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Abstract
In this work, we prove a version of the Sylvester–Gallai theorem for quadratic polynomials that takes us one
step closer to obtaining a deterministic polynomial time algorithm for testing zeroness of Σ [3]ΠΣΠ [2] circuits.
Specifically, we prove that, if a finite set of irreducible quadratic polynomials Q satisfies that for every two
polynomials 𝑄1, 𝑄2 ∈ Q there is a subset K ⊂ Q such that 𝑄1, 𝑄2 ∉ K and whenever 𝑄1 and 𝑄2 vanish, then∏

𝑖∈K𝑄𝑖 vanishes, then the linear span of the polynomials in Q has dimension𝑂 (1). This extends the earlier result
[21] that holds for the case |K| = 1.
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1. Introduction

This paper studies a problem at the intersection of algebraic complexity, algebraic geometry and
combinatorics that is motivated by the polynomial identity testing problem (PIT for short) for depth 4
circuits. The question can also be regarded as an algebraic generalization and extension of the famous
Sylvester–Gallai theorem from discrete geometry. We next describe the Sylvester–Gallai theorem and
some of its many extensions and generalizations. For the relation to the PIT problem, see e.g. [20].

Sylvester–Gallai-type theorems:

The Sylvester–Gallai theorem asserts that, if a finite set of points in R𝑛 has the property that every line
passing through any two points in the set also contains a third point in the set, then all the points in the
set are colinear [16, 10]. Kelly extended the theorem to points in C𝑛 and proved that, if a finite set of
points satisfy the Sylvester–Gallai condition, then the points in the set are coplanar. Many variants of
this theorem were studied: extensions to higher dimensions, colored versions, robust versions and many
more. For more on the Sylvester–Gallai theorem and some of its variants, see [4, 1, 8].

There are two extensions that are highly relevant to this work: The colored version, proved by
Edelstein and Kelly, states that, if three finite sets of points satisfy that every line passing through points
from two different sets also contain a point from the third set, then all the points belong to a low-
dimensional space. This result was further extended to any constant number of sets. The robust version,
obtained in [1, 8], states that, if a finite set of points satisfy that, for every point p in the set, a 𝛿 fraction
of the other points satisfy that the line passing through each of them and p spans a third point in the set,
then the set is contained in an 𝑂 (1/𝛿)-dimensional space.

Although the Sylvester–Gallai theorem is formulated as a geometric question, it can be stated in
algebraic terms: If a finite set of pairwise linearly independent vectors, S ⊂ C𝑛, has the property
that every two vectors span a third vector in the set, then the dimension of S is at most 3. It is not
very hard to see that, if we pick a subspace H, of codimension 1, which is in general position with
respect to the vectors in the set, then the intersection points 𝑝𝑖 = 𝐻 ∩ span{𝑠𝑖}, for 𝑠𝑖 ∈ S satisfy the
Sylvester–Gallai condition. Therefore, dim(𝑆) ≤ 3. Another formulation is the following: If a finite set
of pairwise linearly independent linear forms, L ⊂ C[𝑥1, . . . , 𝑥𝑛], has the property that, for every two
forms ℓ𝑖 , ℓ 𝑗 ∈ L, there is a third form ℓ𝑘 ∈ L, so that, whenever ℓ𝑖 and ℓ 𝑗 vanish, then so does ℓ𝑘 , then
the linear dimension of L is at most 3. To see this, note that it must be the case that ℓ𝑘 ∈ span{ℓ𝑖 , ℓ 𝑗 }
and thus the coefficient vectors of the forms in the set satisfy the condition of the (vector version of the)
Sylvester–Gallai theorem, and the bound on the dimension follows.

The last formulation can now be extended to higher-degree polynomials. In particular, the following
question was asked by Gupta [12].

Problem 1.1 (Restatement of Conjecture 2 of [12]). Can we bound the linear dimension or algebraic
rank of a finite set P of pairwise linearly independent, irreducible, homogeneous polynomials of degree
at most r in C[𝑥1, . . . , 𝑥𝑛] that has the following property: For any two distinct polynomials 𝑃1, 𝑃2 ∈ P
there is a third polynomial 𝑃3 ∈ P such that, whenever 𝑃1, 𝑃2 vanish, then so does 𝑃3.

A robust or colored version of this problem can also be formulated. As we have seen, the case 𝑟 = 1,
that is, when all the polynomials are linear forms, follows from the Sylvester–Gallai theorem. For the
case of quadratic polynomials, that is, 𝑟 = 2, [20] gave a bound on the linear dimension for both the
noncolored and colored versions. Recently, Oliveira and Sengupta solved the case 𝑟 = 3 [7]. In [18, 11]
a bound for the robust version for 𝑟 = 2 was proved. For degrees, 𝑟 ≥ 4, the problem is still open.
Gupta [12] also raised more general questions of a similar form. As Gupta’s general question is for a
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colored version of the problem, we state a version of his Conjecture 32 that is in the spirit of this work
and that is still open for degrees 𝑟 ≥ 3.

Problem 1.2. Can we bound the linear dimension or algebraic rank of a finite set P of pairwise linearly
independent irreducible polynomials of degree at most r inC[𝑥1, . . . , 𝑥𝑛] that has the following property:
For any two distinct polynomials 𝑃1, 𝑃2 ∈ P , there is a subset I ⊂ P such that 𝑃1, 𝑃2 ∉ I and whenever
𝑃1, 𝑃2 vanish, then so does

∏
𝑃𝑖 ∈I 𝑃𝑖?

As before, this problem can also be extended to robust and colored versions. In the case of linear
forms, the bound for Theorem 1.1 carries over to Theorem 1.2 as well. This follows from the fact that
the ideal generated by linear forms is prime (see section 2 for definitions). In the case of higher-degree
polynomials, there is no clear reduction. For example, let 𝑟 = 2 and

𝑃1 = 𝑥𝑦 + 𝑧𝑤 , 𝑃2 = 𝑥𝑦 − 𝑧𝑤 , 𝑃3 = 𝑥𝑤 , 𝑃4 = 𝑦𝑧.

It is not hard to verify that whenever 𝑃1 and 𝑃2 vanish, then so does 𝑃3 · 𝑃4, but neither 𝑃3 nor 𝑃4
always vanishes when 𝑃1 and 𝑃2 do. The reason is that the radical of the ideal generated by 𝑃1 and 𝑃2 is
not prime. Thus, it is not clear whether a bound for Theorem 1.1 would imply a bound for Theorem 1.2.
The latter problem was open, prior to this work, for any degree 𝑟 > 1.

The Sylvester–Gallai theorem has important consequences for locally decodable and locally cor-
rectable codes [1, 8], for reconstruction of certain depth-3 circuits [19, 14, 21] and for the polynomial
identity testing (PIT for short) problem, which was the main motivation for Gupta [12]. While a solution
to Problem 1.1 would not yield new PIT algorithms, the following ‘colored’ version of it would [2, 12].

Conjecture 1.3 (Conjecture 30 of [12]). There is a function 𝜆 : N → N such that the following holds
for every 𝑟, 𝑛 ∈ N. Let 𝑅, 𝐵, 𝐺 be finite disjoint sets of pairwise linearly independent, irreducible,
homogeneous polynomials in C[𝑥1, . . . , 𝑥𝑛] of degree ≤ 𝑟 such that for every pair 𝑄1, 𝑄2 from distinct
sets it holds that, whenever both 𝑄1 and 𝑄2 vanish, then so does the product of all the polynomials in
the third set. Then, the algebraic rank of (𝑅 ∪ 𝐵 ∪ 𝐺) is at most 𝜆(𝑟).

1.1. Subsequent work

In [17], we gave a positive answer to Conjecture 1.3 for the case of degree-2 polynomials (𝑟 = 2). This
implied the first polynomial time PIT algorithm for depth-4 circuits with quadratic polynomials at the
bottom (see [17] for a definition). While we do not know whether Conjecture 1.3 or Problem 1.1 imply
the other, the proof technique in [17] is greatly influenced by the proof in this paper, and in particular,
Theorem 1.5 played an important role in [17].

In [18, 11] a robust version of [20] was obtained, that is, a robust version of Theorem 1.1 for the case
𝑟 = 2 was proved.

1.2. Our result

Our main result gives a bound on the linear dimension of homogeneous polynomials satisfying the
conditions of Theorem 1.2 when all the polynomials are irreducible of degree at most 2. Specifically,
we prove the following theorem.
Theorem 1.4. There exists a universal constant c such that the following holds. LetQ = {𝑄𝑖}𝑖∈{1,...,𝑚} ⊂
C[𝑥1, . . . , 𝑥𝑛] be a finite set of pairwise linearly independent homogeneous quadratic polynomials such
that every 𝑄𝑖 ∈ Q is either irreducible or a square of a linear form. Assume that, for every 𝑖 ≠ 𝑗 ,
whenever 𝑄𝑖 and 𝑄 𝑗 vanish, then so does

∏
𝑘∈{1,...,𝑚}\{𝑖, 𝑗 } 𝑄𝑘 . Then, dim(span{Q}) ≤ 𝑐.

An interesting aspect of our result is that, while the conjectures of [2, 12] speak about the algebraic
rank, we prove a stronger result that bounds the linear dimension (the linear rank is an upper bound
on the algebraic rank). As our proof is quite technical, it is an interesting question whether one could
simplify our arguments by arguing directly about the algebraic rank.
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An important algebraic tool in the proof of Theorem 1.4 is the following result characterizing the
different cases in which a product of quadratic polynomials vanishes whenever two other quadratics
vanish.
Theorem 1.5. Let {𝑄𝑘 }𝑘∈K, 𝐴 and B be n-variate, homogeneous, quadratic polynomials, over C,
satisfying that, whenever A and B vanish, then so does

∏
𝑘∈K𝑄𝑘 . Then, one of the following cases must

hold:
(prime-case): There is 𝑘 ∈ K such that 𝑄𝑘 is in the linear span of A and B.
(product-case): There exists a nontrivial linear combination of the form 𝛼𝐴 + 𝛽𝐵 = 𝑎𝑏, where a and b

are linear forms.
(linear-case): There exist two linear forms a and b such that when setting 𝑎 = 𝑏 = 0 we get that A and

B vanish.
The statement of the result is quite similar to Theorem 1.8 of [20] that proved a similar result when

|K| = 1. Specifically, in [20] the second item reads ‘There exists a non trivial linear combination of the
form 𝛼𝐴 + 𝛽𝐵 = 𝑎2, where a is a linear form.’ This difference in the statements (which is necessary) is
also responsible for the harder work we do in the paper.

It was pointed out by Rafael Mendes de Oliveira and by one of the reviewers that a more general
statement of Theorem 1.5 was obtained in [5, Section 1] and [13, Chapter XIII]. We discuss the
similarities and differences from our theorem in subsection 1.5.

1.3. Proof idea

Our proof has a similar structure to the proofs in [20], but it does not rely on any of the results proved
there.

Our starting point is the observation that Theorem 1.5 guarantees that unless one of {𝑄𝑘 } is in the
linear span of A and B then A and B must satisfy a very strong property, namely, they must span a
reducible quadratic or they have a very low rank (as quadratic polynomials). The proof of this theorem
is based on analyzing the resultant of A and B with respect to some variable. We now explain how this
theorem can be used to prove Theorem 1.4.

Consider a set of polynomials Q = {𝑄1, . . . , 𝑄𝑚} satisfying the condition of Theorem 1.4. First,
consider the case in which for every𝑄 ∈ Q, at least, say, (1/100) ·𝑚 of the polynomials𝑄𝑖 ∈ Q, satisfy
that there is another polynomial in Q in span{𝑄,𝑄𝑖}. In this case, we can use the robust version of the
Sylvester–Gallai theorem [1, 8] (see Theorem 2.7) to deduce that the linear dimension of Q is small.

The second case we consider is when every polynomial 𝑄 ∈ Q that did not satisfy the first case now
satisfies that for at least, say, (1/100) · 𝑚 of the polynomials 𝑄𝑖 ∈ Q, there are linear forms 𝑎𝑖 and
𝑏𝑖 such that 𝑄,𝑄𝑖 ∈ 〈𝑎𝑖 , 𝑏𝑖〉. We prove that, if this is the case, then there is a bounded dimensional
linear space of linear forms, V such that all the polynomials in Q that are of rank 2 are in 〈𝑉〉. Then we
argue that the polynomials that are not in 〈𝑉〉 satisfy the robust version of the Sylvester–Gallai theorem
(Theorem 2.7). Finally, we bound the dimension of Q ∩ 〈𝑉〉.

Most of the work, however, (section 5) goes into studying what happens in the remaining case when
there is some polynomial 𝑄𝑜 ∈ Q for which at least 0.98𝑚 of the other polynomials in Q satisfy
Theorem 1.5(product-case) with 𝑄𝑜. This puts a strong restriction on the structure of these 0.98𝑚
polynomials. Specifically, each of them is of the form𝑄𝑖 = 𝑄𝑜 + 𝑎𝑖𝑏𝑖 , where 𝑎𝑖 and 𝑏𝑖 are linear forms.
The idea in this case is to show that the set {𝑎𝑖 , 𝑏𝑖} is of low dimension. This is done by again studying
the consequences of Theorem 1.5 for pairs of polynomials 𝑄𝑜 + 𝑎𝑖𝑏𝑖 , 𝑄𝑜 + 𝑎 𝑗𝑏 𝑗 ∈ Q. After bounding
the dimension of these 0.98𝑚 polynomials, we bound the dimension of all the polynomials in Q. The
proof of this case is more involved than the cases described earlier. An outline of the proof is described
in section 5.

1.4. On the relation to the proof of [20]

In [20], the following theorem was proved.
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Theorem 1.6 (Theorem 1.7 of [20]). Let {𝑄𝑖}𝑖∈[𝑚] be homogeneous quadratic polynomials over C such
that each 𝑄𝑖 is either irreducible or a square of a linear function. Assume further that for every 𝑖 ≠ 𝑗
there exists 𝑘 ∉ {𝑖, 𝑗} such that whenever 𝑄𝑖 and 𝑄 𝑗 vanish 𝑄𝑘 vanishes as well. Then the linear span
of the 𝑄𝑖’s has dimension 𝑂 (1).

As mentioned earlier, the steps in our proof are similar to the proof of Theorem 1.7 in [20].
Specifically, [20] also relies on an analog of Theorem 1.5 and divides the proof according to whether all
polynomials satisfy the first case above (in our terminology, the prime case) or not. However, the fact
that Theorem 1.5(product-case) is different than the corresponding case in the statement of Theorem 1.8
of [20] makes our proof significantly more difficult. The reason for this is that, while in [20] we could
always pinpoint which polynomial vanishes when 𝑄𝑖 and 𝑄 𝑗 vanish, here, we only know that this
polynomial belongs to a small set of polynomials. This leads to a richer structure in Theorem 1.5 and
consequently to a considerably more complicated proof. To understand the effect of this on our proof,
we note that the case corresponding to Theorem 1.5(product-case) was the simpler case to analyze in
the proof of [20]. The fact that 𝑎𝑖 = 𝑏𝑖 when |K| = 1 almost immediately implied that the dimension of
the span of the 𝑎𝑖s is constant (see Claim 5.2 in [20]). In our case, however, this is the bulk of the proof,
and section 5 is devoted to handling this case.

In addition to being technically more challenging, our proof gives new insights that may be extended
to higher-degree polynomials. The first is Theorem 1.5, which extends a similar theorem that was proved
for the simpler setting of [20]. Our second contribution is that we show (more or less) that either the
polynomials in our set satisfy the robust version of the Sylvester–Gallai theorem (Theorem 2.6) or the
linear functions composing the polynomials satisfy the theorem. Potentially, this may be extended to
higher-degree polynomials.

1.5. The structure theorem

As mentioned above, Rafael Mendes de Oliveira and an anonymous referee turned our attention to
[5, Section 1] and [13, Chapter XIII]. Both classify ideals generated by two quadratics, a result that is
more general than what we prove in Theorem 1.5. Nevertheless, Theorem 1.5 is enough for us to obtain
our results, and it has the added advantage that its proof is elementary.

Specifically, [5, Lemma 1.3] corresponds to the case where the ideal 〈𝐴, 𝐵〉 is prime, which is covered
in our Theorem 1.5(prime-case).

Theorem 1.5(product-case) was studied in Lemmata 1.6, 1.7 and 1.10 in [5]. For example, the
subspace 𝐻1, 𝐻2 in Lemma 1.6 is the set of zeros of a and b from Theorem 1.5(product-case) and
the rank-2 form of Lemma 1.7 is 𝑎𝑏. Lemma 1.10 covers the case 𝑎 = 𝑏.

Lemmata 1.2 and 1.4 in [5] correspond to the case where the ideal is contained in a linear subspace
of codimension 2, which is covered in our Theorem 1.5(linear-case).

The proofs in [5] rely on cycle decomposition of the variety {𝜶 ∈ C𝑛 | 𝐴(𝜶) = 𝐵(𝜶) = 0}, while
our proof only relies on simple properties of the resultant.

1.6. Organization

The paper is organized as follows. section 2 contains basic facts regarding the resultant and some other
tools and notation used in this work. section 3 contains the proof of our structure theorem (Theorem 1.5).
In section 4, we give the proof of Theorem 1.4. This proof uses a main theorem which will be proved
in section 5. Finally, in section 6, we discuss further directions and open problems.

2. Preliminaries

In this section, we explain our notation and present some basic algebraic preliminaries.
We will use the following notation. Greek letters𝛼, 𝛽, . . . denote scalars fromC. Noncapitalized letters

𝑎, 𝑏, 𝑐, . . . denote linear forms and 𝑥, 𝑦, 𝑧 denote variables (which are also linear forms). Bold-faced
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letters denote vectors, for example, x = (𝑥1, . . . , 𝑥𝑛) denotes a vector of variables, 𝜶 = (𝛼1, . . . , 𝛼𝑛)
is a vector of scalars and 0 = (0, . . . , 0) the zero vector. We sometimes do not use a boldface notation
for a point in a vector space if we do not use its structure as a vector. Capital letters such as 𝐴,𝑄, 𝑃
denote quadratic polynomials whereas 𝑉,𝑈,𝑊 denote linear spaces. Calligraphic letters I,J ,F ,Q, T
denote sets. For a positive integer n, we denote [𝑛] = {1, 2, . . . , 𝑛}. For a matrix X, we denote by |𝑋 |
the determinant of X.

