different kinds of supports and levers to enable them to follow adaptive 
pathways (Møller et al., 2017; Stringer et al., 2020) and face different 
barriers and limits to adaptation (Chapter 18). What constitutes an 
incremental adaptation in one location may be transformational in 
another. Spatial patterns of dryland resilience and adaptive capacity 
can be partly explained by access to livelihood capitals (Mazhar et al., 
2021) and are shaped by prevailing structures and power dynamics. 
Supportive policies, institutions and good governance approaches can 
strengthen the adaptive capacities of dryland farmers, pastoralists 
and other resource users (high confidence) (Stringer et  al., 2017). 
Table  CCP3.2 provides examples of illustrative adaptation options 
responding to major challenges of climate change and desertification 
in deserts and semiarid areas. Some adaptations present no-regrets 
options while others tackle desertification and/ or climate changes to 
different extents.

Adaptations to climate change, desertification, drought management 
(Section  17.2.2.2) and sustainable development activities largely 
overlap in drylands, pointing to synergies between them (Reichhuber 
et  al., 2019). For example, support for communal and flexible land 
tenure could bring about benefits across multiple dimensions, while 
attention to water as a limiting factor in drylands can link to multiple 
SDGs (Stringer et al., 2021), as well as adaptations in natural systems, 
where improved forecasting and anticipatory science and management 
can be appropriate (Bradford et  al., 2018). Currently, more than 
125 countries around the world, particularly in drylands, are setting land 
degradation neutrality (LDN) targets. LDN and its hierarchical response 
mechanisms of avoiding, reducing and reversing land degradation can 
provide an overarching resilience-based framework for adaptation at the 
national level (Mirzabaev et al., 2019; Orr et al., 2017b; Cowie et al., 
2018) and support biodiversity conservation (Akhtar-Schuster et  al., 
2017). However, achieving LDN will require a transparent decision and 
prioritisation process (Dallimer and Stringer, 2018), anchored in a socio-
ecological systems approach (Okpara et al., 2018), with investment in 
all dimensions of an enabling environment, including inclusive policies 
and regulations, sustainable institutions, accessible finance and effective 
science–policy communications and interactions (Verburg et al., 2019; 
Allen et  al., 2020). LDN calls for integrated land use planning to 
ensure land uses are optimised at a landscape scale to help balance 
competition for limited land resources and harness multiple benefits 
(Cowie et al., 2018, Verburg et al., 2019), recognising that adaptations 
present synergies and trade-offs along various dimensions of sustainable 
development such as poverty reduction, enhancing food security and 
human health or providing improved access to clean energy, land, water, 
and finance (see Section 8.6). Distributional effects of adaptation options 
also may vary between different socioeconomic groups within countries 

or locally among communities, pushing social justice concerns to the 
fore (Section 8.4). Measures promoting particular adaptations need to 
take into account such consequences, as well as the potential for some 
adaptations to become maladaptive at scale.

Natural systems are also able to adapt to climate change, be adapted 
and become more resilient to desertification. For example, the root 
network architecture of the hyper-arid Negev Desert acacia trees has 
enabled them to withstand intensive cultivation and climate change-
driven desertification (Winter et al., 2015), while vegetation-induced 
sand mounds (‘coppice dunes’) in the Arabian Desert have reduced 
desertification through reducing wind erosion and enriching sand 
desert land with water and nutrients (Quets et al., 2017). Vegetation 
cover of psammophyte shrub species (in the ‘desert oasis transitional 
area’) surrounding the Dunhuang Oasis (northwest China) reduces oasis 
land degradation risk by reducing sand grain size and velocity of winds 
from the aeolian desert (Zhang et al., 2007); while land use planning in 
Israel’s Negev Desert taking a ‘sharing’ approach between cultivation 
and urbanisation has helped to minimise the external degrading 
effects of adjacent desert land ecosystems (Portnov and Safriel, 2004). 
Scholars are nevertheless questioning the wider suitability of tree 
planting in drylands, given concerns for water availability and other 
ecosystem services (Veldman et  al., 2015; 2019; Bond et  al., 2019). 
How natural dryland systems are managed following disturbances 
such as wildfire is important too. van den Elsen et al. (2020) found that 
establishing vegetation and mulch cover after a fire in a Mediterranean 
dryland ecosystem reduced soil erosion, helping maintain soil fertility 
and nutrients. However, different management objectives require 
different adaptations. For example, adaptation measures that reduce 
land degradation through reforestation could increase vulnerability to 
fire if they exclude ecologically sound fire management or are based 
on plant species that are fire prone. Combinations of different land 
management practices and governance approaches tackling a range of 
different stresses appear to best support sustainability and adaptation 
over the long term (van den Elsen et al., 2020).

