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A FIXED POINT THEOREM FOR POSITIVE
OPERATORS ON KB SPACES

LING FAI LAM

The existence of nonzero fixed points of positive contractions in L, spaces
hasreceived considerable attention in recent years. In 1966, Dean and Sucheston
[1] and independently, Neveu [5] showed that a positive contraction has a
strictly positive invariant function if and only if inf, fAT”ldm > 0 for any
measurable subset 4 with positive measure, where 1 is the constant function of
value one.

The condition of being a contraction has been reduced to more general con-
ditions by some authors later, for example, Fong [3] and Sato [6]. In Fong’s
paper he considered the case of semi-Markovian operators, i.e., positive opera-
tors 7" on L; such that sup, ||7™]| < .

On the other hand, the author of the present paper has extended the above
result to the case of absolutely continuous normed Kothe spaces (4], which
include the Orlicz spaces with delta two property and all the L, spaces
(1 £ p < ) as special cases.

As we have mentioned in [4], the lattice structures play a very important
role in this kind of theorem. In this paper we shall show that the theorem in
[4] is still valid in general KB spaces—Dedekind complete normed lattices
with the properties:

i) If {x,) is a decreasing sequence with inf, x, = 0, then lim, ||x,|| = 0.
ii) If {x,) is an increasing sequence with sup, ||x,|| < oo, then sup, x, exists.

First of all, we list some known results in Riesz space theory. All the propo-
sitions which are headed by parentheses ( ) can be found in [7], unless other-
wise specified.

As usual the least upper bound (greatest lower bound) of any two elements
x and y in a Riesz space is denoted as x V y (respectively x A y). We also
write xt = x V 0, x~ = (—x) V 0, [x| = x V (—«). The supremum (respec-
tively infimum) of a set 4 will be denoted as sup A (respectively inf 4).
Furthermore, an increasing (respectively, decreasing) sequence (x,) with a
supremum (respectively, infimum) x is denoted as x, T x (respectively, x, | x).
We shall also let R and N be the real number system and the set of natural
numbers respectively.

By a band N in a Riesz space L, we mean a linear subspace such that (iii)

and (iv) hold.
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i) If x € L,y € Nand |x| £ |y|, then x € N.
iv) If A C N and sup 4 exists in L then sup 4 € N.

For A CL, the set A+ = {x € L: |x| A |y| = 0 for all y € A} is called
the orthogonal complement of A.

For a Dedekind complete Riesz space L and a band N in L, we have:

(1) The projection Py : L — N determined by the formula Py(x) =
sup {y € N: 0 = y £ x} for x 2 0 has the properties that Py(z) € N, z —
Py(z) € Ntforallz € Land 0 £ Py(x) < x forx = 0.

(2) For an arbitrary subset 4 in L., ALt isa band in L, and 4+ is the smallest
band containing 4.

(3) Let x, y be two positive elements in L and N = {x}+L. Then Py(y) =
sup, (¥ A nx);in particular, y € {x}1Lif and only if y = sup, (y A nx).

We denote by L~ the class of regular linear functionals on L, i.e., the linear
functionals which can be represented as a difference of two positive linear
functionals. We denote by L(? the class of integrals on L, i.e., the functionals
fin L~ which satisfy the condition

v) if x, | 0 in L, then lim, f(x,) = 0.

It is well known that both L(» and L~ are Dedekind complete Riesz spaces.
The following proposition will play an important role in the proof of our
main theorem. For the proof of this proposition we refer to [4].

(4) Let L be a Dedekind complete Riesz space. [f 0 = f € L™ 0 < h € L~
and f A kB = 0, then for any ¥ = 0 in L and any positive real number ¢ > 0,
there exists x in L with 0 £ x < yand A(x) =0, f(y — x) < e

Throughout this paper we assume that M is an arbitrary KB space. In
addition to the propositions stated above, it has also the following properties:

B) M@ = M~ = M’, where M’ is the class of (norm) bounded functionals
on M.