A commutative ring is a ring in which the multiplication operation is commutative. We mainly use
the multivariate polynomial ring, C[𝑥1, . . . , 𝑥𝑛]. An Ideal 𝐼 ⊆ C[𝑥1, . . . , 𝑥𝑛] is an additive subgroup
that is closed under multiplication by ring elements. For S ⊂ C[𝑥1, . . . , 𝑥𝑛], we denote with 〈S〉 the
ideal generated by S , that is, the smallest ideal that contains S . For example, for two polynomials 𝑄1
and 𝑄2, the ideal 〈𝑄1, 𝑄2〉 is the set C[𝑥1, . . . , 𝑥𝑛]𝑄1 + C[𝑥1, . . . , 𝑥𝑛]𝑄2. For a linear subspace V, we
have that 〈𝑉〉 is the ideal generated by any basis of V. The radical of an ideal I, denoted by

√
𝐼, is the

set of all ring elements, r, satisfying that for some natural number m (that may depend on r), 𝑟𝑚 ∈ 𝐼.
Hilbert’s Nullstellensatz implies that, in C[𝑥1, . . . , 𝑥𝑛], if a polynomial Q vanishes whenever𝑄1 and𝑄2
vanish, then 𝑄 ∈

√
〈𝑄1, 𝑄2〉 (see, e.g., [6]). We shall often use the notation 𝑄 ∈

√
〈𝑄1, 𝑄2〉 to denote

this vanishing condition. For an ideal 𝐼 ⊆ C[𝑥1, . . . , 𝑥𝑛], we denote by C[𝑥1, . . . , 𝑥𝑛]/𝐼 the quotient
ring, that is, the ring whose elements are the cosets of I in C[𝑥1, . . . , 𝑥𝑛] with the proper multiplication
and addition operations. For an ideal 𝐼 ⊆ C[𝑥1, . . . , 𝑥𝑛], we denote the set of all common zeros of
elements of I by 𝑍 (𝐼).

For 𝑉1, . . . , 𝑉𝑘 linear spaces, we use
∑𝑘

𝑖=1𝑉𝑖 to denote the linear space 𝑉1 + . . . + 𝑉𝑘 . For two
nonzero polynomials A and B, we denote 𝐴 ∼ 𝐵 if 𝐵 ∈ span{𝐴}. For a space of linear forms
𝑉 = span{𝑣1, . . . , 𝑣Δ }, we say that a polynomial 𝑃 ∈ C[𝑥1, . . . , 𝑥𝑛] depends only on V if the value
of P is determined by the values of the linear forms 𝑣1, . . . , 𝑣Δ . More formally, we say that P de-
pends only on V if there is a Δ-variate polynomial 𝑃̃ such that 𝑃 ≡ 𝑃̃(𝑣1, . . . , 𝑣Δ ). We denote by
C[𝑉] = C[𝑣1, . . . , 𝑣Δ ] ⊆ C[𝑥1, . . . , 𝑥𝑛] the subring of polynomials that depend only on V.

Another notation that we will use throughout the proof is congruence modulo linear forms.

Definition 2.1. Let 𝑉 ⊂ C[𝑥1, . . . , 𝑥𝑛] be a space of linear forms, and 𝑃,𝑄 ∈ C[𝑥1, . . . , 𝑥𝑛]. We say
that 𝑃 ≡𝑉 𝑄 if 𝑃 −𝑄 ∈ 〈𝑉〉.

Fact 2.2. Let 𝑉 ⊂ C[𝑥1, . . . , 𝑥𝑛] be a space of linear forms and 𝑃,𝑄 ∈ C[𝑥1, . . . , 𝑥𝑛]. If 𝑃 =
∏𝑡

𝑘=1 𝑃𝑘

and 𝑄 =
∏𝑡

𝑘=1𝑄𝑘 satisfy that, for all k, 𝑃𝑘 and 𝑄𝑘 are irreducible in C[𝑥1, . . . , 𝑥𝑛]/〈𝑉〉, and 𝑃 ≡𝑉

𝑄 �𝑉 0, then, up to a permutation of the indices and multiplication by scalars, 𝑃𝑘 ≡𝑉 𝑄𝑘 for all 𝑘 ∈ [𝑡].

This follows from the fact that the quotient ring C[𝑥1, . . . , 𝑥𝑛]/〈𝑉〉 is a unique factorization domain.

2.1. Sylvester–Gallai theorem and some of its variants

In this section, we present the formal statement of the Sylvester–Gallai theorem and the extensions that
we use in this work.

Definition 2.3. Given a set of points, 𝑣1, . . . , 𝑣𝑚, we call a line that passes through exactly two of the
points of the set an ordinary line.

Theorem 2.4 (Sylvester–Gallai theorem [16, 10]). If m distinct points 𝑣1, . . . , 𝑣𝑚 in R𝑛 are not colinear,
then they define at least one ordinary line.

Theorem 2.5 (Kelly’s theorem [15]). If m distinct points 𝑣1, . . . , 𝑣𝑚 in C𝑛 are not coplanar, then they
define at least one ordinary line.

The robust version of the theorem was stated and proved in [1, 8].

Definition 2.6. We say that a finite set of points {𝑣1, . . . , 𝑣𝑚} ⊂ C𝑛 is an 𝛿-SG configuration if for every
𝑖 ∈ [𝑚] there exists at least 𝛿𝑚 values of 𝑗 ∈ [𝑚] such that the line through 𝑣𝑖 , 𝑣 𝑗 is not ordinary.
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Theorem 2.7 (Robust Sylvester–Gallai theorem, Theorem 1.9 of [8]). Let 𝑉 = {𝑣1, . . . , 𝑣𝑚} ⊂ C𝑛 be a
𝛿-SG configuration. Then dim(span{𝑣1, . . . , 𝑣𝑚}) ≤ 12

𝛿 + 1.
The following is the colored version of the Sylvester–Gallai theorem.

Theorem 2.8 (Theorem 3 of [9]). Let T𝑖 , for 𝑖 ∈ [3], be disjoint finite subsets of C𝑛 such that for every
𝑖 ≠ 𝑗 and any two points 𝑝1 ∈ T𝑖 and 𝑝2 ∈ T 𝑗 there exists a point 𝑝3 in the third set that lies on the line
passing through 𝑝1 and 𝑝2. Then, any such {T𝑖} satisfy that dim(span{∪𝑖T𝑖}) ≤ 3.

We also state the equivalent algebraic versions of the Sylvester–Gallai theorem.
Theorem 2.9. Let S = {s1, . . . , s𝑚} ⊂ C𝑛 be a set of pairwise linearly independent vectors such that
for every 𝑖 ≠ 𝑗 ∈ [𝑚] there is a distinct 𝑘 ∈ [𝑚] for which s𝑘 ∈ span{s𝑖 , s 𝑗 }. Then dim(S) ≤ 3.
Theorem 2.10. Let P = {ℓ1, . . . , ℓ𝑚} ⊂ C[𝑥1, . . . , 𝑥𝑛] be a set of pairwise linearly independent linear
forms such that for every 𝑖 ≠ 𝑗 ∈ [𝑚] there is a distinct 𝑘 ∈ [𝑚] for which whenever ℓ𝑖 , ℓ 𝑗 vanish so
does ℓ𝑘 . Then dim(P) ≤ 3.

In this paper, we refer to each of Theorem 2.5, Theorem 2.9 and Theorem 2.10 as the Sylvester–
Gallai theorem. We shall also refer to sets of points/vectors/linear forms that satisfy the conditions of
the relevant theorem as satisfying the condition of the Sylvester–Gallai theorem.

2.2. Resultant

A tool that will play an important role in the proof of Theorem 1.5 is the resultant of two polynomials.
We will only define the resultant of a quadratic polynomial and a linear polynomial as this is the case
relevant to our work.1 Let 𝐴, 𝐵 ∈ C[𝑥1, . . . , 𝑥𝑛]. View A and B as polynomials in 𝑥1 over C[𝑥2, . . . , 𝑥𝑛],
and assume that deg𝑥1

(𝐴) = 2 and deg𝑥1
(𝐵) = 1, namely,

𝐴 = 𝛼𝑥2
1 + 𝑎𝑥1 + 𝐴0 and 𝐵 = 𝑏𝑥1 + 𝐵0.

Then, the resultant of A and B with respect to 𝑥1 is the determinant of their Sylvester matrix

Res𝑥1 (𝐴, 𝐵) :=

������
⎡⎢⎢⎢⎢⎣
𝐴0 𝐵0 0
𝑎 𝑏 𝐵0
𝛼 0 𝑏

⎤⎥⎥⎥⎥⎦
������.

A useful fact is that, if the resultant of A and B vanishes, then they share a common factor.
Theorem 2.11 (See, for example, Proposition 8 in $5 of Chapter 3 in [6]). Given 𝐹, 𝐺 ∈ F[𝑥1, . . . , 𝑥𝑛]
of positive degree in 𝑥1, the resultant Res𝑥1 (𝐹, 𝐺) is an integer polynomial in the coefficients of F and
G. Furthermore, F and G have a common factor in F[𝑥1, . . . , 𝑥𝑛] if and only if Res𝑥1 (𝐹, 𝐺) = 0.

2.3. Rank of quadratic polynomials

In this section, we define the rank of a quadratic polynomial and present some of its useful properties.
Definition 2.12. For a homogeneous quadratic polynomial Q, we denote with ranks (𝑄) the minimal r
such that there are 2𝑟 linear forms {𝑎𝑘 }2𝑟

𝑘=1 satisfying𝑄 =
∑𝑟

𝑘=1 𝑎2𝑘 · 𝑎2𝑘−1. We call such representation
a minimal representation of Q.

This is a slightly different definition than the usual way one defines rank of quadratic forms,2 but it
is more suitable for our needs. We note that a quadratic Q is irreducible if and only if ranks (𝑄) > 1.
The next claim shows that a minimal representation is unique in the sense that the space spanned by the
linear forms in it is unique.

1For the general definition of resultant, see Definition 2 in $5 of Chapter 3 in [6].
2rank(𝑄) is the minimal t such that there are t linear forms {𝑎𝑘 }𝑡𝑘=1, satisfying 𝑄 =

∑𝑡
𝑘=1 𝑎

2
𝑘 .

https://doi.org/10.1017/fms.2022.100 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.100


8 S. Peleg and A. Shpilka

Claim 2.13. Let Q be a homogeneous quadratic polynomial, and let 𝑄 =
∑𝑟

𝑖=1 𝑎2𝑖−1 · 𝑎2𝑖 and
𝑄 =

∑𝑟
𝑖=1 𝑏2𝑖−1 · 𝑏2𝑖 be two different minimal representations of Q. Then span{𝑎1, . . . , 𝑎2𝑟 } =

span{𝑏1, . . . , 𝑏2𝑟 }.

Proof. Note that, if the statement does not hold, then, without loss of generality, 𝑎1 is not contained in
the span of the 𝑏𝑖’s. This means that when setting 𝑎1 = 0 the 𝑏𝑖’s are not affected on the one hand, thus
Q remains the same function of the 𝑏𝑖’s, and in particular ranks(𝑄 |𝑎1=0) = 𝑟 , but on the other hand,
ranks (𝑄 |𝑎1=0) = 𝑟 − 1 (when considering its representation with the 𝑎𝑖’s), in contradiction. �

This claim allows us to define the notion of minimal space of a quadratic polynomial Q, which we
shall denote Lin(𝑄).

Definition 2.14. Let Q be a quadratic polynomial such that ranks (𝑄) = 𝑟 , and let 𝑄 =
𝑟∑
𝑖=1
𝑎2𝑖−1 · 𝑎2𝑖

be some minimal representation of Q. Define Lin(𝑄) := span{𝑎1, . . . , 𝑎2𝑟 }, and also denote

Lin(𝑄1, . . . , 𝑄𝑘 ) =
𝑘∑
𝑖=1

Lin(𝑄𝑖).

Theorem 2.13 shows that the minimal space is well defined. The following fact is easy to verify.

Fact 2.15. Let 𝑄 =
∑𝑚

𝑖=1 𝑎2𝑖−1 · 𝑎2𝑖 be a homogeneous quadratic polynomial, then Lin(𝑄) ⊆
span{𝑎1, . . . , 𝑎2𝑚}.

We now give some basic claims regarding ranks.

Claim 2.16. Let Q be a homogeneous quadratic polynomial with ranks (𝑄) = 𝑟 , and let 𝑉 ⊂
C[𝑥1, . . . , 𝑥𝑛] be a linear space of linear forms such that dim(𝑉) = Δ . Then ranks(𝑄 |𝑉 =0) ≥ 𝑟 − Δ .

Proof. Assume without loss of generality 𝑉 = span{𝑥1, . . . , 𝑥Δ }, and consider 𝑄 ∈
C[𝑥Δ+1, . . . , 𝑥𝑛] [𝑥1, . . . , 𝑥Δ ]. There are 𝑎1, . . . , 𝑎Δ ∈ C[𝑥1, . . . , 𝑥𝑛] and 𝑄 ′ ∈ C[𝑥Δ+1, . . . , 𝑥𝑛] such
that 𝑄 =

∑Δ
𝑖=1 𝑎𝑖𝑥𝑖 + 𝑄 ′, where 𝑄 |𝑉 =0 = 𝑄 ′. As ranks(

∑Δ
𝑖=1 𝑎𝑖𝑥𝑖) ≤ Δ , it must be that ranks (𝑄 |𝑉 =0) ≥

𝑟 − Δ . �

Claim 2.17. Let 𝑃1 ∈ C[𝑥1, . . . , 𝑥𝑘 ], and 𝑃2 = 𝑦1𝑦2 ∈ C[𝑦1, 𝑦2]. Then ranks(𝑃1 +𝑃2) = ranks (𝑃1) + 1.
Moreover, 𝑦1, 𝑦2 ∈ Lin(𝑃1 + 𝑃2).

Proof. Denote ranks(𝑃1) = 𝑟 , and assume towards a contradiction that there are 𝑎1, . . . , 𝑎2𝑟 linear forms
in C[𝑥1, . . . , 𝑥𝑘 , 𝑦1, 𝑦2] such that 𝑃1 + 𝑃2 =

𝑟∑
𝑖=1
𝑎2𝑖−1𝑎2𝑖 . Clearly,

𝑟∑
𝑖=1
𝑎2𝑖−1𝑎2𝑖 ≡𝑦1 𝑃1. As ranks (𝑃1) = 𝑟 ,

this is a minimal representation of 𝑃1. Hence, for every i, 𝑎𝑖 |𝑦1=0 ∈ Lin(𝑃1) ⊂ C[𝑥1, . . . , 𝑥𝑘 ]. Moreover,
from the minimality of r, 𝑎𝑖 |𝑦1=0 ≠ 0. Therefore, as 𝑦1 and 𝑦2 are linearly independent, we deduce that
all the coefficients of 𝑦2 in all the 𝑎𝑖’s are 0. By reversing the roles of 𝑦1 and 𝑦2, we can conclude that
𝑎1, . . . , 𝑎2𝑟 ⊂ C[𝑥1, . . . , 𝑥𝑘 ] which means that 𝑃1+𝑃2 does not depend on 𝑦1 nor on 𝑦2, in contradiction.
Consider a minimal representation 𝑃1 =

∑2𝑟
𝑖=1 𝑏2𝑖−1𝑏2𝑖 , from the fact that ranks (𝑃1+𝑃2) = 𝑟+1 it follows

that 𝑃1 + 𝑃2 =
∑2𝑟

𝑖=1 𝑏2𝑖−1𝑏2𝑖 + 𝑦1𝑦2 is a minimal representation of 𝑃1 + 𝑃2 and thus Lin(𝑃1 + 𝑃2) =
Lin(𝑃1) + span{𝑦1, 𝑦2}. �

Corollary 2.18. Let a and b be linearly independent linear forms. Then, if 𝑐, 𝑑, 𝑒 and f are linear forms
such that 𝑎𝑏 + 𝑐𝑑 = 𝑒 𝑓 , then dim(span{𝑎, 𝑏} ∩ span{𝑐, 𝑑}) ≥ 1.

Corollary 2.19. Let 𝑎, 𝑏, 𝑐 and d be linear forms such that a and b are linearly independent, and V be
a linear space of linear forms. Assume {0} ≠ Lin(𝑎𝑏 − 𝑐𝑑) ⊆ 𝑉 then span{𝑎, 𝑏} ∩𝑉 ≠ {0}.

Proof. Let 𝑄 ∈ C[𝑉] be such that 𝑎𝑏 − 𝑐𝑑 = 𝑄. As ranks(𝑄 − 𝑎𝑏) = ranks (−𝑐𝑑) = 1, Theorem 2.17
implies that span{𝑎, 𝑏} ∩𝑉 ≠ {0}. �
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Lemma 2.20. Let 𝑃𝑉 ∈ C[𝑉] be a polynomial defined over a linear space of linear forms V, and let
𝑐1, 𝑐2 satisfy 𝑐1 ∉ 𝑉 and 𝑐2 ∉ span{𝑐1, 𝑉}. If there are linear forms 𝑒, 𝑓 such that

𝑐1 (𝜀1𝑐1 + 𝑣1) + 𝑐2 (𝜀2𝑐2 + 𝑣2) + 𝑒 𝑓 = 𝑃𝑉 ,

then, without loss of generality, 𝑒 ∈ span{𝑐1, 𝑐2, 𝑉} and 𝑒 ∉ span{𝑐1, 𝑉} ∪ span{𝑐2, 𝑉}.

Proof. First, note that 𝑒 ∉ 𝑉 as otherwise we would have that 𝑐1 ≡𝑉 𝑐2, in contradiction.
By our assumption, 𝑒 𝑓 = 𝑃𝑉 modulo 𝑐1, 𝑐2. We can therefore assume without loss of generality that

𝑒 ∈ span{𝑐1, 𝑐2, 𝑉}. Assume towards a contradiction and without loss of generality that 𝑒 = 𝜆𝑐1 + 𝑣𝑒,
where 𝜆 ≠ 0 and 𝑣𝑒 ∈ 𝑉 . Consider the equation 𝑐1 (𝜀1𝑐1 + 𝑣1) + 𝑐2 (𝜀2𝑐2 + 𝑣2) + 𝑒 𝑓 = 𝑃𝑉 modulo 𝑐1.
We have that 𝑐2 (𝜀2𝑐2 + 𝑣2) + 𝑣𝑒 𝑓 ≡𝑐1 𝑃𝑉 which implies that 𝜀2 = 0. Consequently, we also have that
𝑓 = 𝜇𝑐2 + 𝜂𝑐1 + 𝑣 𝑓 , for some 𝜇 ≠ 0 and 𝑣 𝑓 ∈ 𝑉 . We now observe that the product 𝑐1𝑐2 has a nonzero
coefficient 𝜆𝜇 in 𝑒 𝑓 and a zero coefficient in 𝑃𝑉 − 𝑐2 (𝜀2𝑐2 + 𝑣2) + 𝑐1 (𝜀1𝑐1 + 𝑣1), in contradiction. �

2.4. Linear algebra facts

Claim 2.21. Let 𝑉 =
∑𝑚

𝑖=1𝑉𝑖 where 𝑉𝑖 are linear subspaces, and for every i, dim(𝑉𝑖) = 2. If for every
𝑖 ≠ 𝑗 ∈ [𝑚], dim(𝑉𝑖 ∩𝑉 𝑗 ) = 1, then either dim(

⋂𝑚
𝑖=1𝑉𝑖) = 1 or dim(𝑉) = 3.