Collective action can facilitate the implementation of adaptation 
responses and help tackle challenges associated with upscaling of 
successful land-based adaptations (Thomas et  al., 2018). However, a 
lack of coordination between stakeholders and across sectors can be 
problematic (Amiraslani et al., 2018), showing the importance of multi-
stakeholder engagement (De Vente et  al., 2016). Multi-stakeholder 
engagement is recognised as an essential part of desertification 
control, as well as vital in tackling climate change (Reed and Stringer, 
2016), with participation taking place to different extents in different 
drylands according to the prevailing governance system. In China, the 
Grain for Green programme is an example of a large-scale ecological 
restoration programme securing local engagement through payments 
for ecosystem services (Kong et al., 2021). Transdisciplinary stakeholder 
engagement involving researchers and central and local governments 
in the Heihe River Basin in China’s arid and semiarid northwest, using 
an interdisciplinary ‘web’ approach, enabled basin restoration. Multi-
stakeholder efforts saw improvement in the condition of Juyan Lake and 
the surrounding catchment, increasing both the lake surface area and 
groundwater in downstream locations (Liu et al., 2019).
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Table CCP3.2 |  Synthesis of adaptation measures and responses to risks in deserts and semiarid areas. Appropriateness of measures is context dependent and some adaptations 
will be incremental or even maladaptive in some dryland contexts, while being transformational in other locations.

Challenge Adaptation measures and responses References

Soil erosion
Rainwater harvesting and soil conservation, grass reseeding, agroforestry
Use of different breeds of grazing animals, altered livestock rotation systems, use of new crop varieties, development of 
management strategies that reduce the risk of wildfire

Eldridge and Beecham (2018)

Overgrazing

Modification of production and management systems that involve diversification of livestock animals and crops, integration 
of livestock systems with forestry and crop production, and changing the timing and locations of farm operations
Improved breeds and feeding strategies and adoption of improved breeds for households without cows (both economic 
and environmental gain)

Kattumuri et al. (2015); Shikuku et al. 
(2017)

Clearing 
of natural 
vegetation

Carbon sequestration through decreasing vegetation clearing rates, reversal through revegetation, targeting for 
higher-yielding crops with better climate change adapted varieties, and improvement of land and water management
Agroforestry role in addressing various on-farm adaptation needs besides fulfilling many roles in agriculture, forestry and 
other land use-related mitigation pathways (assets and income from carbon, wood energy, improved soil fertility and 
enhancement of local climate conditions; provides ecosystem services and reduces human impacts on natural forests)
Implementation of co-benefits strategies including provision of incentives across multiple scales and time frames, 
fostering multidimensional communication networks and promoting long-term integrated impact assessment
Achievement of triple-wins in sub-Saharan Africa through provision of development benefits by making payments for 
forest services to smallholder farmers, mitigation benefits by increasing carbon storage, and adaptation benefits by 
creating opportunities for livelihood diversification

Kattumuri et al. (2017); Mbow et al. 
(2014); Suckall et al. (2014)

Invasive species 
and woody 
encroachment

Climate change is projected to facilitate the spread of invasive species that can have profound impacts on dryland 
ecosystem functioning leading to the loss of biodiversity
Biomass harvesting and selective clearing; utilising intense fires to manage encroachment, combined browsing and fire 
management
Rewilding in open ecosystems and reintroduction of mega-herbivores (e.g., in parts of Africa) to counter negative impact 
of woody encroachment; chemical removal of undesirable encroached woody species

Mirzabaev et al. (2019); Davies and Nori 
(2008); Stafford et al. (2017); Cromsigt 
et al. (2018); Ding and Eldridge (2019)

Droughts

Proactive drought risk mitigation compared with reactive crisis management approaches
Promoting collective action in livestock management, optimising livestock policies and feed subsidies, interventions in 
livestock markets during drought onset
Expanding sustainable irrigation and shifting to drought-resistant crops and crop varieties
Environmentally sustainable seawater desalination
Promoting behavioural changes for more efficient residential water use; moving away from water-intensive agricultural 
practices in arid areas; harvesting rainwater by local communities; empowering women and engagement in local 
climate adaptation planning, community-based early warning systems, Integrated Water Resources Management, water 
governance benchmarking, and exploration of palaeo channels as freshwater sources using remote sensing