Let M be the space of bounded linear functionals on M’. It is well known
that both M’ and M’ are Banach lattices. If we define for any x € M an
£ € M by £(f) = f(x), f€ M, and let M = {£: x € M}, then we have:

(6) The mapping x + &£ is a norm-preserving one-to-one linear transforma-
tion from M tgi” such that x < y if and only if £ = §;

infeq £ = in/fA;if inf 4 exists in M; and

SUpzcqa & = supd if sup 4 exists in M.

Furthermore, all the elements in M are integrals on M.

(7) M is a band in M".

For our convenience, we introducing the following:
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Definition. An element xin a KB space is said to be absolutely continious with
respect toy (x < y)if x € {y}1L. Two elements x and y are said to be equivalent
(x ~y)ifx Kyand y L x.

ProrositionN 1. x Ky in M if and only if f(|y|) = 0 implies that f(|x|) = 0
forany 0 < f € M.

LEMMA. If u, v are two positive elements in M such thatu A\ v = 0, then there is
a functional 0 < g € M’ such that g(u) > 0 and g(v) = 0.

Proof. By the Hahn-Banach theorem thereisan f € M’such that0 < ||u|| =
fw) = f*(u) — f~(u),so f*(u) > 0. From (5) we know that f+ € M’. Let N
be the band generated by u. If we define g = f* o Py, then

gu) = ffPy@)) = fr(u) >0
g@) = fH(Py@) = fH(sup, (v A nu)) Dby (3)
= f*(0) = 0.

Proof of Proposition 1. Since x Ky < x € {y}tL < [x] € {|y|}+L & x| L |y,
we can assume that both x and y are positive.

If x Ky, then by (3) x = sup, (x A ny). For0 = f € M’, f(y) = 0 implies
that f(x A ny) = nf(1/nx A y) = 0 for all » € N. Since f is also a member
of M it follows that f(x) = 0.

Conversely, suppose x ¢ {y}+L. Then by definition there is 0 < z € {y}+
withz A x > 0. Letu = z A x; then we haveu A y = 0. By the lemma there
is0 = ¢g € M’ such that g(u) > 0 and g(y) = 0. Hence g(x) = g(x) > 0 and
¢(y) = 0. This completes the proof.

Definition. A semi-Markovian operator 1 is a positive linear operator on a
KB space into itself such that sup, ||7"|| < «©.

The following proposition is an abstraction of Lemma 1 in [5]; it also ap-
peared in [4] where we assume that the underlying space is a normed Kothe
space.

ProprosITION 2. Let x << u be two positive elements in M, T: M — M be a
semi-Markovian operator. Then for any 0 < f € M’, inf, f(T"x) > 0 wmplies
inf, f(T™u) > 0.

Proof. Let a = inf, f(T™x), b = sup, ||T™||. Since x < u, it follows from (3)
that x = sup; (x A ku). Hence ||Jx — x A ku|| | 0 according to i). We choose
a positive integer k; such that |jx — x A k|| < a/20||f]|.

Since ¥ = kbt + (x — ki) < kb + (x — x A k), it follows that a =<
f(T"x) £ kif(Tru) + f(T"(x — x A k) < kaf (T™u) + || fl[bllx — % A Ryu]|
= kif(T™u) + a/2 for any n € N.

Therefore 0 < a/2k, < inf, f(T™u), completing the proof.

We shall utilize the concept of Banach limits in the proof of our main
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theorem. A Banach limit LIM is a linear functional defined on the space of
all bounded real sequences with the following properties:

vi) LIM (a,) = LIM (‘L"Jri
vii) lim a, < LIM (a¢,) £ lim q,

The existence of a Banach limit can be deduced from the Hahn-Banach
theorem as shown in [2].

THEOREM. Let T be a semi-Markovian operator on a KB space M. If there
existsx = 01n M such thatf(x) > 0impliesinf, f(1"x) > 0forany0 < f € M,
then thereisay = 0in M withx Lyand Ty = y.

Conversely, if Ty = vy > 0 1n M and x is an arbitrary positive element with
x ~ 9y, then f(x) > 0 implies inf, f(T™x) > 0for any0 < f € M'.