Proof. Let 𝑤 ∈ 𝑉1 ∩ 𝑉2. Complete it to basis of 𝑉1 and 𝑉2: 𝑉1 = span{𝑢1, 𝑤} and 𝑉2 = span{𝑢2, 𝑤}.
Assume that dim(

⋂𝑚
𝑖=1𝑉𝑖) = 0. Then, there is some i for which 𝑤 ∉ 𝑉𝑖 . Let 𝑥1 ∈ 𝑉𝑖 ∩ 𝑉1, and so

𝑥1 = 𝛼1𝑢1 + 𝛽1𝑤, where 𝛼1 ≠ 0. Similarly, let 𝑥2 ∈ 𝑉𝑖 ∩ 𝑉2. Since 𝑤 ∉ 𝑉𝑖 , 𝑥2 = 𝛼2𝑢2 + 𝛽2𝑤, where
𝛼2 ≠ 0. Note that 𝑥1 ∉ span{𝑥2}, as dim(𝑉1 ∩ 𝑉2) = 1, and w is already in their intersection. Thus, we
have 𝑉𝑖 = span{𝑥1, 𝑥2} ⊂ span{𝑤, 𝑢1, 𝑢2}.

Now, consider any other 𝑗 ∈ [𝑚]. If𝑉 𝑗 does not contain w, we can apply the same argument as we did
for𝑉𝑖 and conclude that𝑉 𝑗 ⊂ span{𝑤, 𝑢1, 𝑢2}. On the other hand, if𝑤 ∈ 𝑉 𝑗 , then let 𝑥 𝑗 ∈ 𝑉𝑖∩𝑉 𝑗 . It is easy
to see that 𝑥 𝑗 , 𝑤 are linearly independent and so 𝑉 𝑗 = span{𝑤, 𝑥 𝑗 } ⊂ span{𝑤,𝑉𝑖} ⊆ span{𝑤, 𝑢1, 𝑢2}.
Thus, in any case 𝑉 𝑗 ⊂ span{𝑤, 𝑢1, 𝑢2}. In particular,

∑
𝑗 𝑉 𝑗 ⊆ span{𝑤, 𝑢1, 𝑢2} as claimed. �

Lemma 2.22. Let V be a linear space of dimension ≤ 4, and let 𝑉1, 𝑉2, 𝑉3 ⊂ 𝑉 each of dimension ≥ 2
such that 𝑉1 � 𝑉2 and 𝑉3 � 𝑉2 +𝑉1 then 𝑉 = 𝑉1 +𝑉2 +𝑉3.

Proof. As 𝑉1 � 𝑉2, we have that dim(𝑉1 + 𝑉2) ≥ 3. Similarly, we get 4 ≤ dim(𝑉1 + 𝑉2 + 𝑉3) ≤
dim(𝑉) = 4. �

The following corollary is an easy consequence of Theorem 2.22.

Corollary 2.23. Let Q be an irreducible quadratic polynomial. Let {𝑃𝑖}𝑘𝑖=1 be irreducible quadratic
polynomials such that dim(Lin(𝑄)) ≤ 4, and for every 𝑖 ∈ [𝑘], dim(Lin(𝑄) ∩ Lin(𝑃𝑖)) ≥ 2. Assume
further that Lin(𝑃1) ⊄ Lin(𝑄), Lin(𝑃2) ⊄ Lin(𝑄) + Lin(𝑃1), . . . , Lin(𝑃𝑘 ) ⊄ Lin(𝑄) + Lin(𝑃1) + . . . +
Lin(𝑃𝑘−1). Then, 𝑘 ≤ 3.

2.5. Projection mappings

In this section, we present and apply a new technique which allows us to simplify the structure of
quadratic polynomials. Naively, when we want to simplify a polynomial equation, we can project it on
a subset of the variables. Unfortunately, this projection does not necessarily preserve pairwise linear
independence, which is a crucial property in our proofs. To remedy this fact, we present a set of
mappings, which are somewhat similar to projections but do preserve pairwise linear independence
among polynomials that are not in C[𝑉], where V is the space being projected.

Definition 2.24. Let 𝑉 = span{𝑣1, . . . , 𝑣Δ } ⊆ span{𝑥1, . . . , 𝑥𝑛} be a Δ-dimensional linear space of
linear forms, and let {𝑢1, . . . , 𝑢𝑛−Δ } be a basis for 𝑉⊥. For 𝜶 = (𝛼1, . . . , 𝛼Δ ) ∈ CΔ , we define
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𝑇𝜶,𝑉 : C[𝑥1, . . . , 𝑥𝑛] ↦→ C[𝑥1, . . . , 𝑥𝑛, 𝑧], where z is a new variable, to be the linear map given by
the following action on the basis vectors: 𝑇𝜶,𝑉 (𝑣𝑖) = 𝛼𝑖𝑧 and 𝑇𝜶,𝑉 (𝑢𝑖) = 𝑢𝑖 .
Observation 2.25. 𝑇𝜶,𝑉 is a linear transformation and is also a ring homomorphism. This follows from
the fact that a basis for span{𝑥1, . . . , 𝑥𝑛} is a basis for C[𝑥1, . . . , 𝑥𝑛] as a C-algebra.

In the remaining claims in this section, we shall always assume that 𝑉 = span{𝑣1, . . . , 𝑣Δ } ⊆
span{𝑥1, . . . , 𝑥𝑛} is a a Δ-dimensional linear space of linear forms. We define 𝑇𝜶,𝑉 with respect to this
basis.

Claim 2.26. Let𝑉 ⊆ span{𝑥1, . . . , 𝑥𝑛} be a Δ-dimensional linear space of linear forms. Let F and G be
two polynomials that share no common irreducible factor. Then, with probability 1 over the choice of
𝜶 ∈ [0, 1]Δ (say, according to the uniform distribution), 𝑇𝜶,𝑉 (𝐹) and 𝑇𝜶,𝑉 (𝐺) do not share a common
factor that is not a polynomial in z.

Proof. Let {𝑢1, . . . , 𝑢𝑛−Δ } be a basis for 𝑉⊥. We think of F and G as polynomials in
C[𝑣1, . . . , 𝑣Δ , 𝑢1, . . . , 𝑢𝑛−Δ ]. As 𝑇𝜶,𝑉 : C[𝑣1, . . . , 𝑣Δ , 𝑢1, . . . , 𝑢𝑛−Δ ] → C[𝑧, 𝑢1, . . . , 𝑢𝑛−Δ ], Theo-
rem 2.11 implies that, if 𝑇𝜶,𝑉 (𝐹) and 𝑇𝜶,𝑉 (𝐺) share a common factor that is not a polynomial in
z, then, without loss of generality, their resultant with respect to 𝑢1 is zero. Theorem 2.11 also implies
that the resultant of F and G with respect to 𝑢1 is not zero. Observe that, with probability 1 over the
choice of 𝜶, we have that deg𝑢1

(𝐹) = deg𝑢1
(𝑇𝜶,𝑉 (𝐹)) and deg𝑢1

(𝐺) = deg𝑢1
(𝑇𝜶,𝑉 (𝐺)). As 𝑇𝜶,𝑉 is a

ring homomorphism, this implies that Res𝑢1 (𝑇𝜶,𝑉 (𝐺), 𝑇𝜶,𝑉 (𝐹)) = 𝑇𝜶,𝑉 (Res𝑢1 (𝐺, 𝐹)). The Schwartz–
Zippel–DeMillo–Lipton lemma now implies that sending each basis element of V to a random multiple
of z, chosen uniformly from (0, 1), will keep the resultant nonzero with probability 1. This also means
that 𝑇𝜶,𝑉 (𝐹) and 𝑇𝜶,𝑉 (𝐺) share no common factor. �

Corollary 2.27. Let V be a Δ-dimensional linear space of linear forms. Let F and G be two linearly
independent, irreducible quadratics such that Lin(𝐹), Lin(𝐺) � 𝑉 . Then, with probability 1 over the
choice of 𝜶 ∈ [0, 1]Δ (say, according to the uniform distribution), 𝑇𝜶,𝑉 (𝐹) and 𝑇𝜶,𝑉 (𝐺) are linearly
independent.

Proof. As F and G are irreducible they share no common factors. Theorem 2.26 implies that 𝑇𝜶,𝑉 (𝐹)
and 𝑇𝜶,𝑉 (𝐺) do not share a common factor that is not a polynomial in z. The Schwartz–Zippel–
DeMillo–Lipton lemma implies that, with probability 1, 𝑇𝜶,𝑉 (𝐹) and 𝑇𝜶,𝑉 (𝐺) are not polynomials in
z, and therefore, they are linearly independent. �

Claim 2.28. Let Q be an irreducible quadratic polynomial and V a Δ-dimensional linear space. Then
for every 𝜶 ∈ CΔ , ranks(𝑇𝜶,𝑉 (𝑄)) ≥ ranks(𝑄) − Δ .

Proof. ranks (𝑇𝜶,𝑉 (𝑄)) ≥ ranks (𝑇𝜶,𝑉 (𝑄) |𝑧=0) = ranks(𝑄 |𝑉 =0) ≥ ranks(𝑄) −Δ , where the last inequal-
ity follows from Theorem 2.16. �

Claim 2.29. Let Q be a set of quadratics and V be a Δ-dimensional linear space. Then, if there are
linearly independent vectors, {𝜶1, . . . ,𝜶Δ } ⊂ CΔ such that, for every i,3 dim(Lin(𝑇𝜶𝑖 ,𝑉 (Q))) ≤ 𝜎,
then dim(Lin(Q)) ≤ (𝜎 + 1)Δ .

Proof. As dim(Lin(𝑇𝜶𝑖 ,𝑉 (Q))) ≤ 𝜎, there are 𝑢𝑖1, . . . , 𝑢𝑖 𝜎 ⊂ 𝑉⊥ such that Lin(𝑇𝜶𝑖 ,𝑉 (Q)) ⊆
span{𝑧, 𝑢𝑖1, . . . , 𝑢𝑖 𝜎}. We will show that Lin(Q) ⊂ 𝑉 +span{{𝑢𝑖1, . . . , 𝑢𝑖 𝜎}Δ𝑖=1}, which is of dimension
at most Δ + 𝜎Δ .

Let 𝑃 ∈ Q, then there are linear forms, 𝑎1, . . . , 𝑎Δ ⊂ 𝑉⊥ and polynomials 𝑃𝑉 ∈ C[𝑉] and
𝑃′ ∈ C[𝑉⊥] such that

𝑃 = 𝑃𝑉 +
Δ∑
𝑗=1
𝑎 𝑗𝑣 𝑗 + 𝑃′.

3Recall that Lin(𝑇𝜶𝑖 ,𝑉 (Q)) is the space spanned by ∪𝑄∈QLin(𝑇𝜶𝑖 ,𝑉 (Q)) .
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Therefore, after taking the projection for a specific 𝑇𝜶𝑖 ,𝑉 , for some 𝛾 ∈ C,

𝑇𝜶𝑖 ,𝑉 (𝑃) = 𝛾𝑧2 + ���
Δ∑
𝑗=1
𝛼𝑖𝑗𝑎 𝑗

���𝑧 + 𝑃′.

Denote 𝑏𝑃,𝑖 =
Δ∑
𝑗=1
𝛼𝑖𝑗𝑎 𝑗 . By Theorem 2.27, if 𝑎1, . . . , 𝑎Δ are not all zeros, then, with probability 1,

𝑏𝑃,𝑖 ≠ 0.
If 𝑏𝑃,𝑖 ∉ Lin(𝑃′), then from Theorem 2.17 it follows that {𝑧, 𝑏𝑃,𝑖 ,Lin(𝑃′)} ⊆ span{Lin(𝑇𝜶𝑖 ,𝑉 (𝑃))}.

If, on the other hand, 𝑏𝑃,𝑖 ∈ Lin(𝑃′), then clearly {𝑏𝑃,𝑖 ,Lin(𝑃′)} ⊆ span{𝑧,Lin(𝑇𝜶𝑖 ,𝑉 (𝑃))}. To
conclude, in either case, {𝑏𝑃,𝑖 ,Lin(𝑃′)} ⊆ span{𝑧, 𝑢𝑖1, . . . , 𝑢𝑖 𝜎}.

Applying the analysis above to 𝑇𝜶1 ,𝑉 , . . . , 𝑇𝜶Δ ,𝑉 , we obtain that span{𝑏𝑃,1, · · · 𝑏𝑃,Δ } ⊆
span{{𝑢𝑖1, . . . , 𝑢𝑖 𝜎}Δ𝑖=1}. As 𝜶1, . . . 𝜶Δ are linearly independent, we have that {𝑎1, . . . , 𝑎Δ } ⊂
span{𝑏𝑃,1, · · · 𝑏𝑃,Δ }, and thus Lin(𝑃) ⊆ 𝑉+{𝑎1, . . . , 𝑎Δ }+Lin(𝑃′) ⊆ 𝑉+span{{𝑢𝑖1, . . . , 𝑢𝑖 𝜎}Δ𝑖=1}. �

3. Structure theorem for quadratics satisfying
∏

𝑖 𝑄𝑖 ∈
√
(𝐴, 𝐵)

An important tool in the proofs of our main results is Theorem 1.5 that classifies all the possible cases
in which a product of quadratic polynomials 𝑄1 · 𝑄2 · . . . · 𝑄𝑘 is in the radical of two other quadratics,√
〈𝐴, 𝐵〉. To ease the reading, we repeat the statement of the theorem here, albeit with slightly different

notation.

Theorem 3.1. Let {𝑄𝑘 }𝑘∈K, 𝐴, 𝐵 be homogeneous polynomials of degree 2 such that
∏

𝑘∈K𝑄𝑘 ∈√
〈𝐴, 𝐵〉. Then one of the following cases hold:

(prime-case): There is 𝑘 ∈ K such that 𝑄𝑘 is in the linear span of 𝐴, 𝐵.
(product-case): There exists a nontrivial linear combination of the form 𝛼𝐴 + 𝛽𝐵 = 𝑐 · 𝑑, where c and

d are linear forms.
(linear-case): There exist two linear forms c and d such that when setting 𝑐 = 𝑑 = 0 we get that 𝐴, 𝐵

and one of {𝑄𝑘 }𝑘∈K vanish.

The following claim of [12] shows that we can assume |K| = 4 in the statement of Theorem 3.1.

Claim 3.2 (Claim 11 in [12]). Let 𝑃1, . . . , 𝑃𝑑 , 𝑄1, . . . , 𝑄𝑘 ∈ C[𝑥1, . . . , 𝑥𝑛] be homogeneous and the
degree of each 𝑃𝑖 is at most r. Then,

𝑘∏
𝑖=1
𝑄𝑖 ∈

√
〈𝑃1, . . . , 𝑃𝑑〉 ⇒ ∃{𝑖1, . . . , 𝑖𝑟𝑑 } ⊂ [𝑘] such that

𝑟𝑑∏
𝑗=1
𝑄𝑖 𝑗 ∈

√
〈𝑃1, . . . , 𝑃𝑑〉.

Thus, for 𝑟 = 𝑑 = 2 it follow that there are at most four polynomials among the 𝑄𝑖s whose product
is in

√
〈𝐴, 𝐵〉.

Before proving Theorem 3.1, we explain the intuition behind the different cases in the theorem.
Clearly, if one of 𝑄1, . . . , 𝑄4 is a linear combination of 𝐴, 𝐵, then it is in their radical (and in fact, in
their linear span). If A and B span a product of the form 𝑎𝑏, then, say, (𝐴 + 𝑎𝑐) (𝐴 + 𝑏𝑑) is in their
radical. Indeed,

√
〈𝐴, 𝐵〉 =

√
〈𝐴, 𝑎𝑏〉. This case is clearly different than the linear span case. Finally, we

note that, if 𝐴 = 𝑎𝑐 + 𝑏𝑑 and 𝐵 = 𝑎𝑒 + 𝑏 𝑓 , then the product 𝑎 · 𝑏 · (𝑐 𝑓 − 𝑑𝑒) is in
√
〈𝐴, 𝐵〉.4 This case

is different than the other two cases as A and B do not span any linear form (or any reducible quadratic)
non trivially.

4If we insist on having all factors of degree 2, then the same argument shows that the product (𝑎2 + 𝐴) · (𝑏2 + 𝐵) · (𝑐 𝑓 − 𝑑𝑒)
is in

√
〈𝐴, 𝐵〉.
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Thus, all the three cases are distinct and can happen. What Theorem 3.1 shows is that, essentially,
these are the only possible cases.

Proof of Theorem 3.1. Following Theorem 3.2, we shall assume in the proof that |K| = 4. By applying
a suitable linear transformation, we can assume that for some 𝑟 ≥ 1

𝐴 =
𝑟∑
𝑖=1
𝑥2
𝑖 .

We can also assume without loss of generality that 𝑥2
1 appears only in A as we can replace B with any

polynomial of the form 𝐵′ = 𝐵 − 𝛼𝐴 without affecting the result as 〈𝐴, 𝐵〉 = 〈𝐴, 𝐵′〉. Furthermore, all
cases in the theorem remain the same if we replace B with 𝐵′ and vice versa.

In a similar fashion, we can replace 𝑄1 with 𝑄 ′
1 = 𝑄1 − 𝛼𝐴 to get rid of the term 𝑥2

1 in 𝑄1. We can
do the same for the other 𝑄𝑖s. Thus, without loss of generality, the situation is

𝐴 = 𝑥2
1 − 𝐴

′

𝐵 = 𝑥1 · 𝑏 − 𝐵′

𝑄𝑖 = 𝑥1 · 𝑏𝑖 −𝑄 ′
𝑖 for 𝑖 ∈ {1, 2, 3, 4},

(3.1)

where 𝐴′, 𝑏, 𝐵′, 𝑄 ′
𝑖 , 𝑏𝑖 are homogeneous polynomials that do not depend on 𝑥1, the polynomials

𝐴′, 𝐵′, 𝑄 ′ have degree ≤ 2 and 𝑏, 𝑏𝑖 are linear forms. The analysis shall deal with two cases according
to whether B depends on 𝑥1 or not, as we only consider the resultant of A and B with respect to 𝑥1 when
it appears in both polynomials.

Case 𝒃 �≡ 0:
Consider the resultant of A and B with respect to 𝑥1. It is easy to see that

Res𝑥1 (𝐴, 𝐵) = 𝐵′2 − 𝑏2 · 𝐴′.

We first prove that, if the resultant is irreducible, then Case (prime-case) of Theorem 3.1 holds. For
this, we shall need the following claim.

Claim 3.3. Whenever Res𝑥1 (𝐴, 𝐵) = 0, it holds that
∏4

𝑖=1(𝐵′ · 𝑏𝑖 − 𝑏 · 𝑄 ′
𝑖) = 0.