Morton and Barton (2002); Abebe et al. 
(2008); Alary et al. (2014); Catley et al. 
(2014); Mohamed et al. (2016)

Grassland 
and savanna 
degradation

Prescribed fire and tree cutting, invasive plant removal, grazing management, reintroduction of grasses and forbs, 
restoration of soil disturbance

For review, see Buisson et al. (2019)

Rangeland 
degradation 
(decreasing 
fodder quality or 
yield, invasion by 
fodder poor value 
species/refusals)

Promote local and regional herd mobility during the growing season to avoid intense grazing pressure on growing annual 
herbaceous vegetation of rangelands near settlements, water points, markets
Moderate grazing facilitates grass tillering and herbaceous flora diversity
Ecological restoration of grazing ecosystems by sowing a mixture of zone-typical dominant species and life forms of 
plants on severely degraded land; clearance of invasives
Ecological restoration of arid ecosystems by sowing a mixture of zone-typical dominant species and life forms of fodder 
plants with partial (ribbon) treatment of pasture lands
Ecological restoration of secondary salted irrigated soils using halophytes

De Vries and Djitèye (1982); Hiernaux 
et al. (1994); Hiernaux and Le Houérou 
(2006); Reed et al. (2015)

Poor livestock 
productivity 
(reproduction/
dairy/meat) in 
relation with poor 
seasonal nutrition

Promote seasonal-regional herd mobility to optimise the use of complementary fodder resources (rangelands, browses, 
crop residues); implies institutionalised communal access, community agreements and infrastructures (water points, 
livestock path, grazing reserves, access to education, health care, markets for transhumant population); cross state 
boundary mobility implies international agreements such as promoted by N’djamena meeting (Declaration 2013)

Turner (1993); Schlecht et al. (2004); 
Fernández-Rivera et al. (2005); Bonnet 
and Herault (2011); Hiernaux et al. 
(2016)

Promote strategic supplementation of reproductive and young animals by the end of dry and early wet season
Secondary effect on excretion quantity/ quality to manure croplands

Many trials in research stations and on 
farm: for example Sangaré et al. (2002a; 
2002b); Osbahr et al. (2011); Sanogo 
(2011)

Decrease trend 
in cropland soil 
fertility

Rotational corralling of livestock in field during the dry season (and on cleared fallow the following year in the wet 
season) to ensure maximum retrieval of organic matter and nutrients from faeces and urine deposited
Application of mineral N and P fertilizers as placed (per pocket) microdoses (50–80 kg/ha) to intensify staple crop 
production
Impact on soil fertility, rain use efficiency, vegetation cover, organic matter production and recycling
Legume association with cereals (millet–cowpea; sorghum–groundnut)
Adapting cultivars and cropping techniques (calendar, fertilization).

Pieri (1989); Breman et al. (2001); 
Gandah et al. (2003); Manlay et al. 
(2004); Abdoulaye and Sanders (2005); 
Reij et al. (2005); Akponikpe (2008); 
Bagayoko et al. (2011); Bationo 
et al. (2011); Hiernaux et al. (2009b); 
Sendzimir et al. (2011); Turner and 
Hiernaux (2015); Weston et al. (2015; 
Reij and Garrity (2016)
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In the short- to medium-term, monitoring, prediction and early warning 
can support adaptation and, for example, help reduce negative impacts 
of SDS by mobilising emergency responses. Daily dust forecasts 
enable preparation to minimise risks from SDS to both human and 
natural systems (e.g., the World Meteorological Organization Sand 
and Dust Storm Warning Advisory and Assessment System: https://
sds-was.aemet.es/forecast-products/dust-forecasts). Preparedness and 
emergency response procedures benefit from covering diverse sectors, 
such as public health surveillance, hospital services, air and ground 
transportation services, water and sanitation, food production systems 
and public awareness, suggesting the need for a coherent, multi-
sector governance approach. Longer-term actions include prioritising 
sustainable land management (Middleton and Kang, 2017), based on 
IKLK and modern science (Verner, 2012), along with the investment of 
financial and human capital in supporting these measures. Devolved 
adaptation finance in dryland areas of, for example, Kenya (Nyangena 
and Roba, 2017) and Mali (Hesse, 2016) has yielded promising insights, 
highlighting the importance of climate information services and 
local government support for community prioritisation of adaptation 
activities. Such actions can enable substantial benefits for poor and 
marginalised men and women. Among international institutional 
measures, a global coalition to combat SDS was launched at the 
United Nations Convention to Combat Desertification Conference of 
Parties (UNCCD COP14) in 2019, which could help to better mobilise 
a global response to SDS. Similarly, there have been calls for increased 
investment in regional institutions such as the Desert Locust Control 
Organisation for Eastern Africa to both pre-empt and tackle locust 
plagues (Salih et al., 2020), requiring transboundary cooperation.