Proof. Assume that inf, f(7"x) > 0 for any 0 < f € M’ with f(x) > 0.
We define A : M’ — R by A(f) = LIM f(T7) = LIM (T*'f)(x), where LIM
is a Banach limit, and 7% : M’ — M’ is the conjugate of 7.

Since

NI = [LIM f(T"x)| = LIM [f(T"x)]
= [[f1l sup, [|T7[] < [I£1] []x]] sup,
it follows that X € M"’. It is also obvious that A = 0.

On the other hand, from (7) we know that /7 is a band of M"/, so by (1) there
exists a positive element # € M such that 4 = sup {#¢€ M :0 < 2 < A} and
v=\—d ¢ ML (gl\factzi = Pf,()x/)\).

We claim that 7w < X\. Since Tu(f) = f(Tu) = (T*f)(u) = 4(T*f) <
NT*f) = LIM (T**1f)(x) = LIM (T*f)(x) = A(f) forany 0 < f € M.
Therefore 71 < 4. It follows from (6) that Tu < u.

Lety = inf, T"u. Since (T"u — y) | 0, we have ||[7"u — y|| | O and ||Ty — v||
= Ty = Tmull + (17" = yll = (170 My — 7" ull + [|T" — y]| — 0. So
Ty = y.

Next we show that x << u. By Proposition 1 it is the same as showing that
fu) =0=f(x) = 0for0 = f € M'. Suppose to the contrary that there were
0 =f¢€ M with f(u) = 0and f(x) > 0. We let e = f(x)/2. Since £ A v = 0,
by (4) there is ¢ € M’ such that 0 < ¢ < fand v(g) =0, £(f — g) < e. So
g(x) > f(x) — e = f(x)/2 > 0. By the assumption we then have inf, g(7"x) > 0.
Therefore

(*) Mg) = LIM ¢(T"x) 2 inf, g(T"x) > 0

On the other hand, since 0 < g = f and f(u#) = 0, so g(#) = 0. It follows
that A(g) = g(u) + v(g) = 0, a contradiction to (*). This proves that x << u.
To show that x < v, we let f be an arbitrary positive element in M’ with
f(x) > 0. From the assumption we have inf, f(7"x) > 0. So by Proposition 2
we have inf, f(T"u) > 0. Moreover, since 7"« | yand f € M’ = M@, we have
f(T™u) | f(v). So f(y) > 0. Therefore, by Proposition 1 it must be that x < y.

17|

1
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Conversely, let ¥y > 0 be a fixed point for 7" and 0 < x € M with x ~ y.
For any 0 < f € M’ such that f(x) > 0, we have f(y) > 0. So inf, f(1™y) =
f(¥) > 0. By Proposition 2 we have inf, f(77"%) > 0.

CoROLLARY 1. Let M be a KB space with « unit e (i.e. ¢ = 0 and {e}++ = M),
T a semi-Markovian operator on M. Then a necessary and sufficient condition for
the existence of « positive fixed point y with {y}++ = M is that inf, f(1™"e) > 0
for any f > 0 in M'.

Proof. The sufficiency is trivial. From the theorem above we have a positive
fixed point y with e << y. Since {e}++ = M, it follows that {y}+L = M.

Conversely, let 7y = y > 0and {y}+L = M. Theny ~ ¢, so by the theorem
we have inf, f(17) > 0 for any 0 < f € M’ with f(e) > 0. Since {e}++ = M,
from Proposition 1 we know that 0 < f € M’ implies f(e¢) > 0. This completes
the proof.

Given a positive element x in M that satisfies the condition in the theorem,
it is natural to ask whether the fixed point y obtained in this way is equivalent
to x. In general we can only confirm that x is absolutely continuous with respect
to y. However, if the operator satisfies the additional condition that 7'(z) < x
for all z < x, then the fixed point y is equivalent to x.

COROLLARY 2. Let x be a positive element in a« KB space M, T « semi-Markovian
operator such that Tz < x for any z < x. Then « necessary and sufficient condi-
tion for the existence of a posilive fixed point y equivalent to x is that inf, f(17x) > 0
for any 0 = f € M with f(x) > 0.