Proof. Let 𝜶 ∈ C𝑛−1 be such that Res𝑥1 (𝐴, 𝐵) (𝜶) = 0 then either 𝑏(𝜶) = 0, which also implies
𝐵′(𝜶) = 0 and in this case the claim clearly holds, or 𝑏(𝜶) ≠ 0. Consider the case 𝑏(𝜶) ≠ 0, and set
𝑥1 = 𝐵′(𝜶)/𝑏(𝜶) (we are free to select a value for 𝑥1 as Res𝑥1 (𝐴, 𝐵) does not involve 𝑥1). Notice that
for this substitution we have that 𝐵(𝜶) = 0 and that

𝐴|𝑥1=𝐵′ (𝜶)/𝑏 (𝜶) = (𝐵′(𝜶)/𝑏(𝜶))2 − 𝐴′(𝜶) = Res𝑥1 (𝐴, 𝐵) (𝜶)/𝑏(𝜶)2 = 0.

Hence, we also have
∏4

𝑖=1𝑄𝑖 |𝑥1=𝐵′ (𝜶)/𝑏 (𝜶) = 0. In other words that(
1
𝑏4

4∏
𝑖=1

(𝐵′ · 𝑏𝑖 − 𝑏 · 𝑄 ′
𝑖)
)
(𝜶) = 0. �

It follows that

4∏
𝑖=1

(𝐵′ · 𝑏𝑖 − 𝑏 · 𝑄 ′
𝑖) ∈

√
Res𝑥1 (𝐴, 𝐵).
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In other words, for some positive integer k we have that Res𝑥1 (𝐴, 𝐵) divides
(∏4

𝑖=1(𝐵′ · 𝑏𝑖 − 𝑏 · 𝑄 ′
𝑖)
) 𝑘

.

As every irreducible factor of
(∏4

𝑖=1(𝐵′ · 𝑏𝑖 − 𝑏 · 𝑄 ′
𝑖)
) 𝑘

is of degree 3 or less, we get that, if the resultant
is irreducible, then one of the multiplicands must be identically zero. Assume without loss of generality
that 𝐵′𝑏1 − 𝑏𝐵′

1 = 0. It is not hard to verify that in this case either 𝑄1 is a scalar multiple of B and then
Theorem 3.1(prime-case) holds, or that 𝐵′ is divisible by b. However, in the latter case it also holds that
b divides the resultant, contradicting the assumption that it is irreducible.

From now on we assume that Res𝑥1 (𝐴, 𝐵) is reducible. We consider two possibilities. Either
Res𝑥1 (𝐴, 𝐵) has a linear factor or it can be written as

Res𝑥1 (𝑄1, 𝑄2) = 𝐶 · 𝐷,

for irreducible quadratic polynomials C and D.
Consider the case where the resultant has a linear factor. If that linear factor is b, then b also divides

B and Theorem 3.1(product-case) holds. Otherwise, if it is a different linear form ℓ, then when setting
ℓ = 0 we get that the resultant of 𝐴|ℓ=0 and 𝐵 |ℓ=0 is zero, and hence, either 𝐵 |ℓ=0 is identically zero and
Theorem 3.1(product-case) holds or they share a common factor (see Theorem 2.11). It is not hard to
see that, if that common factor is of degree 2, then Theorem 3.1(product-case) holds, and if it is a linear
factor, then Theorem 3.1(linear-case) holds.

Thus, the only case left to handle (when 𝑏 � 0) is when there are two irreducible quadratic
polynomials, C and D, such that 𝐶𝐷 = Res𝑥1 (𝐴, 𝐵). As C and D divide two multiplicands in∏4

𝑖=1 (𝐵′ ·𝑏𝑖−𝑏 ·𝑄 ′
𝑖), we can assume, without loss of generality, that (𝐵′ ·𝑏3−𝑏 ·𝑄 ′

3) · (𝐵
′ ·𝑏4−𝑏 ·𝑄 ′

4) ∈√〈
Res𝑥1 (𝐴, 𝐵)

〉
. Next, we express 𝐴′, 𝐵′, 𝐶 and D as quadratics over b. That is,

𝐴′ = 𝛼𝑏2 + 𝑎1𝑏 + 𝐴′′ (3.2)
𝐵′ = 𝛽𝑏2 + 𝑎2𝑏 + 𝐵′′

𝐶 = 𝛾𝑏2 + 𝑎3𝑏 + 𝐶 ′′

𝐷 = 𝛿𝑏2 + 𝑎4𝑏 + 𝐷 ′′,

where 𝑎1, . . . , 𝐷
′′ do not involve b (nor 𝑥1). We have the following two representations of the resultant:

Res𝑥1 (𝐴, 𝐵) = 𝐵′2 − 𝑏2 · 𝐴′ (3.3)

= 𝛽2 · 𝑏4 + 2𝛽𝑎2 · 𝑏3 + (2𝛽𝐵′′ + 𝑎2
2) · 𝑏

2 + 2𝑎2𝐵
′′ · 𝑏 + 𝐵′′2 − 𝛼𝑏4 − 𝑎1𝑏

3 − 𝐴′′𝑏2

= (𝛽2 − 𝛼)𝑏4 + (2𝛽𝑎2 − 𝑎1) · 𝑏3 + (2𝛽𝐵′′ + 𝑎2
2 − 𝐴

′′) · 𝑏2 + 2𝑎2𝐵
′′ · 𝑏 + 𝐵′′2

and

Res𝑥1 (𝑄1, 𝑄2) = 𝐶𝐷 (3.4)
= (𝛾𝑏2 + 𝑎3𝑏 + 𝐶 ′′) · (𝛿𝑏2 + 𝑎4𝑏 + 𝐷 ′′)
= 𝛾𝛿𝑏4 + (𝛾𝑎4 + 𝛿𝑎3)𝑏3 + (𝛾𝐷 ′′ + 𝑎3𝑎4 + 𝛿𝐶 ′′)𝑏2 + (𝑎3𝐷

′′ + 𝑎4𝐶
′′)𝑏 + 𝐶 ′′𝐷 ′′.

Comparing the different coefficients of b in the two representations in equations (3.3) and (3.4), we
obtain the following equalities:

𝐵′′2 = 𝐶 ′′𝐷 ′′ (3.5)

2𝑎2𝐵
′′ = 𝑎3𝐷

′′ + 𝑎4𝐶
′′. (3.6)

We now consider the two possible cases giving equation (3.5).
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1. Case 1 explaining equation (3.5): After rescaling C and D, we have that 𝐵′′ = 𝐶 ′′ = 𝐷 ′′. Equation
(3.2) implies that for some linear form 𝑢, 𝑣 we have that

𝐶 = 𝑏𝑣 + 𝐵′ and 𝐷 = 𝑏𝑢 + 𝐵′.

We now expand the resultant again:

𝐵′2 + 𝑏(𝑣 + 𝑢)𝐵′ + 𝑏2𝑣𝑢 = (𝑏𝑣 + 𝐵′) · (𝑏𝑢 + 𝐵′) = 𝐶𝐷
= Res𝑥1 (𝐴, 𝐵) = 𝐵′2 − 𝑏2𝐴′.

Hence,

(𝑣 + 𝑢)𝐵′ + 𝑏𝑣𝑢 = −𝑏𝐴′. (3.7)

Thus, either b divides 𝐵′ in which case we get that b divides B and we are done as Theorem 3.1
(product-case) holds, or b divides 𝑢 + 𝑣. That is,

𝑢 + 𝑣 = 𝜀𝑏 (3.8)

for some constant 𝜀 ∈ C. Plugging this back into equation (3.7), we get

𝜀𝑏𝐵′ + 𝑏𝑣𝑢 = −𝑏𝐴′.

In other words,

𝜀𝐵′ + 𝑣𝑢 = −𝐴′.

Consider the linear combination 𝑄 = 𝐴 + 𝜀𝐵. We get that

𝑄 = 𝐴 + 𝜀𝐵 = (𝑥2
1 − 𝐴

′) + 𝜀(𝑥1𝑏 − 𝐵′)
= 𝑥2

1 + 𝜀𝑥1𝑏 + 𝑣𝑢
= 𝑥2

1 + 𝑥1 (𝑢 + 𝑣) + 𝑢𝑣
= (𝑥1 + 𝑢) (𝑥1 + 𝑣), (3.9)

where the equality in the third line follows from equation (3.8). Thus, equation (3.9) shows that some
linear combination of A and B is reducible which implies that Theorem 3.1(product-case) holds.

2. Case 2 explaining equation (3.5): 𝐵′′ = 𝑢·𝑣 and we have that, without loss of generality,𝐶 ′′ = 𝑢2 and
𝐷 ′′ = 𝑣2 (where 𝑢, 𝑣 are linear forms). Consider equation (3.6). We have that v divides 2𝑎2𝐵

′′−𝑎3𝐷
′′.

It follows that v is also a factor of 𝑎4𝐶
′′. Thus, either u is a multiple of v and we are back in the

case where 𝐶 ′′ and 𝐷 ′′ are multiples of each other, or 𝑎4 is a multiple of v. In this case, we get from
equation (3.2) that for some constant 𝛿′,

𝐷 = 𝛿𝑏2 + 𝑎4𝑏 + 𝐷 ′′ = 𝛿𝑏2 + 𝛿′𝑣𝑏 + 𝑣2.

Thus, D is a homogeneous polynomial in two linear forms. Hence, D is reducible, in contradiction.

This concludes the proof of Theorem 3.1 for the case 𝑏 � 0.

Case 𝒃 ≡ 0:
To ease notation, let use denote 𝑥 = 𝑥1. We have that 𝐴 = 𝑥2 − 𝐴′ and that x does not appear in 𝐴′, 𝐵.

Let y be some variable such that 𝐵 = 𝑦2 − 𝐵′, and 𝐵′ does not involve y (we can always assume this is
the case without loss of generality). As before, we can subtract a multiple of B from A so that the term
𝑦2 does not appear in A. If A still involves y, then we are back in the previous case (treating y as the
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variable according to which we take the resultant). Thus, the only case left to study is when there are
two variables x and y such that

𝐴 = 𝑥2 − 𝐴′ and 𝐵 = 𝑦2 − 𝐵′ ,

where neither 𝐴′ nor 𝐵′ involve either x or y. To ease notation, denote the rest of the variables as z.
Thus, 𝐴′ = 𝐴′(z) and 𝐵′ = 𝐵′(z). It is immediate that for any assignment to z there is an assignment to
𝑥, 𝑦 that yields a common zero of 𝐴, 𝐵.

By subtracting linear combinations of A and B from the 𝑄𝑖s, we can assume that for every 𝑖 ∈ [4]

𝑄𝑖 = 𝛼𝑖𝑥𝑦 + 𝑎𝑖 (z)𝑥 + 𝑏𝑖 (z)𝑦 +𝑄 ′
𝑖 (z).

We next show that, under the assumptions in the theorem’s statement, it must be the case that either
𝐴′ or 𝐵′ is a perfect square or that 𝐴′ ∼ 𝐵′. In either situation, we have that Theorem 3.1(product-case)
holds. We first show that, if 𝐴′ and 𝐵′ are linearly independent, then this implies that at least one of
𝐴′, 𝐵′ is a perfect square.

Let 𝑍 (𝐴, 𝐵) be the set of common zeros of A and B, and denote by 𝜋z : 𝑍 (𝐴, 𝐵) → C𝑛−2, the
projection on the z coordinates. Note that 𝜋z is surjective; as for any assignment to z, there is an
assignment to 𝑥, 𝑦 that yields a common zero of 𝐴, 𝐵.

Claim 3.4. Let 𝑍 (𝐴, 𝐵) =
⋃𝑘

𝑖=1 𝑋𝑘 be the decomposition of 𝑍 (𝐴, 𝐵) to irreducible components. Then
there exists 𝑖 ∈ [𝑘] such that 𝜋z (𝑋𝑖) is dense in C𝑛−2.

Proof.
⋃𝑘

𝑖=1 𝜋z (𝑋𝑖) = 𝜋z(𝑍 (𝐴, 𝐵)) = C𝑛−2, as 𝜋z is a surjection, it holds that
⋃𝑘

𝑖=1 𝜋z(𝑋𝑖) = C𝑛−2. We
also know that C𝑛−2 is irreducible, and thus, there is 𝑖 ∈ [𝑘] such that 𝜋z (𝑋𝑖) = C𝑛−2, which implies
that 𝜋z(𝑋𝑖) is dense. �

Assume, without loss of generality, that 𝜋z (𝑋1) is dense. We know that 𝑋1 ⊆ 𝑍 (
∏4

𝑖=1𝑄𝑖), so we can
assume, without loss of generality, that 𝑋1 ⊆ 𝑍 (𝑄1). Observe that this implies that 𝑄1 must depend on
at least one of 𝑥, 𝑦. Indeed, if 𝑄1 depends on neither, then it is a polynomial in z, and hence, its set of
zeros cannot be dense.

Every point 𝝃 ∈ 𝑋1 is of the form 𝝃 = (𝛿1
√
𝐴′(𝜷), 𝛿2

√
𝐵′(𝜷), 𝜷), for some 𝜷 ∈ C𝑛−2, 𝛿1, 𝛿2 ∈ {±1}

(𝛿1, 𝛿2 may be functions of 𝜷). Thus, 𝑄1 (𝝃) = 𝑄1(𝛿1
√
𝐴′(𝜷), 𝛿2

√
𝐵′(𝜷), 𝜷) = 0, and we obtain that

𝛼1𝛿1𝛿2
√
𝐴′(𝜷′) ·

√
𝐵′(𝜷′) + 𝑎1 (𝜷′)𝛿1

√
𝐴′(𝜷′) + 𝑏1(𝜷′)𝛿2

√
𝐵′(𝜷′) +𝑄 ′

1 (𝜷
′) = 0. (3.10)

As we assumed that 𝑄1 depends on at least one of 𝑥, 𝑦, let us assume without loss of generality that
either 𝛼1 or 𝑎1 are nonzero. The next argument is similar to the proof that

√
2 is irrational. Note that we

use the fact that 𝛿2
1 = 𝛿2

2 = 1.

(3.10) =⇒ 𝐵′(𝜷′)
(
𝛼1𝛿1

√
𝐴′(𝜷′) + 𝑏1(𝜷′)

)2
=

(
𝑄 ′

1 (𝜷
′) + 𝑎1 (𝜷′)𝛿1

√
𝐴′(𝜷′)

)2

=⇒ 𝐵′(𝜷′)
(
𝛼2

1𝐴
′(𝜷′) + 2𝛿1𝛼1𝑏1 (𝜷′)

√
𝐴′(𝜷′) + 𝑏1(𝜷′)2

)
=

𝑄 ′
1 (𝜷

′)2 + 2𝛿1𝑎1 (𝜷′)𝑄 ′
1(𝜷

′)
√
𝐴′(𝜷′) + 𝑎1 (𝜷′)2𝐴′(𝜷′)

=⇒ 𝛿1
√
𝐴′(𝜷′)

(
2𝛼1𝑏1(𝜷′)𝐵′(𝜷′) − 2𝑎1 (𝜷′)𝑄 ′

1(𝜷
′)
)
= (3.11)

𝑄 ′
1 (𝜷

′)2 + 𝑎1 (𝜷′)2𝐴′(𝜷′) − 𝐵′(𝜷′)
(
𝛼2

1𝐴
′(𝜷′) + 𝑏1(𝜷′)2

)
=⇒ 𝐴′(𝜷′)

(
2𝛼1𝑏1(𝜷′)𝐵′(𝜷′) − 2𝑎1 (𝜷′)𝑄 ′

1(𝜷
′)
)2 = (3.12)(

𝑄 ′
1 (𝜷

′)2 + 𝑎1 (𝜷′)2𝐴′(𝜷′) − 𝐵′(𝜷′)
(
𝛼2

1𝐴
′(𝜷′) + 𝑏1(𝜷′)2

))2
.
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This equality holds for every 𝜷 ∈ 𝜋z (𝑋1), which is a dense set, and hence holds as a polynomial identity.
Thus, either 𝐴′(z) is a square, in which case we are done or it must be the case that the following
identities hold

𝑄 ′
1 (z)

2 + 𝑎1 (z)2𝐴′(z) − 𝐵′(z)
(
𝛼2

1𝐴
′(z) + 𝑏1(z)2

)
= 0 (3.13)

and

𝛼1𝑏1(z)𝐵′(z) − 𝑎1 (z)𝑄 ′
1(z) = 0. (3.14)

By symmetry, if 𝐵′(z) is not a square (as otherwise we are done), we get that

𝛼1𝑎1 (z)𝐴′(z) − 𝑏1 (z)𝑄 ′
1(z) = 0. (3.15)

If 𝛼1 = 0, then we get from (3.14) that 𝑄 ′
1 ≡ 0. Hence, by (3.13),

𝑎1 (z)2𝐴′(z) = 𝐵′(z)𝑏1(z)2.

Since we assumed that 𝐴′ and 𝐵′ are independent, this implies that 𝐴′ and 𝐵′ are both squares. If𝑄 ′
1 � 0

(and in particular, 𝛼1 ≠ 0), then either 𝑎1 (z) = 𝑏1(z) ≡ 0, in which case Equation (3.13) implies that
𝑄 ′

1 (z)
2 = 𝛼2

1𝐴
′(z)𝐵′(z), and we are done (as either both 𝐴′ and 𝐵′ are squares or they are both multiples

of𝑄 ′
1), or equations (3.14) and (3.15) imply that 𝛼2

1𝐴
′(z)𝐵′(z) = 𝑄 ′

1 (z)
2 which again implies the claim.

This concludes the proof of Theorem 3.1 for the case 𝑏 ≡ 0 and thus the proof of the theorem. �

4. Sylvester–Gallai theorem for quadratic polynomials

In this section, we prove Theorem 1.4. For convenience, we repeat the statement of the theorem.

Theorem 1.4. There exists a universal constant c such that the following holds. Let Q̃ = {𝑄𝑖}𝑖∈{1,...,𝑚} ⊂
C[𝑥1, . . . , 𝑥𝑛] be a finite set of pairwise linearly independent homogeneous quadratic polynomials such
that every 𝑄𝑖 ∈ Q̃ is either irreducible or a square of a linear form. Assume that, for every 𝑖 ≠ 𝑗 ,
whenever 𝑄𝑖 and 𝑄 𝑗 vanish, then so does

∏
𝑘∈{1,...,𝑚}\{𝑖, 𝑗 } 𝑄𝑘 . Then, dim(span{Q}) ≤ 𝑐.

Remark 4.1. The requirement that the polynomials are homogeneous is not essential as homogenization
does not affect the property 𝑄𝑘 ∈

√〈
𝑄𝑖 , 𝑄 𝑗

〉
.

Remark 4.2. Note that we no longer demand that the polynomials are irreducible but rather allow some
of them to be squares of linear forms, but now we restrict all polynomials to be of degree exactly 2.
Note that both versions of the theorem are equivalent as this modification does not affect the vanishing
condition.