There is high agreement and robust evidence that shifting emphasis 
to proactive risk mitigation, including solutions for drought, flooding, 
erosion and dust management, instead of exclusive focus on disaster 
management, reduces vulnerability and improves adaptive capacity 
(Section 16.4.3.2; 16.5.2.3.4; Sivakumar, 2005; Grobicki et al., 2015; 
Wieriks and Vlaanderen, 2015; Aguilar-Barajas et al., 2016; Runhaar 

et  al., 2016; Wilhite and Pulwarty, 2018; Wilhite, 2019). It also 
underscores the LDN response hierarchy avoid > reduce > reverse 
(Orr et  al., 2017a). Nevertheless, ex ante drought and flood risk 
mitigation has been adopted in limited dryland settings, despite it 
being preferable to increase preparedness before it happens, provide 
incentives for adaptation instead of insurance, provide insurance 
instead of relief and provide relief instead of regulation (Sivakumar, 
2005). Yet, providing disaster relief is often more publicly visible and 
politically expedient, despite its social, economic and environmental 
challenges. The absence of proactive risk mitigation and resulting crisis 
management increases vulnerability, increases reliance on government 
support, reduces self-reliance and increases costs (Grobicki et al., 2015; 
Wilhite, 2019), as well as hindering progress towards the SDGs. In the 
case of drought and flooding, major obstacles for the transition from 
reactive management to proactive drought risk mitigation include path 
dependencies and lack of knowledge about relative costs and benefits 
of reactive versus proactive approaches. This lack of information can 
deter large-scale and long-term investments into proactive approaches 
(Mirzabaev, 2016).

A range of risk mitigation and adaptation measures can be taken, 
to address drought, desertification and other climate change-related 
challenges in deserts and semiarid areas, some of which can be both 
proactive and reactive. These include inter alia:

• Implementing policies, public advocacy and social media 
campaigns that improve water use efficiency, especially in 
agriculture and industry, which can foster behavioural changes 
and reduce water consumption (Yusa et al., 2015; Tsakiris, 2017; 
Booysen et al., 2019).

• Integrating access to insurance, financial services, savings 
programmes and cash transfers into policies to increase the 
effectiveness of, for example, drought responses. Such efforts can 
result in significant cost savings (Berhane et al., 2014; Bazza et al., 
2018 ; Guimarães Nobre et al., 2019).

Challenge Adaptation measures and responses References

Salinisation and 
groundwater 
depletion

Indigenous and scientific adaptive practices to cope with salinity
Farmers in waterlogged saline areas harness subsurface drainage, salt tolerant crop varieties, land-shaping techniques and 
agroforestry to adapt to salinity and waterlogging risks
Locally adapted crops and landraces and the traditional tree- and animal-based means to sustain livelihoods in face of 
salinisation

Sengupta (2002); Buechler and Mekala 
(2005); Wassmann et al. (2009); Singh 
(2010); Jnandabhiram and Sailen Prasad 
(2012); Manga et al. (2015); Sharma 
and Singh (2015); Gupta and Dagar 
(2016); Nikam et al. (2016); Bundela 
et al. (2017); Sharma and Singh (2017); 
Patel et al. (2020); Singh et al. (2020b); 
Sharma, (2016); Mirzabaev et al. (2019)

Sand and dust 
storms

Use of live windbreaks or shelterbelts, protection of the loose soil particles through the use of crop residues or plastic 
sheets or chemical adhesives, increasing the cohesion of soil particles by mechanical tillage operations or soil mulching
Use of perennial plant species that can trap sediments (sand and fallen dust) and form sandy mounds, such as Haloxylon 
salicornicum, Cyperus conglomerates, Lycium shawii and Nitraria retusa
In the Sahel, promote herbaceous (not woody plants) to trap sand: annuals such as Colocynthis vulgaris, Chrozophora 
senegalensis, Farsetia ramosissima; perennials such as Cyperus conglomeratus, Leptadenia hastate
In the Sahel, leaving at least part of the crop residues (stalks) on the soil during the dry season (100 kg dry matter per 
hectare has already had significant effect on wind erosion, many trials on millet in Niger); trampling by grazing livestock 
improves the partial burying of the residues
Improve monitoring, prediction and early warning to mobilise emergency responses for human systems and prioritise 
long-term sustainable land management measures; establish a Global Dust–Health Early Warning System (building on the 
Sand and Dust Storm Warning Advisory and Assessment System (SDS-WAS) initiative); multi-sectoral preparedness and 
response including public health, hospital services, air and ground transportation and communication services