Proof. The condition 7z < x for any z < x implies that {x}1L is invariant
under 7". Since {x}1+ is a KB subspace of M and the restriction of 7 on {x}L1+
is also semi-Markovian, the result follows from Corollary 1.

Let (X, 2, m) be an arbitrary o-finite measure space, it is easy to see that
forany 1 = p < 0, the space L,(X, Z, m) is a KB space. We shall use f, g, &
to denote the measurable functions on (X, Z, m) and let S(f) to denote the
set {x € X: f(x) # 0} for a measurable function fon (X, Z, m). Furthermore,
for A, B ¢ Z, the notation A C B means that almost all elements of A are
in B. In this case the theorem can be restated as follows:

COROLLARY 3. Lel T be a semi-Markovian operator on L,(X, Z, m)
(1 =p <o) Ifthereexists 0 = f € L,(X, =, m) such that m(4A N S(f)) >0
implies inf,lf,l T"f dm > 0, then there exists 0 < h € L,(X, 2, m) with S(f) C
S(h) such that Th = h.

Conversely, if Th = h =2 0 and f = 0 s « function in L,(X, 2, m) such that
S(f) = S(h), then inf, [ 4 T%f dm > 0 for any A € = with m(4 N S(f)) > 0.

Proof. We note that the absolute continuity of f with respect to % is equiv-
alent to the condition that S(f) C S(%). On the other hand, since the dual
space of L,(X, Z, m) is precisely L,(X, Z, m) where g = p/(p — 1) if p # 1,
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g = o if p = 1. The condition that [ gf dm > 0 implies inf, [ g7"f dm > 0 for
any 0 = g € L,(X, Z,m) is equivalent to the condition that m(4 N S(f)) > 0
implies inf, fA T dm > 0 for any A € Z. This the corollary follows from the
theorem above.

When p = 1, [|T]] £ 1 and S(f) = X, this proposition is equivalent to the
theorem of Dean and Sucheston [1] and independently, Neveu [5].

We can also apply this theorem to a more general kind of KB spaces—the
absolutely continuous normed Kothe spaces. This kind of function space in-
cludes as special cases the Orlicz spaces with delta two property [4]. The
application of our main theorem to such spaces will give us exactly the results
in [4].

It is natural to ask whether our main theorem can be improved to include
the following statement:

viii) Let 7" be a semi-Markovian operator on a KB space M, x be a positive
element in M. If there exists a positive fixed point y such that x < y, then
inf, f(T"x) > 0 for any 0 < f € M’ such that f(x) > 0.

We note that viii) is different from the second part of our theorem, as the
condition x ~ y is reduced to x < y.

Unfortunately, statement viii) is not true. The rest of this paper is devoted
to a counter example of viii).

Let 7. Li(X, Z, m) — L,(X, Z, m) be the positive contraction induced by
a nonsingular measurable transformation 7 on (X, Z, m) such that 7f =
dm/dm, where m, is the measure defined as m (E) = J‘,.—x(p;)f dm for any
E € 2. It is well known that 7" has a non-zero positive invariant function in
L1(X, Z, m) if and only if 7 has a nontrivial finite invariant measure on (X, 2)
which is absolutely continuous with respect to m.

For a fixed 4 € 2 we defined a measure m 4 such that m (E) = m(4 M E)
for any E € Z. The following statement can then be deduced from viii).

ix) Let 7 be a nonsingular measurable transformation on (X, Z, m) and 4
a measurable set with finite positive measure. If there exists a finite invariant
measure u such that m, < u < m, then inf, m (v (E)) > 0 for any E € 2
with m(EM 4) > 0.

Now we let X be the closed interval [ —1, 1], m be the Lebesgue measure in
[—1, 1], 7 be defined as r(x) = —x for x € [—1, 1]. Clearly 7 is invariant
under m itself. [f welet A = [0, 1], thenm (+71(4)) = m([0,1] N\ [—1,0]) =
0, so inf, m 4 (+7"(4)) = 0, a contradiction to statement ix).
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