Remark 4.3. Note that from Theorem 3.2 it follows that for every 𝑖 ≠ 𝑗 there exists a subset K ⊆
[𝑚] \ {𝑖, 𝑗} such that |K| ≤ 4, and whenever 𝑄𝑖 and 𝑄 𝑗 vanish, then so does

∏
𝑘∈K𝑄𝑘 .

In what follows, we shall use the following terminology. Whenever we say that two quadratics
𝑄1, 𝑄2 ∈ Q̃ satisfy Theorem 3.1(prime-case), we mean that there is a polynomial𝑄3 ∈ Q̃ \ {𝑄1, 𝑄2} in
their linear span. Similarly, when we say that they satisfy Theorem 3.1(product-case) (Theorem 3.1(lin-
ear-case)), we mean that there is a reducible quadratic in their linear span (they belong to 〈𝑎1, 𝑎2〉 for
linear forms 𝑎1, 𝑎2).

Proof of Theorem 1.4. Partition the polynomials to two sets. Let L be the set of all squares, and let Q be
the subset of irreducible quadratics, thus Q̃ = Q∪L. Denote |Q| = 𝑚, |L| = 𝑟 . Let 𝛿 = 1

100 , and denote

◦ Pprime = {𝑃 ∈ Q | There are at least 𝛿𝑚 polynomials in Q such that 𝑃 satisfies
Theorem 3.1(prime-case) but not Theorem 3.1(product-case) with each of them}.
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◦ Plinear = {𝑃 ∈ Q | There are at least 𝛿𝑚 polynomials in Q such that 𝑃 satisfies
Theorem 3.1(linear-case) with each of them}.

The proof first deals with the case where Q = Pprime ∪ Plinear. We then handle the case that there is
𝑄 ∈ Q \ (Pprime ∪ Plinear). �

4.1. The case Q = Pprime ∪ Plinear.

Assume that Q = Pprime ∪ Plinear. For our purposes, we may further assume that Pprime ∩ Plinear = ∅ by
letting Pprime = Pprime \ Plinear.

This is the simplest case in the analysis. The next claim shows that there is a small-dimensional linear
space V such that Plinear ⊂ 〈𝑉〉. The intuition is based on the following simple observation.

Observation 4.4. If 𝑄1, 𝑄2 ∈ Q satisfy Theorem 3.1(linear-case), then dim(Lin(𝑄1)),
dim(Lin(𝑄2)) ≤ 4 and dim(Lin(𝑄1) ∩ Lin(𝑄2)) ≥ 2.

The observation shows that if𝑄 ∈ Plinear and we add to V a basis for Lin(𝑄), then any P that satisfies
Theorem 3.1(linear-case) with Q now belongs to 〈𝑉〉. Choosing several such Q’s cleverly, we manage
to cover all of Plinear.

Claim 4.5. There exists a linear space of linear forms, V, such that dim(𝑉) = 𝑂 (1) and Plinear ⊂ 〈𝑉〉.

Thus, we have many small-dimensional spaces that have large pairwise intersections, and we can
therefore expect that such a V may exist.

Proof. We prove the existence of V by explicitly constructing it. Repeat the following process: Set
𝑉 = {0}, and P ′ = ∅. At each step, consider any 𝑄 ∈ Plinear such that 𝑄 ∉ 〈𝑉〉, and set 𝑉 = Lin(𝑄) +𝑉 ,
and P ′ = P ′ ∪ {𝑄}. Repeat this process as long as possible, that is, as long as Plinear � 〈𝑉〉. We show
next that this process must end after at most 3

𝛿 steps. Namely, |P ′ | ≤ 3
𝛿 . It is clear that at the end of the

process it holds that Plinear ⊂ 〈𝑉〉.
Let 𝑄 ∈ Q and B ⊆ P ′ be the subset of all polynomials in P ′ that satisfy Theorem 3.1(linear-case)

with Q. Observe that, if 𝑃1, . . . , 𝑃𝑘 are the first k elements ofB that were added toP ′, then𝑄, 𝑃1, . . . , 𝑃𝑘

satisfy the conditions of Theorem 2.23. In particular, this implies that |B | ≤ 3.
For 𝑄𝑖 ∈ P ′, define 𝑇𝑖 = {𝑄 ∈ Q | 𝑄,𝑄𝑖 satisfy Theorem 3.1(linear-case)}. Since |𝑇𝑖 | ≥ 𝛿𝑚 and as

by the discussion above each 𝑄 ∈ Q belongs to at most 3 different sets, it follows by double counting
that |P ′ | ≤ 3/𝛿. As in each step we add at most 4 linearly independent linear forms to V, we obtain
dim(𝑉) ≤ 12

𝛿 .
This completes the proof of Theorem 4.5. �

So far V satisfies that Plinear ⊂ 〈𝑉〉. Next, we find a small set of polynomials I such that
Q ⊂ 〈𝑉〉 + span{I}. The construction of I is quite simple. Roughly, we iteratively add to I any
𝑃 ∈ Pprime \ {〈𝑉〉 + span{I}}. This is done in Theorem 4.6. We then show in Theorem 4.7 that each
such polynomial P spans many other polynomials in Pprime \ {〈𝑉〉 + span{I}}, and hence, this process
terminates after a few steps. Interestingly, this may not cover all polynomials in Q. We show how-
ever, that the remaining polynomials satisfy the conditions of the robust Sylvester–Gallai theorem and
hence are contained themselves in a low-dimensional space. Theorem 4.8 is where we the complete
proof.

Construction 4.6. Set I = ∅ and B = Plinear. First, add to B any polynomial from Pprime that is
in 〈𝑉〉. Observe that at this point we have that B ⊂ Q ∩ 〈𝑉〉. Consider the following process: At
each step, pick any 𝑃 ∈ Pprime \ B such that P satisfies Theorem 3.1(prime-case), but not Theorem
3.1(product-case),5 with at least 𝛿

3𝑚 polynomials in B, and add it to both I and to B. Then, we add to

5By this, we mean that there are many polynomials that together with P span another polynomial in Q but not in L.
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B all the polynomials 𝑃′ ∈ Pprime that satisfy 𝑃′ ∈ span{(Q ∩ 〈𝑉〉) ∪ I}. Note that we always maintain
that B ⊂ span{(Q ∩ 〈𝑉〉) ∪ I}. We continue this process as long as we can.

Next, we prove that at the end of the process we have that |I | ≤ 3/𝛿.

Claim 4.7. In each step, we added to B at least 𝛿
3𝑚 new polynomials from Pprime. In particular,

|I | ≤ 3/𝛿.

Proof. Consider what happens when we add some polynomial P to I. By the description of our process,
P satisfies Theorem 3.1(prime-case) with at least 𝛿

3𝑚 polynomials in B. Any 𝑄 ∈ B that satisfies
Theorem 3.1(prime-case) with P must span with P a polynomial 𝑃′ ∈ Q̃. Observe that 𝑃′ ∉ L as 𝑄, 𝑃
do not satisfy Theorem 3.1(product-case), and thus, 𝑃′ ∈ Q. It follows that 𝑃′ ∈ Pprime since otherwise
we would have that 𝑃 ∈ span{B} ⊂ span{(Q ∩ 〈𝑉〉) ∪ I}, which implies 𝑃 ∈ B in contradiction to
the way that we defined the process. Furthermore, for each such 𝑄 ∈ B the polynomial 𝑃′ is unique.
Indeed, if there was a 𝑃 ≠ 𝑃′ ∈ Pprime and 𝑄1, 𝑄2 ∈ B such that 𝑃′ ∈ span{𝑄1, 𝑃} ∩ span{𝑄2, 𝑃}, then
by pairwise independence we would conclude that 𝑃 ∈ span{𝑄1, 𝑄2} ⊂ span{B}, which, as we already
showed, implies 𝑃 ∈ B in contradiction. Thus, when we add P to I we add at least 𝛿

3𝑚 polynomials to
B. In particular, the process terminates after at most 3/𝛿 steps and thus |I | ≤ 3/𝛿. �

We are now ready to complete the construction of I.

Claim 4.8. There exists a set I ⊂ Q such that Q ⊂ 〈𝑉〉 + span{I} and |I | = 𝑂 (1/𝛿).

Proof. Let I and B be as above. Consider the polynomials left in Pprime \ B. As they ‘survived’ the
process, each of them satisfies the condition in the definition of Pprime with at most 𝛿

3𝑚 polynomials in
B. From the fact that Plinear ⊆ B and the uniqueness property we obtained in the proof of Theorem 4.7,
we get that Pprime \B satisfies the conditions of Theorem 2.6 with parameter 𝛿/3, and thus, Theorem 2.7
implies that dim(Pprime \B) ≤ 𝑂 (1/𝛿). Adding a basis of Pprime \B to I, we get that |I | = 𝑂 (1/𝛿) and
every polynomial in Q is in span{(Q ∩ 〈𝑉〉) ∪ I}. �

We are not done yet as the dimension of 〈𝑉〉, as a vector space, is not a constant. Nevertheless, we
next show how to use Theorem 2.10 to bound the dimension of Q, given that Q ⊂ span{(Q ∩ 〈𝑉〉) ∪ I}.
To achieve this, we introduce yet another iterative process: For each 𝑃 ∈ Q \ 〈𝑉〉, if there is quadratic L,
with ranks (𝐿) ≤ 2, such that 𝑃+ 𝐿 ∈ 〈𝑉〉, then we set𝑉 = 𝑉 +Lin(𝐿) (this increases the dimension of V
by at most 4). Since this operation increases dim(〈𝑉〉 ∩Q), we can remove one polynomial from I, and
thus decrease its size by 1, and still maintain the property that Q ⊂ span{(Q ∩ 〈𝑉〉) ∪ I}. We repeat
this process until either I is empty, or none of the polynomials in I satisfy the condition of the process.
By the upper bound on |I |, the dimension of V grew by at most 4|I | = 𝑂 (1/𝛿), and thus, it remains
of dimension 𝑂 (1/𝛿) = 𝑂 (1). At the end of the process, we have that Q ⊂ span{(Q ∩ 〈𝑉〉) ∪ I}
and that every polynomial in 𝑃 ∈ Q \ 〈𝑉〉 has ranks (𝑃) > 2, even if we set all linear forms in V
to zero.

Consider the map 𝑇𝜶,𝑉 as given in Theorem 2.24, for a randomly chosen 𝜶 ∈ [0, 1]dim(𝑉 ) . Each
polynomial in Q ∩ 〈𝑉〉 is mapped to a polynomial of the form 𝑧𝑏, for some linear form b. From
Theorem 2.16, it follows that every polynomial in Q \ 〈𝑉〉 still has rank larger than 2 after the mapping.
Let

A = {𝑏 | some polynomial in Q ∩ 〈𝑉〉 was mapped to 𝑧𝑏} ∪ 𝑇𝜶,𝑉 (L).

We now show that, modulo z, A satisfies the conditions of Theorem 2.10. Let 𝑏1, 𝑏2 ∈ A such that
𝑏1 ∉ span{𝑧} and 𝑏2 ∉ span{𝑧, 𝑏1}. As Q̃ satisfies the conditions of Theorem 1.4, we get that there are
polynomials𝑄1, . . . , 𝑄4 ∈ Q̃ such that

∏4
𝑖=1 𝑇𝜶,𝑉 (𝑄𝑖) ∈

√
〈𝑏1, 𝑏2〉 = 〈𝑏1, 𝑏2〉, where the equality holds

as 〈𝑏1, 𝑏2〉 is a prime ideal. This fact also implies that, without loss of generality, 𝑇𝜶,𝑉 (𝑄4) ∈ 〈𝑏1, 𝑏2〉.
Thus, 𝑇𝜶,𝑉 (𝑄4) has rank at most 2 and therefore𝑄4 ∈ L∪ (Q∩ 〈𝑉〉). Hence, 𝑇𝜶,𝑉 (𝑄4) was mapped to
𝑧𝑏4 or to 𝑏2

4. In particular, 𝑏4 ∈ A. Theorem 2.26 and Theorem 2.27 imply that 𝑏4 is neither a multiple
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of 𝑏1 nor a multiple of 𝑏2, so it must hold that 𝑏4 depends nontrivially on both 𝑏1 and 𝑏2. Thus, A
satisfies the conditions of Theorem 2.10 modulo z. It follows that dim(A) ≤ 4.

The argument above shows that the dimension of 𝑇𝜶,𝑉 (L ∪ (Q ∩ 〈𝑉〉)) = 𝑂 (1). Theorem 2.29
implies that if we denote𝑈 = span{L ∪ Lin(Q ∩ 〈𝑉〉)} then dim(𝑈) is (4 + 1) · dim(𝑉) = 𝑂 (1/𝛿). As
Q ⊆ span{(Q ∩ 〈𝑉〉) ∪ I}, we obtain that dim(Q̃) = dim(L ∪Q) = 𝑂 (1/𝛿) = 𝑂 (1), as we wanted to
show.

This completes the proof of Theorem 1.4 for the case Q = Pprime ∪ Plinear.

4.2. The case Q ≠ Pprime ∪ Plinear.

In this case, there is some polynomial 𝑄𝑜 ∈ Q \ (P1 ∪P3). In particular, 𝑄𝑜 satisfies Theorem 3.1(pro-
duct-case) with at least (1 − 2𝛿)𝑚 of the polynomials in Q; of the remaining polynomials, at most 𝛿𝑚
satisfy Theorem 3.1(prime-case) with 𝑄𝑜; similarly, at most 𝛿𝑚 polynomials satisfy Theorem 3.1(lin-
ear-case) with 𝑄𝑜. Let

◦ Qprod = {𝑃 ∈ Q | 𝑃,𝑄𝑜 satisfy Theorem 3.1(product-case) } ∪ {𝑄𝑜}
◦ Q¬prod = {𝑃 ∈ Q | 𝑃,𝑄𝑜 do not satisfy Theorem 3.1(product-case)}
◦ 𝑚1 + 1 = |Qprod |, 𝑚2 = |Q¬prod |.

As 𝑄𝑜 ∉ Pprime ∪ Plinear, we have that 𝑚2 ≤ 2𝛿𝑚 and 𝑚1 ≥ (1 − 2𝛿)𝑚. These properties of 𝑄𝑜 and Q
are captured by the following definition.

Definition 4.9. Let Qprod = {𝑄𝑜, 𝑄1, . . . , 𝑄𝑚1} and Q¬prod = {𝑃1, . . . , 𝑃𝑚2 } be sets of irreducible
homogeneous quadratic polynomials. Let L = {𝑎2

𝑚1+1, . . . , 𝑎
2
𝑚1+𝑟 } be a set of squares of homogeneous

linear forms. We say that Q̃ = Q ∪ L, where Q = Qprod ∪Q¬prod is a (𝑄𝑜, 𝑚1, 𝑚2)-set if it satisfies the
following:

1. Q̃ satisfy the conditions in the statement of Theorem 1.4.
2. 𝑚1 > 5𝑚2 + 2.
3. For every 𝑗 ∈ [𝑚1], there are linear forms 𝑎 𝑗 , 𝑏 𝑗 such that 𝑄 𝑗 = 𝑄𝑜 + 𝑎 𝑗𝑏 𝑗 .
4. For every 𝑖 ∈ [𝑚2], every nontrivial linear combination of 𝑃𝑖 and 𝑄𝑜 has rank at least 2.
5. At most 𝑚2 of the polynomials in Q satisfy Theorem 3.1(linear-case) with 𝑄𝑜.

By the discussion above, the following theorem is what we need in order to complete the proof for
the case Q ≠ Pprime ∪ Plinear.

Theorem 4.10. Let Q̃ satisfy the conditions of Theorem 4.9, then dim Q̃ = 𝑂 (1).

We prove this theorem in section 5 to conclude the proof of Theorem 2.11. �

5. Proof of Theorem 4.10

Using the notation of Theorem 4.9, we denote, for 𝑄𝑖 = 𝑄𝑜 + 𝑎𝑖𝑏𝑖 ∈ Qprod, 𝑉𝑖 := span{𝑎𝑖 , 𝑏𝑖}, and for
𝑄𝑘 = 𝑎2

𝑘 ∈ L, we let 𝑉𝑖 = span{𝑎𝑘 }.6
The main idea is (roughly) proving that L ∪

⋃
𝑉𝑖 satisfies the conditions of the Sylvester–Gallai

theorem (or its robust version). To this end, we first show, in subsection 5.1, that the different spaces
𝑉𝑖 satisfy some nontrivial intersection properties (Theorem 5.2). We then show in subsection 5.2 that
there is a small-dimensional V that contains ‘most’ of the {𝑎𝑖 , 𝑏𝑖} when Q¬prod ≠ ∅ (Theorem 5.4).
Then in subsection 5.3, we prove that there exists a constant-dimensional linear space of linear forms V
(if Q¬prod ≠ ∅, then this is the V that we found in subsection 5.2) such that, for some 𝛼 ∈ {0, 1}, every
polynomial 𝐹 ∈ Q̃ (more or less) has the form 𝐹 = 𝛼𝑄𝑜 +𝐹 ′ +𝑐(𝜀𝑐+𝑣), where c is a linear form, 𝜀 ∈ C,
𝑣 ∈ 𝑉 and 𝐹 ′ ∈ C[𝑉] (Theorem 5.6). This structure is already very close to the claim of Theorem 4.10,

6Sometimes, it will be convenient to denote 𝑄𝑘 ∈ L as 𝑄𝑘 = 𝑎𝑘𝑏𝑘 for 𝑏𝑘 = 𝑎𝑘 in order to use the same notation for all
polynomials.
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and we conclude the proof in subsection 5.4 by showing that the different linear functions c satisfy the
robust Sylvester–Gallai theorem (Claims 5.7 and 5.9). One case that we omitted from the description
above is that, when the rank of 𝑄𝑜 is small, We can also have 𝐹 ∈ 〈𝑉〉. In the proof of Theorem 5.9, we
handle this case using projection mappings (recall subsection 2.5).

5.1. Intersection properties of the 𝑉𝑖s

We start by proving that the spaces 𝑉𝑖s that were defined above intersect nontrivially under some mild
condition. The proof follows almost immediately from Theorem 3.1.

Claim 5.1. Let Q̃ = Q ∪ L be a (𝑄𝑜, 𝑚1, 𝑚2)-𝑠𝑒𝑡, and let 𝑄𝑖 = 𝑄𝑜 + 𝑎𝑖𝑏𝑖 and 𝑄 𝑗 = 𝑄𝑜 + 𝑎 𝑗𝑏 𝑗 be
polynomials in Qprod such that for every 𝛼 ≠ 0, ranks (𝑄𝑜 + 𝛼𝑎𝑖𝑏𝑖) ≥ 3.