Ahmed et al. (2016); Al-Hemoud et al. 
(2017); Sivakumar (2005); Hiernaux 
et al. (2009a); Hiernaux et al. (2016); 
Pierre et al. (2018); Lamers et al. (1995); 
Michels et al. (1998); Bielders et al. 
(2004),UNEP (2016); UNEP (1992)
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• Developing robust early warning systems that provide information 
and improve knowledge surrounding drought and SDS to enable 
early recovery (Wilhite, 2019), also considering vulnerability and 
impact assessments (i.e., who is at greatest risk).

• Managing and storing water, including using methods that draw 
on Indigenous knowledge (Stringer et al., 2021), water transfers 
and trade, all of which can reduce costs and provide timely 
adaptations to drought, supporting agricultural productivity and 
rural livelihoods (Harou et al., 2010; Hurlbert, 2018).

• Implementing restoration, reclamation and landscape 
heterogeneity strategies, promoting ecosystem resilience to wind 
erosion and dust abatement (Duniway et  al., 2019), as well as 
restoring important ecosystem services at a catchment scale.

• Preventing soil erosion, providing of dust abatement and 
enhancing biodiversity by changing grazing techniques (e.g., 
rotational grazing), facilitating herd mobility, protecting rangeland 
areas from fragmentation, promoting common tenure and access 
rights on grazing land, enabling rapid post-fire restoration efforts, 
minimum tillage, sustainable land management, integrated 
landscape management, planting and caring for non-irrigated 
indigenous trees and other vegetation (Middleton and Kang, 
2017).

• Creating drought-tolerant food crops through participatory plant 
breeding (Grobicki et  al., 2015) and investment in research and 
development of drought-resistant varieties (Basu et  al., 2017; 
Mottaleb et al., 2017; Dar et al., 2020), alongside adjusted planting 

and harvesting periods (Frischen et  al., 2020). Similar to other 
adaptations, the net economic benefits of ex ante resilient plant 
development far outweigh the research investment (Basu et  al., 
2017; Mottaleb et al., 2017; Dar et al., 2020).

Many of these measures can also support climate change mitigation 
efforts in drylands. Uptake of adaptation measures is often grounded 
in clear communications and information provision to support 
behavioural changes, taking into account local risk aversion and 
risk perceptions (Zeweld et al., 2018; Jellason et al., 2019). Building 
capacity by improving the knowledge base and access to information, 
as well as to financial and other resources, encourages vulnerable 
economic sectors and people to adopt more self-reliant measures that 
promote more integrated and sustainable use of natural resources 
(high confidence) (Sivakumar, 2005; Wieriks and Vlaanderen, 2015; 
Aguilar-Barajas et al., 2016; Middleton and Kang, 2017; Wilhite, 2019). 
Engaging natural resource users as active participants in planning 
and technology adoption using extension services, financial grants 
and services geared to the local area, can build resilience and drive 
changes in practices (Webb and Pierre, 2018), while approaches such 
as Integrated Water Resources Management can support adaptation 
and drought risk management, including in dryland urban megacities 
(Stringer et  al., 2021) and in deserts and semiarid areas where 
precipitation trends remain stable yet other pressures on water are 
growing (Reichhuber et al., 2019).

Frequently Asked Questions

FAQ CCP3.1 | How has climate change already affected drylands and why are they so vulnerable?

Human-caused climate change has so far had mixed effects across the drylands, leading to fewer trees and less biodiversity in some areas and 
increased grass and tree cover in others. In those dryland areas with increasing aridity, millions of people face difficulties in maintaining their 
livelihoods, particularly where there is water scarcity.