1. If there exists 𝑘 ∈ [𝑚1 + 𝑟] \ {𝑖, 𝑗} such that 𝑄𝑘 ∈ span{𝑄𝑖 , 𝑄 𝑗 }, then, for some 𝛼, 𝛽 ∈ C \ {0}

𝛼𝑎𝑖𝑏𝑖 + 𝛽𝑎 𝑗𝑏 𝑗 = 𝑎𝑘𝑏𝑘 . (5.1)

2. If 𝑄𝑖 and 𝑄 𝑗 satisfy Theorem 3.1(product-case), then there exist two linear forms c and d such that

𝑎𝑖𝑏𝑖 − 𝑎 𝑗𝑏 𝑗 = 𝑐𝑑. (5.2)

3. 𝑄𝑖 and 𝑄 𝑗 do not satisfy Theorem 3.1(linear-case).

Note that the guarantee of this claim is not sufficient to conclude that the dimension of
𝑎1, . . . , 𝑎𝑚1 , 𝑏1, . . . , 𝑏𝑚1 is bounded. The reason is that c and d are not necessarily in the union of 𝑉𝑖s
(or in L). For example, if for every i, 𝑎𝑖𝑏𝑖 = 𝑥2

𝑖 − 𝑥2
1, then every pair, 𝑄𝑖 , 𝑄 𝑗 satisfies Theorem 3.1(pro-

duct-case), but the dimension of {𝑎1, . . . , 𝑎𝑚1 , 𝑏1, . . . , 𝑏𝑚1 } is unbounded.

Proof of Theorem 5.1. If, for 𝑘 ∈ [𝑚1+𝑟] \{𝑖, 𝑗},𝑄𝑘 ∈ span{𝑄𝑖 , 𝑄 𝑗 }, then there are constants 𝛼, 𝛽 ∈ C
such that 𝛼(𝑄𝑜 + 𝑎𝑖𝑏𝑖) + 𝛽(𝑄𝑜 + 𝑎 𝑗𝑏 𝑗 ) = 𝛼𝑄𝑖 + 𝛽𝑄 𝑗 = 𝑄𝑘 = 𝛼𝑘𝑄𝑜 + 𝑎𝑘𝑏𝑘 .7 Rearranging, we get
that

𝛽𝑎 𝑗𝑏 𝑗 − 𝑎𝑘𝑏𝑘 = (𝛼𝑘 − (𝛼 + 𝛽))𝑄𝑜 − 𝛼𝑎𝑖𝑏𝑖 .

As 𝛼 ≠ 0 (since 𝑄 𝑗 � 𝑄𝑘 ), ranks(𝑄𝑜 + 𝛼𝑎𝑖𝑏𝑖) ≥ 3, which implies that 𝛼𝑘 − (𝛼 + 𝛽) = 0. Hence,

𝛼𝑎𝑖𝑏𝑖 + 𝛽𝑎 𝑗𝑏 𝑗 = 𝑎𝑘𝑏𝑘 (5.3)

and equation (5.1) holds. As before, 𝛼, 𝛽 ≠ 0 since otherwise we will have two linearly dependent
polynomials in Q.

If 𝑄𝑖 , 𝑄 𝑗 satisfy Theorem 3.1(product-case), then there are 𝛼, 𝛽 ∈ C and two linear forms c and d
such that 𝛼(𝑄𝑜 + 𝑎𝑖𝑏𝑖) + 𝛽(𝑄𝑜 + 𝑎 𝑗𝑏 𝑗 ) = 𝑐𝑑, and again, by the same argument, we get that 𝛽 = −𝛼,
and that, without loss of generality,

𝑎𝑖𝑏𝑖 − 𝑎 𝑗𝑏 𝑗 = 𝑐𝑑.

As ranks(𝑄𝑖) ≥ 3 they cannot satisfy Theorem 3.1(linear-case). �

Corollary 5.2. Let Q̃ be a (𝑄𝑜, 𝑚1, 𝑚2)-𝑠𝑒𝑡. If for some 𝑖 ∈ [𝑚1] we have that dim(𝑉𝑖) = 2 and
𝑄𝑖 satisfies that for every 𝛼 ≠ 0, ranks(𝑄𝑜 + 𝛼𝑎𝑖𝑏𝑖) ≥ 3, then for every 𝑗 ∈ [𝑚1] it holds that
dim(𝑉 𝑗 ∩𝑉𝑖) ≥ 1. In particular, it follows that, if 𝑑𝑖𝑚(𝑉 𝑗 ) = 1, then 𝑉 𝑗 � 𝑉𝑖 .

Proof. This follows immediately from Theorem 5.1 and Theorem 2.18. �

7If 𝑄𝑘 ∈ L, then 𝛼𝑘 = 0.
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5.2. Constructing V using Q¬prod

In this section, we show that, if Q¬prod ≠ ∅, then we can use any polynomial in it to define a linear
space of linear forms V that contains many of the 𝑉𝑖s. We first prove a simple claim showing that every
polynomial in Q¬prod is a linear combination of 𝑄𝑜 and a quadratic polynomial of rank 2.

Claim 5.3. Let Q̃ be a (𝑄𝑜, 𝑚1, 𝑚2)-𝑠𝑒𝑡. Then for every 𝑖 ∈ [𝑚2], there exists 𝛾𝑖 ∈ C such that
ranks (𝑃𝑖 − 𝛾𝑖𝑄𝑜) = 2.

Proof. Consider any 𝑃𝑖 for 𝑖 ∈ [𝑚2]. We shall analyze, for each 𝑗 ∈ [𝑚1], which case of Theorem 3.1
𝑄 𝑗 and 𝑃𝑖 satisfy.

If 𝑃𝑖 satisfies Theorem 3.1(linear-case) with any 𝑄 𝑗 ∈ Qprod, then the claim holds with 𝛾𝑖 = 0. If 𝑃𝑖
satisfies Theorem 3.1(product-case) with any𝑄 𝑗 ∈ Q, then there exist linear forms c and d and nonzero
𝛼, 𝛽 ∈ C such that

𝑃𝑖 =
1
𝛼

(
𝑐𝑑 − 𝛽

(
𝑄𝑜 + 𝑎 𝑗𝑏 𝑗

) )
=
−𝛽
𝛼
𝑄𝑜 +

(
1
𝛼
𝑐𝑑 − 𝛽

𝛼
𝑎 𝑗𝑏 𝑗

)
. (5.4)

Observe that the rank of 𝑐𝑑 − 𝛽𝑎 𝑗𝑏 𝑗 cannot be 1 by Theorem 4.9. Hence, the statement holds with
𝛾𝑖 = − 𝛽

𝛼 .
Thus, the only case left to consider is when 𝑃𝑖 satisfies Theorem 3.1(prime-case) with all the 𝑄 𝑗 ’s

in Qprod. We next show that in this case there must exist 𝑗 ≠ 𝑗 ′ ∈ [𝑚1] such that 𝑄 𝑗′ ∈ span{𝑄 𝑗 , 𝑃𝑖}.
Observe that this would imply that there are 𝛼, 𝛽 ∈ C \ {0}, for which 𝑃𝑖 = 𝛼𝑄 𝑗 + 𝛽𝑄 𝑗′ and then

𝑃𝑖 = (𝛼 + 𝛽)𝑄𝑜 + 𝛼𝑎 𝑗𝑏 𝑗 + 𝛽𝑎 𝑗′𝑏 𝑗′ ,

and the statement holds with 𝛾𝑖 = 𝛽+𝛼, where we know by Theorem 4.9 that ranks (𝛼𝑎 𝑗𝑏 𝑗+𝛽𝑎 𝑗′𝑏 𝑗′ ) = 2.
So, let us assume that, for every 𝑗 ∈ [𝑚1], there is 𝑡 𝑗 ∈ [𝑚2] such that 𝑃𝑡 𝑗 ∈ span{𝑄 𝑗 , 𝑃𝑖}. As

5𝑚2 + 2 < 𝑚1, there must be 𝑗 ′ ≠ 𝑗 ′′ ∈ [𝑚1] and 𝑡 ′ ∈ [𝑚2] such that 𝑃𝑡′ ∈ span{𝑄 𝑗′ , 𝑃𝑖} and
𝑃𝑡′ ∈ span{𝑄 𝑗′′ , 𝑃𝑖}. Since Q is a set of pairwise linearly independent polynomials, we can deduce that
span{𝑃𝑖 , 𝑃𝑡′ } = span{𝑄 𝑗′ , 𝑄 𝑗′′ }. In particular, there exist 𝛼, 𝛽 ∈ C, for which 𝑃𝑖 = 𝛼𝑄 𝑗 + 𝛽𝑄 𝑗′ , which,
as we already showed, implies what we wanted to prove. �

For simplicity, rescale 𝑃𝑖 so that 𝑃𝑖 = 𝛾𝑖𝑄𝑜 + 𝐿𝑖 with ranks(𝐿𝑖) = 2 and 𝛾𝑖 ∈ {0, 1}. Clearly, Q still
satisfies the conditions of Theorem 4.9 after this rescaling as it does not affect the vanishing conditions
or linear independence.

Claim 5.4. Let Q̃ be a (𝑄𝑜, 𝑚1, 𝑚2)-𝑠𝑒𝑡, where Q¬prod ≠ ∅. Let 𝑃 = 𝛾𝑄𝑜 +𝐿 ∈ Q¬prod. Let V be defined
as

◦ If ranks (𝑄𝑜) ≥ 100, then 𝑉 = Lin(𝐿) and in particular dim(𝑉) ≤ 4.
◦ If ranks (𝑄𝑜) < 100, then 𝑉 = Lin(𝑄𝑜) + Lin(𝐿), so dim(𝑉) ≤ 202.

Then, for at least𝑚1−2𝑚2 indices 𝑗 ∈ [𝑚1] it holds that 𝑎 𝑗 , 𝑏 𝑗 ∈ 𝑉 . Furthermore, for𝑄𝑖 = 𝛼𝑖𝑄𝑜+𝑎𝑖𝑏𝑖 ∈
Qprod the only cases in which {𝑎𝑖 , 𝑏𝑖} � 𝑉 are

1. If ranks(𝑄𝑜) ≥ 100, then it must be the case that 𝑄𝑖 and P span a polynomial 𝑃 𝑗 ∈ Q¬prod.
2. If ranks (𝑄𝑜) < 100, then either 𝑄𝑖 and P span a polynomial 𝑃 𝑗 ∈ Q¬prod or there are two linear

functions 𝑐, 𝑑 such that 𝑃,𝑄𝑜, 𝑄 𝑗 ∈ 〈𝑐, 𝑑〉.

Remark 5.5. When ranks (𝑄𝑜) ≥ 100, we actually get the result for 𝑚1 − 𝑚2 many indices.

The idea of the proof is to study for each 𝑄 𝑗 ∈ Qprod ∪ L what case of Theorem 3.1 it satisfies with
some 𝑃 ∈ Q¬prod. If ranks (𝑄𝑜) is high, then 𝑄𝑜 must ‘disappear’ from the equations and we trivially
get 𝑎 𝑗 , 𝑏 𝑗 ∈ 𝑉 = Lin(𝑃). When the rank of 𝑄𝑜 is low, the argument is slightly different. In this case, we
let V also contain Lin(𝑄𝑜), and using this, we show 𝑎 𝑗 , 𝑏 𝑗 ∈ 𝑉 .
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Proof. Let 𝑃 = 𝛾𝑄𝑜 + 𝐿 ∈ Q¬prod, where ranks (𝐿) = 2. Let V be defined as in the statement of the
theorem: We set 𝑉 = Lin(𝐿) when ranks (𝑄𝑜) ≥ 100 and 𝑉 = Lin(𝑄𝑜) + Lin(𝐿) otherwise.

Let 𝑄 𝑗 = 𝛼 𝑗𝑄𝑜 + 𝑎 𝑗𝑏 𝑗 ∈ Qprod. We consider which case of Theorem 3.1 P and 𝑄 𝑗 satisfy.

P and 𝑄 𝑗 satisfy Theorem 3.1(product-case):
In this case, there are two linear forms c and d, and nonzero 𝛼, 𝛽 ∈ C, such that 𝛼𝑃 + 𝛽𝑄 𝑗 = 𝑐𝑑.

Hence,
𝛽𝛼 𝑗𝑄𝑜 + 𝛼𝑃 = −𝛽𝑎 𝑗𝑏 𝑗 + 𝑐𝑑.

As 𝛽𝛼 𝑗𝑄𝑜 + 𝛼𝑃 is a nontrivial linear combination of 𝑄𝑜 and P, we get from property 4 of Theorem 4.9
that 2 ≤ ranks ((𝛼𝛾 + 𝛽𝛼 𝑗 )𝑄𝑜 + 𝛼𝐿). It follows that

2 ≤ ranks ((𝛼𝛾 + 𝛽𝛼 𝑗 )𝑄𝑜 + 𝛼𝐿) = ranks (−𝛽𝑎 𝑗𝑏 𝑗 + 𝑐𝑑) ≤ 2.

If ranks (𝑄𝑜) ≥ 100, then 𝛼𝛾 + 𝛽𝛼 𝑗 = 0. Thus, regardless of ranks(𝑄𝑜), we get from Theorem 2.15 that

{𝑎 𝑗 , 𝑏 𝑗 , 𝑐, 𝑑} ⊆ Lin(−𝛽𝑎 𝑗𝑏 𝑗 + 𝑐𝑑) = Lin((𝛼𝛾 + 𝛽)𝑄𝑜 + 𝛼𝐿) ⊆ 𝑉,

and in particular 𝑎 𝑗 , 𝑏 𝑗 ∈ 𝑉 .

P and 𝑄 𝑗 satisfy Theorem 3.1(linear-case):
If ranks (𝑄𝑜) ≥ 100, then it must hold that 𝛼 𝑗 = 0 and 𝑄 𝑗 = 𝑎2

𝑗 . By the rank condition on 𝑄𝑜, it also
follows that 𝛾 = 0, and therefore, 𝑎 𝑗 ∈ Lin(𝐿) = 𝑉 .

Consider the case ranks (𝑄𝑜) < 100. There are two linear forms c and d such that 𝑄 𝑗 , 𝑃 ∈
√
〈𝑐, 𝑑〉.

This implies that span{𝑐, 𝑑} ⊆ Lin(𝑃) ⊆ 𝑉 .
If 𝑄𝑜 is zero modulo c and d, then 𝑄 𝑗 , 𝑄𝑜 satisfy Theorem 3.1(linear-case), and from property 5 of

Theorem 4.9, we know that there are at most 𝑚2 such 𝑄 𝑗 ’s. Furthermore, as 𝑐, 𝑑 ∈ Lin(𝑄𝑜) ⊂ 𝑉 , we
obtain that 𝑄 𝑗 ∈ 〈𝑉〉. Denote by K the set of all 𝑄 𝑗 that satisfy Theorem 3.1(linear-case) with 𝑄𝑜, and
recall that |K| ≤ 𝑚2.

If𝑄𝑜 = 𝑄 𝑗 −𝑎 𝑗𝑏 𝑗 is not zero modulo 𝑐, 𝑑, then we obtain that𝑄𝑜 ≡𝑐,𝑑 −𝑎 𝑗𝑏 𝑗 . Thus, there are linear
forms 𝑣1, 𝑣2 ∈ Lin(𝑄𝑜) such that 𝑎 𝑗 ≡𝑐,𝑑 𝑣1 and 𝑏 𝑗 ≡𝑐,𝑑 𝑣2. In particular, as Lin(𝑄𝑜) ∪ {𝑐, 𝑑} ⊆ 𝑉 , it
follows that 𝑎 𝑗 , 𝑏 𝑗 ∈ 𝑉 .

P and 𝑄 𝑗 satisfy Theorem 3.1(prime-case):
Let P and 𝑄 𝑗 satisfy Theorem 3.1(prime-case) but not Theorem 3.1(product-case) (as we already

handled this case), that is, they span another polynomial in Q̃ \ L. If this polynomial is in Qprod, then
there exists 𝑗 ′ ∈ [𝑚1] such that 𝑄 𝑗′ ∈ span{𝑃,𝑄 𝑗 }. In this case, 𝑃 = 𝛼𝑄 𝑗 + 𝛽𝑄 𝑗′ , and as before, we
conclude that 𝑎 𝑗′ , 𝑏 𝑗′ , 𝑎 𝑗 , 𝑏 𝑗 ∈ 𝑉 .

All that is left is to bound the number of 𝑗 ∈ [𝑚1] so that P and 𝑄 𝑗 span a polynomial in Q¬prod. If
there are more than 𝑚2 such indices j, then, by the pigeonhole principle, for two of them, say 𝑗 , 𝑗 ′, it
must be the case that there is some 𝑖 ∈ [𝑚2] such that 𝑃𝑖 ∈ span{𝑃,𝑄 𝑗 } and 𝑃𝑖 ∈ span{𝑃,𝑄 𝑗′ }. As our
polynomials are pairwise independent, this implies that 𝑃 ∈ span{𝑄 𝑗 , 𝑄 𝑗′ }, and as before, we get that
𝑎 𝑗′ , 𝑏 𝑗′ , 𝑎 𝑗 , 𝑏 𝑗 ∈ 𝑉 .

It follows that the only case where 𝑎 𝑗 , 𝑏 𝑗 ∉ 𝑉 and P and𝑄 𝑗 satisfy Theorem 3.1(prime-case) is when
𝑄 𝑗 and P span a polynomial in Q¬prod, and no other 𝑄 𝑗′ spans this polynomial with P. Therefore, there
are at most 𝑚2 such ‘bad’ j’s.

To conclude, the only j’s for which 𝑎 𝑗 , 𝑏 𝑗 ∉ 𝑉 can come from 𝑄 𝑗 ∈ K (when ranks (𝑄𝑜) < 100) and
P and 𝑄 𝑗 satisfy Theorem 3.1(linear-case)), or it is one of the bad 𝑄 𝑗 when P and 𝑄 𝑗 satisfy Theorem
3.1(prime-case), so in total there are at most 2𝑚2 bad indices. This also shows the ‘furthermore’ part of
the claim. �
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5.3. Global structure

Our goal in this subsection is proving that there exists a constant-dimensional linear space of linear
forms V such that, for some 𝛼 ∈ {0, 1}, every polynomial 𝐹 ∈ Q̃ (more or less) has the form 𝐹 =
𝛼𝑄𝑜 + 𝐹 ′ + 𝑐(𝜀𝑐 + 𝑣), where c is a linear form, 𝜀 ∈ C, 𝑣 ∈ 𝑉 and 𝐹 ′ ∈ C[𝑉].

We remark that 𝛼 = 1 if ranks (𝑄𝑜) ≥ 100 and 𝛼 = 0 otherwise (as in the low-rank case we construct
V so that Lin(𝑄𝑜) ⊆ 𝑉).

Formally, we prove the following claim.