Drylands include the hottest and most arid areas on Earth. Human-caused climate change has been intensifying 
this heat and aridity in some places, increasing temperatures more across global drylands than in humid areas. In 
areas which are hotter and drier, tree death has occurred and in some locations bird species have been lost. Climate 
change has reduced rainfall in some dryland areas and increased rainfall in other areas. Increased rainfall, combined 
with the plant-fertilizing effect of more carbon dioxide in the atmosphere, can increase grass and shrub production 
in dryland areas. Because water is scarce in drylands and aridity limits the productivity of agriculture, millions of 
people living in drylands have faced severe difficulties in maintaining their livelihoods. This challenge is exacerbated 
by non-climate change factors, such as low levels of infrastructure, remoteness and limited livelihood options that 
are less dependent on scarce natural resources. High temperatures in drylands increase the vulnerability of people 
to potential heat-related illnesses and deaths from heat under continued climate change.

Frequently Asked Questions

FAQ CCP3.2 | How will climate change impact the world’s drylands and their people?

Climate change is projected to lead to higher temperatures across global drylands. Many drylands also risk more irregular rainfall leading to 
increased irregularity in crop yields and increased water insecurity where less rainfall is projected, which may have profound implications for 
both dryland ecosystems and their human inhabitants.
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There is, however, considerable uncertainty about the changes that may occur in drylands in the future and how 
people and ecosystems will be affected. In some drylands, higher temperatures and declining rainfall have increased 
aridity. However, this is not a global trend as many drylands are experiencing increases in vegetation cover and 
rainfall. Both the amount of rainfall and its seasonality have changed in many dryland areas, associated with 
natural variability and warming.

Most climate models project increased rainfall in tropical drylands, but more variability. High natural climatic 
variability in drylands makes predictions uncertain. Understanding future impacts is further complicated by many 
interacting factors such as land use change and urbanisation that affect the condition of drylands. Future trends 
in sand and dust storm activity are also uncertain and will not be the same everywhere, but there will likely be 
increases in some regions (e.g., the USA) in the long term. The impacts of climate change in deserts and semiarid 
areas may have substantial implications globally: for agriculture, biodiversity, health, trade and poverty, as well as 
potentially, for conflicts and migration. Increasing temperatures and more irregular rainfall are expected to affect 
soil and water and contribute to tree death and loss of biodiversity. In other places, woody encroachment onto 
savannas may increase, in response to the combination of land use change, changes in rainfall, fire suppression 
and CO2 fertilization. Crop yields are projected to decline in some areas, with adverse impacts on food security. The 
potential for conflicts and migration is primarily associated with socioeconomic development, while links to 
climate change remain uncertain and lack evidence.

FAQ 5.1 (continued)

Frequently Asked Questions

FAQ CCP3.3 | What can be done to support sustainable development in desert and semiarid areas, given projected 

climate changes?

Water is a major limiting factor in drylands. Many efforts to support sustainable development aim to improve water availability, access and 
quality, ranging from large engineering solutions that move or desalinise water, to herders’ migrations with their animals to locations that 
have water, to land management and water harvesting practices that conserve water and support land cover. These solutions draw on IKLK 
and innovative science, and can help to address multiple Sustainable Development Goals.

Different desert and semiarid areas can benefit from different incremental and transformational solutions to move 
toward sustainable development under climate change. In some dryland areas facing critical water shortages, 
transformational adaptations may be needed; for example, large-scale water desalination when they have access to 
sea water, despite high energy use and negative environmental impacts of waste brine. In dryland agricultural areas 
across the world, incremental adaptations include water conservation measures, use of improved crop varieties or 
increasing herd mobility. What counts as a transformational change in some places may be incremental in others. 
Often solutions can target multiple development goals. For example, water harvesting can make water available 
during drought, buffering water scarcity impacts, while also supporting food production, agricultural livelihoods 
and human health. Land-based approaches, e.g. restoration of grassland, shrubland, and savanna ecosystems, are 
important for ensuring ecological integrity, soil protection and preventing livelihoods from being undermined 
as a result of growing extreme weather events. It is important that policies, investments and interventions that 
aim to support sustainable development take into account which groups are likely to be most affected by climate 
change. Those people directly dependent on natural resources for their survival are generally most vulnerable 
but least able to adapt. The capacity to translate IKLK and experience into actions can require external support. 
Governments and other stakeholders can help by investing in early warning systems, providing climate information, 
realigning policies and incentives for sustainable management, investing in supporting infrastructures, alongside 
developing alternative livelihood options that are less exposed and sensitive to climate change. Involving all relevant 
stakeholders is important. For example, in China, the Grain for Green programme secured local engagement by 
paying people to manage the environment more sustainably. At a global level, important groups have emerged to 
cooperate and offer solutions around issues such as sand and dust storms, and integrated drought management. 
Efforts are needed across all scales from local to global to support sustainable development in desert and semiarid 
areas, given projected climate changes.
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