Claim 5.6. Let Q̃ be a (𝑄𝑜, 𝑚1, 𝑚2)-𝑠𝑒𝑡. There exists a linear space of linear forms V such that

◦ If ranks (𝑄𝑜) ≥ 100, then dim(𝑉) = 4, and
◦ If ranks (𝑄𝑜) < 100, then dim(𝑉) ≤ 202,

and the following hold: Every polynomial 𝐹 ∈ Q̃ satisfies at least one of the following:

1. 𝐹 ∈ C[𝑉], or
2. 𝐹 = 𝑐2, for a linear form c, or
3. 𝐹 ∈ 〈𝑉〉 (only when ranks(𝑄𝑜) < 100), or
4. 𝐹 = 𝛼𝑄𝑜 + 𝐹 ′ + 𝑐(𝜀𝑐 + 𝑣), where c is a linear form, 𝜀 ∈ C, 𝑣 ∈ 𝑉 and 𝐹 ′ ∈ C[𝑉]. Furthermore,
𝛼 = 1 if ranks (𝑄𝑜) ≥ 100 and 𝛼 = 0 otherwise.

The proof of the claim depends on the rank of 𝑄𝑜 (we use different arguments in the high-rank case
and in the low-rank case) and on whether Q¬prod is empty or not. When Q¬prod ≠ ∅, we show that the
space V that we constructed in Theorem 5.4 is the required space. The idea is that V already ‘explains’
so much of the structure of Q̃ that we can expand it to all polynomials in Q̃. When Q¬prod = ∅, the
argument is different and does not rely on Theorem 5.4. Here, since all polynomials are of the form
𝑄𝑜 + 𝑎 𝑗𝑏 𝑗 (ignoring squares of linear functions), using the conclusion of Theorem 5.1 that the 𝑉𝑖s
intersect nontrivially, and Theorem 2.21 we easily get the claimed structure.

Proof. We analyze two cases: when Q¬prod = ∅ and the case Q¬prod ≠ ∅.

The case Q¬prod = ∅:
Let

I = {𝑖 ∈ [𝑚1] | dim(𝑉𝑖) = 2 and for every 𝛼 ≠ 0, ranks (𝑄𝑜 + 𝛼𝑎𝑖𝑏𝑖) ≥ 3}.

Observe that, if ranks(𝑄𝑜) ≥ 100, then I simply contains all 𝑉𝑖s of dimension 2.
If I = ∅, then we can take 𝑉 = {0} when ranks (𝑄𝑜) ≥ 100 or 𝑉 = Lin(𝑄𝑜) in the case ranks (𝑄𝑜) <

100. Indeed, Theorem 2.18 implies that in this case every polynomial is of the form 𝐹 = 𝛼𝑄𝑜 + 𝐹 ′ + 𝑐2,
with 𝛼 = �ranks (𝑄𝑜) ≥100.

Assume then that I ≠ ∅. Combining Theorem 5.2 and Theorem 2.21, we get that either
dim(

⋃
𝑖∈I 𝑉𝑖) ≤ 3 or dim(

⋂
𝑖∈I 𝑉𝑖) = 1.

If dim(
⋃

𝑖∈I 𝑉𝑖) ≤ 3, then we define𝑉 ′ =
⋃

𝑖∈I 𝑉𝑖 . If ranks(𝑄0) < 100, then we let𝑉 = 𝑉 ′ +Lin(𝑄𝑜)
so that dim(𝑉) ≤ 201, and when ranks (𝑄0) ≥ 100, we let 𝑉 = 𝑉 ′ and dim(𝑉) = 3. It is clear that V
satisfies the requirement when ranks (𝑄𝑜) ≥ 100. So assume ranks (𝑄0) < 100. Clearly, every 𝑄𝑖 such
that 𝑖 ∈ I has the claimed structure as Lin(𝑄𝑖) ⊆ 𝑉 . Consider any polynomial 𝑄𝑖 = 𝑄𝑜 + 𝑎𝑖𝑏𝑖 ∈ Qprod
such that 𝑖 ∉ I. As 𝑖 ∉ I, we either have that dim(𝑉𝑖) = 1, in which case 𝑄𝑖 has the claimed form, or for
some nonzero 𝛽, ranks (𝑄𝑜 + 𝛽𝑎𝑖𝑏𝑖) < 3. In the later case, as ranks (𝑄𝑜) ≥ 2, Theorem 2.17 implies that
span{𝑎𝑖 , 𝑏𝑖} ∩ Lin(𝑄𝑜) ≠ {0} and in particular span{𝑎𝑖 , 𝑏𝑖} ∩ 𝑉 ≠ {0}. Thus, in any of these cases, V
has the required property.

Consider now the case dim(
⋂𝑚

𝑖=1𝑉𝑖) = 1. Let w be such that span{𝑤} = dim(
⋂𝑚

𝑖=1𝑉𝑖). As before, it
is not hard to see that, if we define V as 𝑉 = span{𝑤} in the high rank case and 𝑉 = span{𝑤} +Lin(𝑄𝑜)
in the low rank case, then V has the required property.
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The case Q¬prod ≠ ∅:
Let 𝑃 = 𝛾𝑄 + 𝐿 ∈ Q¬prod and V be as in the statement of Theorem 5.4. We next show that V satisfies

the claim. Let J = {𝑄 𝑗 | 𝑗 ∈ [𝑚1] and 𝑎 𝑗 , 𝑏 𝑗 ∈ 𝑉}. Theorem 5.4 implies that |J | ≥ 𝑚1 − 2𝑚2 (and if
ranks (𝑄𝑜) ≥ 100, then |J | ≥ 𝑚1 − 𝑚2).

We first note that every 𝑃𝑖 ∈ J satisfies the claim with 𝑃′
𝑖 = 𝑎𝑖𝑏𝑖 and 𝑣𝑖 = 𝑐𝑖 = 0, and clearly the

claim trivially holds for 𝑄𝑖 ∈ L.
Consider 𝑄𝑖 ∈ Qprod \ J . By the ‘furthermore’ part of Theorem 5.4 one of two cases must happen:

Either 𝑄𝑖 and P span a polynomial 𝑃 𝑗 ∈ Q¬prod or, when ranks(𝑄𝑜) < 100, there are two linear
functions 𝑐, 𝑑 such that 𝑃,𝑄𝑜, 𝑄 𝑗 ∈ 〈𝑐, 𝑑〉. Observe that, in the latter case, as ranks (𝑄𝑜) < 100, we
have that span{𝑐, 𝑑} ⊆ Lin(𝑄𝑜) ⊆ 𝑉 . In particular, 𝑄𝑖 ∈ 〈𝑉〉, and the claim follows. So assume that
𝑄𝑖 and P span a polynomial 𝑃 𝑗 ∈ Q¬prod. Namely, there are 𝛼, 𝛽 ∈ C \ {0} such that 𝑃 𝑗 = 𝛼𝑃 + 𝛽𝑄𝑖 .
Theorem 5.3 implies that 𝑃 𝑗 = 𝛾 𝑗𝑄𝑜 + 𝐿 𝑗 , where ranks (𝐿 𝑗 ) = 2, and thus,

(𝛼𝛾 − 𝛽 − 𝛾 𝑗 )𝑄𝑜 + 𝛼𝐿 + 𝛽𝑎𝑖𝑏𝑖 = 𝐿 𝑗 .

From property 4 of Theorem 4.9, we conclude that ranks((𝛼𝛾 − 𝛽 − 𝛾 𝑗 )𝑄𝑜 + 𝛼𝐿) ≥ 2 = ranks(𝐿 𝑗 ).
Theorem 2.17 implies that span{𝑎𝑖 , 𝑏𝑖} ∩𝑉 ≠ {0}, and therefore, there is 𝑣𝑖 ∈ 𝑉 such that, without loss
of generality, 𝑏𝑖 = 𝜀𝑖𝑎𝑖 + 𝑣𝑖 , for some constant 𝜀𝑖 . Thus, the claimed statement holds for𝑄𝑖 with 𝑐𝑖 = 𝑎𝑖
and 𝑄 ′

𝑖 = 0. That is, 𝑄𝑖 = 𝑄𝑜 + 0 + 𝑎𝑖 (𝜀𝑖𝑎𝑖 + 𝑣𝑖).
Consider a polynomial 𝑃𝑖 = 𝛾𝑖𝑄𝑜+𝐿𝑖 ∈ Q¬prod. It is clear that, if 𝑃𝑖 satisfies Theorem 3.1(linear-case)

with any polynomial in J , then 𝑃 ∈ 〈𝑉〉 (observe that in this case we must have ranks (𝑄𝑜) < 100).
Next, assume that 𝑃𝑖 satisfies Theorem 3.1(product-case) with at least 2 polynomials whose indices

are in J . Let 𝑄 𝑗 , 𝑄 𝑗′ be two such polynomials. There are four linear forms, 𝑐, 𝑑, 𝑒 and f and scalars
𝜀 𝑗 , 𝜀 𝑗′ such that

𝑃𝑖 + 𝜀 𝑗𝑄 𝑗 = 𝑐𝑑 and 𝑃𝑖 + 𝜀 𝑗′𝑄 𝑗′ = 𝑒 𝑓 .

Therefore,

(𝜀 𝑗 − 𝜀 𝑗′ )𝑄0 + (𝜀 𝑗𝑎 𝑗𝑏 𝑗 − 𝜀 𝑗′𝑎 𝑗′𝑏 𝑗′ ) = 𝜀 𝑗𝑄 𝑗 − 𝜀 𝑗′𝑄 𝑗′ = 𝑐𝑑 − 𝑒 𝑓 . (5.5)

As 𝜀 𝑗𝑎 𝑗𝑏 𝑗 − 𝜀 𝑗′𝑎 𝑗′𝑏 𝑗′ ∈ C[𝑉], rank arguments imply that Lin(𝑐𝑑 − 𝑒 𝑓 ) ⊆ 𝑉 . From Theorem 2.19
and equation (5.5), we get that, without loss of generality, 𝑑 = 𝜀𝑐 + 𝑣 for some 𝑣 ∈ 𝑉 and 𝜀 ∈ C. Thus,
𝑃𝑖 = 𝑐𝑑 − 𝜀 𝑗𝑄 𝑗 = 𝑐(𝜀𝑐 + 𝑣) − 𝜀 𝑗𝑄𝑜 − 𝜀 𝑗𝑎 𝑗𝑏 𝑗 , and it is clear that it has the required structure.

The only case left is when 𝑃𝑖 satisfies Theorem 3.1(prime-case) with all (except possibly one of the)
polynomials whose indices are in J .

If 𝑃𝑖 and 𝑄 𝑗 , for 𝑗 ∈ J span another polynomial 𝑄 𝑗′ such that 𝑗 ′ ∈ J , then, as before, Lin(𝑃) ⊆ 𝑉 .
Similarly, if P and 𝑄 𝑗 span a polynomial 𝑄 𝑗′ ∈ L, then 𝑃 = 𝛼𝑄 𝑗 + 𝛽𝑎2

𝑗′ , and hence, it also satisfies the
claim.

Hence, for P to fail to satisfy the claim, it must be the case that every polynomial 𝑄 𝑗 , for 𝑗 ∈ J , that
satisfies Theorem 3.1(prime-case) with P, does not span with P any polynomial in {𝑄 𝑗 | 𝑗 ∈ J } ∪ L.
Thus, it must span with P a polynomial in {𝑄 𝑗 | 𝑗 ∈ [𝑚1] \ J } ∪ Q¬prod. Observe that by pairwise
linear independence, if two polynomials from J span the same polynomial with P, then P is in their
span, and we are done. However, notice that��{𝑄 𝑗 | 𝑗 ∈ [𝑚1] \ J } ∪Q¬prod

�� ≤ (𝑚1 − |J |) + 𝑚2 ≤ 3𝑚2 < 𝑚1 − 2𝑚2 − 2 ≤ |J | − 2.

As 𝑃𝑖 satisfies Theorem 3.1(prime-case) with at least |J | − 1 polynomials whose indices are in J ,
we get from the pigeonhole principle that there is some polynomial 𝐹 ∈ 𝑄̃ and two indices 𝑗 , 𝑗 ′ ∈ J
such that 𝐹 ∈ span{𝑃𝑖 , 𝑄 𝑗 } ∩ span{𝑃𝑖 , 𝑄 𝑗′ }. As before, pairwise linear independence implies that
𝑃𝑖 ∈ span{𝑄 𝑗 , 𝑄 𝑗′ }, and we are done. �
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5.4. Completing the proof

Now that we know that all polynomials in 𝑄̃ satisfy the structure of Theorem 5.6, we can finish the
proof of Theorem 4.10.

The main remaining step is proving that all linear polynomials c appearing in the statement of
Theorem 4.10 form a Sylvester–Gallai configuration, and we will be done.

There is a small issue though. When the rank of𝑄𝑜 is small, some polynomials can belong to 〈𝑉〉 and
are not captured by the outlined approach. This difference requires us to handle the low- and high-rank
cases separately.

Theorem 4.10 follows from Corollaries 5.8 and 5.10 below.

5.4.1. The case ranks (𝑄𝑜) ≥ 100
Consider the representation guaranteed in Theorem 4.10, and let

S = {𝑐𝑖 | there is 𝑃𝑖 ∈ Q̃ such that either 𝑃𝑖 = 𝑐2
𝑖 or, for some 𝑃′

𝑖 defined over 𝑉,
𝑃𝑖 = 𝑄𝑜 + 𝑃′

𝑖 + 𝑐𝑖 (𝜀𝑖𝑐𝑖 + 𝑣𝑖)}.

Clearly, in order to bound the dimension of Q̃, it is enough to bound the dimension of S . We do so by
proving that S satisfies the conditions of Sylvester–Gallai theorem modulo V and thus have dimension
at most 3 + dim(𝑉) = 7.

Claim 5.7. Assume that ranks (𝑄𝑜) ≥ 100, and let S be defined as above. Let 𝑐𝑖 , 𝑐 𝑗 ∈ S be such
that 𝑐𝑖 ∉ 𝑉 and 𝑐 𝑗 ∉ span{𝑐𝑖 , 𝑉}. Then, there is 𝑐𝑘 ∈ S such that 𝑐𝑘 ∈ span{𝑐𝑖 , 𝑐 𝑗 , 𝑉} and 𝑐𝑘 ∉
span{𝑐𝑖 , 𝑉} ∪ span{𝑐 𝑗 , 𝑉}.

Proof. Following the notation of Theorem 5.6, we either have𝑄𝑖 = 𝑄𝑜+𝑄 ′
𝑖+𝑐𝑖 (𝜀𝑖𝑐𝑖+𝑣𝑖), for𝑄 ′

𝑖 ∈ C[𝑉],
or 𝑄𝑖 = 𝑐2

𝑖 . We consider which case of Theorem 3.1 𝑄𝑖 and 𝑄 𝑗 satisfy and what structure they
have.

Assume 𝑄𝑖 = 𝑄𝑜 + 𝑄 ′
𝑖 + 𝑐𝑖 (𝜀𝑖𝑐𝑖 + 𝑣𝑖) and 𝑄 𝑗 = 𝑄𝑜 + 𝑄 ′

𝑗 + 𝑐 𝑗 (𝜀 𝑗𝑐 𝑗 + 𝑣 𝑗 ). As argued before,
since the rank of 𝑄𝑜 is large, they cannot satisfy Theorem 3.1(linear-case). We consider the remaining
cases:

◦ 𝑄𝑖 , 𝑄 𝑗 satisfy Theorem 3.1(prime-case): There is 𝑄𝑘 ∈ Q̃ such that 𝑄𝑘 ∈ span{𝑄𝑖 , 𝑄 𝑗 }.By
assumption, for some scalars 𝛼, 𝛽 we have that

𝑄𝑘 = 𝛼(𝑄𝑜 +𝑄 ′
𝑖 + 𝑐𝑖 (𝜀𝑖𝑐𝑖 + 𝑣𝑖)) + 𝛽(𝑄𝑜 +𝑄 ′

𝑗 + 𝑐 𝑗 (𝜀 𝑗𝑐 𝑗 + 𝑣 𝑗 )). (5.6)

If 𝑄𝑘 depends only on V, then we would get a contradiction to the choice of 𝑐𝑖 , 𝑐 𝑗 . Indeed, in this
case, we have that

(𝛼 + 𝛽)𝑄𝑜 = 𝑄𝑘 − 𝛼(𝑄 ′
𝑖 + 𝑐𝑖 (𝜀𝑖𝑐𝑖 + 𝑣𝑖)) − 𝛽(𝑄 ′

𝑗 + 𝑐 𝑗 (𝜀 𝑗𝑐 𝑗 + 𝑣 𝑗 )).

Rank arguments imply that 𝛼 + 𝛽 = 0, and therefore,

𝛼𝑐𝑖 (𝜀𝑖𝑐𝑖 + 𝑣𝑖) + 𝛽𝑐 𝑗 (𝜀 𝑗𝑐 𝑗 + 𝑣 𝑗 ) = 𝑄𝑘 − 𝛼𝑄 ′
𝑖 − 𝛽𝑄 ′

𝑗 ∈ C[𝑉],

which implies that 𝑐𝑖 and 𝑐 𝑗 are linearly dependent modulo V in contradiction.
If 𝑄𝑘 = 𝑐2

𝑘 , then Theorem 2.20 implies that 𝑐𝑘 ∈ span{𝑐𝑖 , 𝑐 𝑗 , 𝑉}.
We therefore assume that 𝑄𝑘 is not a function of V alone, and it is not a square of a linear

function. Denote 𝑄𝑘 = 𝛾𝑘𝑄𝑜 +𝑄 ′
𝑘 + 𝑐𝑘 (𝜀𝑘𝑐𝑘 + 𝑣𝑘 ). Equation 5.6 implies that

(𝛾𝑘 − 𝛼 − 𝛽)𝑄𝑜 = 𝛼𝑄 ′
𝑖 + 𝛽𝑄 ′

𝑗 −𝑄 ′
𝑘 + 𝛼𝑐𝑖 (𝜀𝑖𝑐𝑖 + 𝑣𝑖) + 𝛽𝑐 𝑗 (𝜀 𝑗𝑐 𝑗 + 𝑣 𝑗 ) − 𝑐𝑘 (𝜀𝑘𝑐𝑘 + 𝑣𝑘 ).
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As 𝛼𝑄 ′
𝑖 + 𝛽𝑄 ′

𝑗 −𝑄 ′
𝑘 is a polynomial defined over V, its rank is smaller than 4, and thus, combined

with the fact that ranks (𝑄𝑜) ≥ 100, we get that (𝛾𝑘 − 𝛼 − 𝛽) = 0 and

𝑄 ′
𝑘 − 𝛼𝑄

′
𝑖 − 𝛽𝑄 ′

𝑗 = 𝛼𝑐𝑖 (𝜀𝑖𝑐𝑖 + 𝑣𝑖) + 𝛽𝑐 𝑗 (𝜀 𝑗𝑐 𝑗 + 𝑣 𝑗 ) − 𝑐𝑘 (𝜀𝑘𝑐𝑘 + 𝑣𝑘 ).

We conclude again from Theorem 2.20 that 𝑐𝑘 ∈ span{𝑐𝑖 , 𝑐 𝑗 , 𝑉}.
◦ 𝑄𝑖 , 𝑄 𝑗 satisfy Theorem 3.1(product-case): There are linear forms 𝑒, 𝑓 such that for nonzero scalars
𝛼, 𝛽, 𝛼𝑄𝑖 + 𝛽𝑄 𝑗 = 𝑒 𝑓 . In particular,

(𝛼 + 𝛽)𝑄𝑜 = 𝑒 𝑓 − 𝛼𝑄 ′
𝑖 − 𝛽𝑄 ′

𝑗 − 𝛼𝑐𝑖 (𝜀𝑖𝑐𝑖 + 𝑣𝑖) − 𝛽𝑐 𝑗 (𝜀 𝑗𝑐 𝑗 + 𝑣 𝑗 ).

From rank argument, we get that 𝛼 + 𝛽 = 0, and from Theorem 2.20, we conclude that, without loss
of generality, 𝑒 = 𝜇𝑐𝑖 + 𝜂𝑐 𝑗 + 𝑣𝑒, where 𝜇, 𝜂 ≠ 0. We also assume without loss of generality that
𝑄𝑖 = 𝑄 𝑗 + 𝑒 𝑓 .

Since ranks (𝑄𝑜) ≥ 100, it follows that 𝑄 𝑗 is irreducible even after setting 𝑒 = 0. It follows that, if
a product of irreducible quadratics satisfy∏

𝑘

𝐴𝑘 ∈
√〈
𝑄𝑖 , 𝑄 𝑗

〉
=

√〈
𝑒 𝑓 , 𝑄 𝑗

〉
,

then, after setting 𝑒 = 0, some 𝐴𝑘 is divisible by 𝑄 𝑗 |𝑒=0. Thus, there is a multiplicand that is equal to
𝛾𝑄 𝑗 + 𝑒𝑑 for some linear form d and scalar 𝛾. In particular, there must be a polynomial
𝑄𝑘 ∈ Q̃ \ {𝑄𝑖 , 𝑄 𝑗 } such that 𝑄𝑘 = 𝛾𝑄 𝑗 + 𝑒𝑑. If 𝛾 = 0, then it must hold that 𝑄𝑘 = 𝑎2

𝑘 = 𝑒𝑑 and thus
𝑎𝑘 ∼ 𝑒, and the statement holds. If 𝛾 = 1, then we can assume without loss of generality that
𝑄𝑘 = 𝑄 𝑗 + 𝑒𝑑. Thus,

𝑄𝑜 +𝑄 ′
𝑘 + 𝑐𝑘 (𝜀𝑘𝑐𝑘 + 𝑣𝑘 ) = 𝑄𝑘 = 𝑄 𝑗 + 𝑒𝑑 = 𝑄𝑜 +𝑄 ′

𝑗 + 𝑐 𝑗 (𝜀 𝑗𝑐 𝑗 + 𝑣 𝑗 ) + (𝜇𝑐𝑖 + 𝜂𝑐 𝑗 + 𝑣𝑒)𝑑.

Rearranging, we get

𝑐𝑘 (𝜀𝑘𝑐𝑘 + 𝑣𝑘 ) = (𝑄 ′
𝑗 −𝑄 ′

𝑘 ) + 𝑐 𝑗 (𝜀 𝑗𝑐 𝑗 + 𝑣 𝑗 ) + (𝜇𝑐𝑖 + 𝜂𝑐 𝑗 + 𝑣𝑒)𝑑.

As the right-hand side vanishes modulo span{𝑐𝑖 , 𝑐 𝑗 , 𝑉}, it follows that 𝑐𝑘 ∈ span{𝑐𝑖 , 𝑐 𝑗 , 𝑉}.
Observe that, if 𝑐𝑘 ∈ span{𝑐 𝑗 , 𝑉}, then this implies that

(𝜇𝑐𝑖 + 𝜂𝑐 𝑗 + 𝑣𝑒)𝑑 ∈ C[𝑉, 𝑐 𝑗 ] .

However, since 𝑑 ≠ 0 (as otherwise we would have 𝑄𝑘 ∼ 𝑄 𝑗 ), this stands in contradiction to the fact
that 𝜇 ≠ 0 and 𝑐𝑖 ∉ span{𝑐 𝑗 , 𝑉}. As 𝑄𝑖 = 𝑄 𝑗 + 𝑒 𝑓 , we get that

𝑐𝑘 (𝜀𝑘𝑐𝑘 + 𝑣𝑘 ) = (𝑄 ′
𝑗 −𝑄 ′

𝑘 ) + 𝑐𝑖 (𝜀𝑖𝑐𝑖 + 𝑣𝑖) + (𝜇𝑐𝑖 + 𝜂𝑐 𝑗 + 𝑣𝑒) (𝑑 − 𝑓 ).

We cannot have 𝑑 = 𝑓 as this would give 𝑄𝑖 = 𝑄𝑘 . Thus, a similar argument implies that
𝑐𝑘 ∉ span{𝑐𝑖 , 𝑉}. In conclusion, 𝑐𝑘 ∈ span{𝑐𝑖 , 𝑐 𝑗 , 𝑉} \ (span{𝑐𝑖 , 𝑉} ∪ span{𝑐 𝑗 , 𝑉}) as claimed.

Now, let us consider the case where without loss of generality, 𝑄𝑖 = 𝑄𝑜 + 𝑄 ′
𝑖 + 𝑐𝑖 (𝜀𝑖𝑐𝑖 + 𝑣𝑖) and

𝑄 𝑗 = 𝑐2
𝑗 . In this case, the polynomials satisfy Theorem 3.1(product-case) as 0 ·𝑄𝑖 +𝑄 𝑗 = 𝑐2

𝑗 . Similarly
to the previous argument, it holds that there is 𝑄𝑘 such that 𝑄𝑘 = 𝛾𝑄𝑖 + 𝑐 𝑗𝑒. If 𝛾 = 0, then 𝑄𝑘 is
reducible and therefore a square of a linear form which is a multiple of 𝑐 𝑗 , in contradiction to pairwise
linear independence. Hence, we have that 𝛾 ≠ 0. If 𝑄𝑘 is defined only on the linear functions in V, then
it is of rank smaller than dim(𝑉) ≤ 4, which will result in a contradiction to the rank assumption on
𝑄𝑜. Thus, 𝑄𝑘 = 𝑄𝑜 +𝑄 ′

𝑘 + 𝑐𝑘 (𝜀𝑘𝑐𝑘 + 𝑣𝑘 ) and 𝛾 = 1. It follows that

𝑄𝑜 +𝑄 ′
𝑘 + 𝑐𝑘 (𝜀𝑘𝑐𝑘 + 𝑣𝑘 ) = 𝑄𝑘 = 𝑄𝑖 + 𝑐 𝑗𝑒 = 𝑄𝑜 +𝑄 ′

𝑖 + 𝑐𝑖 (𝜀𝑖𝑐𝑖 + 𝑣𝑖) + 𝑐 𝑗𝑒.
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Hence,

𝑄 ′
𝑘 −𝑄

′
𝑖 − 𝑐𝑖 (𝜀𝑖𝑐𝑖 + 𝑣𝑖) − 𝑐 𝑗𝑒 = −𝑐𝑘 (𝜀𝑘𝑐𝑘 + 𝑣𝑘 ).

An argument similar to the last one shows that 𝑐𝑘 ∈ span{𝑉, 𝑐𝑖 , 𝑐 𝑗 } and that 𝑐𝑘 ∉ span{𝑉, 𝑐 𝑗 } ∪
span{𝑉, 𝑐𝑖}, as we wanted to show.

The last structure we have to consider is the case where 𝑄𝑖 = 𝑐2
𝑖 , 𝑄 𝑗 = 𝑐2

𝑗 . In this case, the ideal√〈
𝑐2
𝑖 , 𝑐

2
𝑗

〉
=

〈
𝑐𝑖 , 𝑐 𝑗

〉
is prime, and therefore, there is 𝑄𝑘 ∈

〈
𝑐𝑖 , 𝑐 𝑗

〉
. This means that ranks(𝑄𝑘 ) ≤ 2. If

ranks (𝑄𝑘 ) = 1, then 𝑄𝑘 = 𝑐2
𝑘 and the statement holds. If ranks (𝑄𝑘 ) = 2, then Theorem 5.6 implies that

𝑄𝑘 is in C[𝑉], from which we get that 𝑐𝑖 , 𝑐 𝑗 ∈ 𝑉 in contradiction to our assumptions. �

Corollary 5.8. Let Q̃ be a (𝑄𝑜, 𝑚1, 𝑚2)-set, where ranks (𝑄𝑜) ≥ 100. Then dim(Q̃) ≤ 29.

Proof. Observe that definition of S and Theorem 5.6 imply that dim
(
Q̃

)
≤ 1 +

(dim(span{𝑉 +S })+1
2

)
. As

Theorem 5.7 implies that dim(S +𝑉) ≤ 7, we get that dim
(
Q̃

)
≤ 29. �

5.4.2. The case ranks (𝑄𝑜) < 100
Observe that Theorem 5.6 implies that when rank(𝑄𝑜) < 100 then Lin(𝑄𝑜) ⊆ 𝑉 , and thus, any
polynomial 𝑄𝑖 ∈ Q̃ satisfies that either 𝑄𝑖 ∈ 〈𝑉〉 or there is a linear form 𝑎𝑖 such that Lin(𝑄𝑖) ⊆
span{𝑉, 𝑎𝑖}.

Let Δ = dim(𝑉) ≤ 202. Fix some basis of V, 𝑉 = span{𝑣1, . . . , 𝑣Δ }. Let 𝜶 ∈ CΔ (recall Theorem
2.24) be such that, if two polynomials in 𝑇𝜶,𝑉 (Q̃) share a common factor, then it is a polynomial in z.
Note that by Theorem 2.26 such 𝜶 exists. Thus, each 𝑃 ∈ Q̃, satisfies that either 𝑇𝜶,𝑉 (𝑃) = 𝛼𝑃𝑧2 or
Lin(𝑇𝜶,𝑉 (𝑃)) ⊆ span{𝑧, 𝑎𝑃}, for some linear form 𝑎𝑃 independent of z. It follows that every polynomial
in 𝑇𝜶,𝑉 (Q̃) is reducible. We next show that S = {𝑎𝑃 | 𝑃 ∈ Q̃} satisfies the conditions of Sylvester–
Gallai theorem modulo z.

Claim 5.9. Let S be defined as above. Let 𝑎1, 𝑎2 ∈ S such that 𝑎1 ∉ span{𝑧} and 𝑎2 ∉ span{𝑧, 𝑎1}.
Then, there is 𝑎3 ∈ S such that 𝑎3 ∈ span{𝑎1, 𝑎2, 𝑧} \ (span{𝑎1, 𝑧} ∪ span{𝑎2, 𝑧}).

Proof. Let 𝑄1 be such that Lin(𝑇𝜶,𝑉 (𝑄1)) ⊆ span{𝑧, 𝑎1} yet Lin(𝑇𝜶,𝑉 (𝑄1)) � span{𝑧}. Similarly,
let 𝑄2 be such that Lin(𝑇𝜶,𝑉 (𝑄2)) ⊆ span{𝑧, 𝑎2} and Lin(𝑇𝜶,𝑉 (𝑄2)) � span{𝑧}. As 𝑎1, 𝑎2 ∈ S ,
there must be such 𝑄1, 𝑄2. By choice of 𝑄1, there is a factor of 𝑇𝜶,𝑉 (𝑄1) of the form 𝛾1𝑧 + 𝛿1𝑎1,
where 𝛿1 ≠ 0. Similarly there is a factor of 𝑇𝜶,𝑉 (𝑄2) of the form 𝛾2𝑧 + 𝛿2𝑎2, where 𝛿2 ≠ 0.
It follows that

√〈
𝑇𝜶,𝑉 (𝑄1), 𝑇𝜶,𝑉 (𝑄2)

〉
⊆ 〈𝛾1𝑧 + 𝛿1𝑎1, 𝛾2𝑧 + 𝛿2𝑎2〉. Indeed, it is clear that, for

𝑖 ∈ {1, 2}, 𝑇𝜶,𝑉 (𝑄𝑖) ∈ 〈𝛾𝑖𝑧 + 𝛿𝑖𝑎𝑖〉. Hence,
√〈
𝑇𝜶,𝑉 (𝑄1), 𝑇𝜶,𝑉 (𝑄2)

〉
⊆

√
〈𝛾1𝑧 + 𝛿1𝑎1, 𝛾2𝑧 + 𝛿2𝑎2〉 =

〈𝛾1𝑧 + 𝛿1𝑎1, 𝛾2𝑧 + 𝛿2𝑎2〉, where equality holds since 〈𝛾1𝑧 + 𝛿1𝑎1, 𝛾2𝑧 + 𝛿2𝑎2〉 is a prime ideal.
We know that there are 𝑄3, 𝑄4, 𝑄5, 𝑄6 ∈ Q such that

𝑄3 · 𝑄4 · 𝑄5 · 𝑄6 ∈
√
〈𝑄1, 𝑄2〉.

As 𝑇𝜶,𝑉 is a ring homomorphism, it follows that

𝑇𝜶,𝑉 (𝑄3) · 𝑇𝜶,𝑉 (𝑄4) · 𝑇𝜶,𝑉 (𝑄5) · 𝑇𝜶,𝑉 (𝑄6) ∈
√〈
𝑇𝜶,𝑉 (𝑄1), 𝑇𝜶,𝑉 (𝑄2)

〉
⊆ 〈𝛾1𝑧 + 𝛿1𝑎1, 𝛾2𝑧 + 𝛿2𝑎2〉.

Primality of 〈𝛾1𝑧 + 𝛿1𝑎1, 𝛾2𝑧 + 𝛿2𝑎2〉 implies that, without loss of generality, 𝑇𝜶,𝑉 (𝑄3) ∈
〈𝛾1𝑧 + 𝛿1𝑎1, 𝛾2𝑧 + 𝛿2𝑎2〉. It cannot be the case that 𝑇𝜶,𝑉 (𝑄3) ∈ 〈𝛾𝑖𝑧 + 𝛿𝑖𝑎𝑖〉 for any 𝑖 ∈ {1, 2} be-
cause otherwise this will imply that 𝑇𝜶,𝑉 (𝑄3) and 𝑇𝜶,𝑉 (𝑄𝑖) share a common factor that is not
a polynomial in z, in contradiction to our choice of 𝑇𝜶,𝑉 . This means that there is a factor of
𝑇𝜶,𝑉 (𝑄3) that is in span{𝑎1, 𝑎2, 𝑧} \ (span{𝑎1, 𝑧} ∪ span{𝑎2, 𝑧}). Consequently, 𝑎3 ∈ span{𝑎1, 𝑎2, 𝑧} \
(span{𝑎1, 𝑧} ∪ span{𝑎2, 𝑧}) as we wanted to prove. �
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Corollary 5.10. Let Q̃ be a (𝑄𝑜, 𝑚1, 𝑚2)-set, where ranks(𝑄𝑜) < 100. Then dim(Q̃) ≤ 8 dim(𝑉)2,
where V is as in Theorem 5.6.
Proof. Theorem 5.9 shows that S satisfies the conditions of Theorem 2.10, and therefore, dim(S) ≤ 3.
Repeating the analysis of the claim for linearly independent 𝜶1, . . . ,𝜶Δ , we conclude from Theorem
2.29 that dim(Lin(Q̃)) ≤ (3 + 1)Δ , and thus dim(Q̃) ≤

(4Δ
2
)
+ Δ ≤ 8Δ2. �

6. Conclusions and future research

In this work, we solved Theorem 1.2 in the case where all the polynomials are irreducible and of degree
at most 2. This result directly relates to the problem of obtaining deterministic algorithms for testing
identities of Σ [3]Π [𝑑 ]ΣΠ [2] circuits. As mentioned in section 1, to get a PIT algorithm a colored version
of this result is required. Such a result was obtained in [17].

Our proof of Theorem 1.4 used the robust version of the Sylvester–Gallai theorem of [1, 8] (Theo-
rem 2.7). We believe that in order to extend our results to higher degrees a similar robust version for
quadratic polynomials may be useful.
Problem 6.1. Let 𝛿 ∈ (0, 1]. Can we bound the linear dimension (as a function of 𝛿) of a set of
polynomials 𝑄1, . . . , 𝑄𝑚 ∈ C[𝑥1, . . . , 𝑥𝑛] that satisfy the following property: For every 𝑖 ∈ [𝑚], there
exist at least 𝛿𝑚 values of 𝑗 ∈ [𝑚] such that for each such j there is K 𝑗 ⊂ [𝑚], where 𝑖, 𝑗 ∉ K 𝑗 and∏

𝑘∈K 𝑗
𝑄𝑘 ∈

√〈
𝑄𝑖 , 𝑄 𝑗

〉
?

In subsequent work [18, 11], the following simpler version of Problem 6.1 was proved.
Theorem 6.2. Let 𝛿 ∈ (0, 1]. Let Q = {𝑄1, . . . , 𝑄𝑚} ∈ C[𝑥1, . . . , 𝑥𝑛] be irreducible polynomials
of degree at most 2 satisfying the following property: For every 𝑖 ∈ [𝑚], there exist at least 𝛿𝑚
values of 𝑗 ∈ [𝑚] such that for each such j there is 𝑘 ∈ [𝑚] \ {𝑖, 𝑗} with 𝑄𝑘 ∈

√〈
𝑄𝑖 , 𝑄 𝑗

〉
. Then,

dim(span{Q}) = 𝑂 (1/𝛿16).
Another interesting question is giving a tight bound in Theorem 1.4. A careful analysis of the proof

shows that we can bound the dimension of the set T satisfying the conditions in Theorem 1.4 by
𝑐 ≤ 20, 000. This is a very loose bound, and we believe that it can be improved. It is also an interesting
task to present examples with as large dimension as possible.

In our opinion, the most interesting problem is extending our result to higher degrees. Another
important problem is to extend Theorem 3.1 to the case where

∏
𝑘∈K𝑄𝑘 ∈

√
〈𝐴1, . . . , 𝐴𝑒〉, for a

constant 𝑒 > 2.
In this paper, we only considered polynomials over the complex numbers. However, we believe

(though we did not check the details) that a similar approach should work over positive characteristic as
well. Observe that over positive characteristic we expect the dimension of the set to scale like𝑂 (log |Q|),
as for such fields a weaker version of Sylvester–Gallai theorem holds.
Theorem 6.3 (Corollary 1.3 in [3]). Let 𝑉 = {v1, . . . , v𝑚} ⊂ F𝑑𝑝 be a set of m vectors, no two of which
are linearly dependent. Suppose that, for every 𝑖, 𝑗 ∈ [𝑚], there exists 𝑘 ∈ [𝑚] such that v𝑖 , v 𝑗 , v𝑘 are
linearly dependent. Then, for every 𝜀 > 0

dim(𝑉) ≤ poly(𝑝/𝜀) + (4 + 𝜀) log𝑝 𝑚.
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