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Abstract 

The paper presents a framework for the integration of the system’s design variables, state variables, control 

strategies, and contextual variables into a design optimization problem to assist early-stage design decisions. 

The framework is based on a global optimizer incorporating Dynamic Programming, and its applicability is 

demonstrated by the conceptual design of an electrical hauler. Pareto front of optimal design solutions, in 

terms of time and cost, together with optimal velocity profiles and battery state-of-charge is visualized for the 

given mining scenario. 
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1. Introduction 
Transition into electromobility and autonomy in vehicle design calls for the development of solutions 

requiring, on one hand, the integration of many novel technologies (e.g. batteries, motors, and control) 

in an established platform and, on the other hand, the increased consideration of the influence of 

contextual factors such as infrastructure, environment, and human-machine interaction in a vehicle 

operation (Grunditz, 2016; Wang et al., 2018). The novelty of the rapidly emerging technologies and 

the uncertain contextual aspects pose a significant challenge to industries dealing with systems having 

a long lifecycle and high capital investment. Such challenge is stressed in the early design phase when 

consistent capital commitment is done on systems concepts with a high degree of uncertainty concerning 

the future operational context, with the inferred system needing to be designed to account for contextual 

uncertainties along the operational phase. 

One of the industries highly influenced by the electromobility transition is the construction machinery 

industry that has embarked on a journey into autonomy and electrification (Frank, 2019). Here, cross-

disciplinary knowledge needs to complement the established approach for mechanical simulations, 

considering, for instance, increased attention on external conditions (e.g. topography, ambient 

temperature), or the human experience when using new machines (Bertoni et al., 2017); variables that 

can have a significant impact on the energy consumption of Electric Vehicles (EVs) (Fiori et al., 2016). 

In previous studies related to the development of vehicle components for electromobility (including 

Hybrid EVs), several approaches have been proposed, including multi-objective design optimization 

(DO) using evolutionary algorithms (Fries et al., 2017), nonlinear integer programming, (Ostadi and 

Kazerani, 2014), data-driven decision support (Bertoni et al., 2017), etc. However, such approaches 

have often been developed “ad-hoc” to solve pre-defined design problems and are difficult to be 

generalized in different contexts. In this light, this paper presents the preliminary results of a research 
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effort focusing on the development of a generalizable model-driven approach to support the transition 

towards electromobility and autonomy by deploying multi-disciplinary simulation models to support 

engineering decisions in the early stages of design. In detail, the paper has the following two objectives: 

Firstly, to present a generic framework that enables seamless integration of the system’s design 

variables, state variables, control strategies, and contextual variables into an optimization 

problem to assist early design decisions. The design variables influence the configuration of the 

system, the control strategies govern the different conceivable states of the system while 

performing a task, and the context variables influence the ability of the system to perform a task.  

Secondly, to demonstrate the applicability of the proposed framework through electric-driven 

construction equipment (i.e., a Hauler) operating in a mining scenario. 

The paper is structured as follows: Section 2 describes the research approach briefly, and section 3 

describes the proposed framework. Section 4 elaborates on the various disciplinary models to be used, 

and section 5 demonstrates the application of the proposed framework on a hauler case. Finally, section 

6 describes the key findings, critiques the proposed framework, and concludes the paper. 

2. Research approach 
The research was pursued via participatory action research (Baum et al., 2006). Multiple data collection 

strategies were applied, including unstructured and semi-structured interviews with company partners 

to define the state-of-the-art, needs and expectations of the future electrical mining scenario. To 

demonstrate the proposed framework, data were further collected through accessing construction 

machinery technical data available on manufacturer websites and complemented with state-of-the-art 

data about the development of batteries and electromobility solutions obtained through literature review 

and freely available vendors data. The development of the framework followed an iterative process of 

theorization and demonstration of incrementally improved steps. Initially, the system was considered to 

be fixed, and a demonstrator was developed just to analyze the different states of the system under 

different control strategies, and their eventual impact on the objective. Contextual variables were 

gradually added as the models become more mature. Parallelly, another demonstrator was developed to 

understand how different design variables can affect the configuration of the overall system under the 

applied constraints. These two demonstrators were then merged to propose a unified framework that 

addresses the first objective of the paper. To address the second objective of the paper, a battery-electric 

hauler having a single-motor-clutch system was chosen. To avoid the exposure of sensitive information, 

readily available online catalogue data were used for this case as elucidated in the succeeding sections, 

and the drive cycle was suitably modified to represent a fake mining site while conserving a certain 

degree of realism to the actual scenario. 

3. Proposed framework 
Systems engineering (SE) literature points out that as systems become more complex, the definition of 

system boundary (a boundary that distinguishes the system of interest and the context), and what 

constitutes within this frame of reference becomes blurrier. To have a consistent viewpoint in this work, 

the distinction of the system and the context is based on the system “boundary” definition (Kossiakoff 

and Sweet, 2003), where all the variables beyond the development control of the engineering team, but 

still influencing the functioning of the system, are regarded as contextual variables. The frame of 

reference, i.e., the “operational scenario” consists of the system, all its form, along with all the possible 

contexts (Machchhar and Bertoni, 2021; Yannou et al., 2013). The system comprises of design variables 

and state variables, where the design variables define the configuration of the system while the state 

variables are the “responses” (Martins and Lambe, 2013) of the system during its operation. The state 

variables consist of lower and upper bounds like the design variables, but whether they are controlled 

by the system optimizer depends on the problem formulation.  

Figure 1 shows the overview of the proposed framework where the design problem is solved via a dual-

layer optimization framework. Although dual-layer purports the aspect of optimization problem 

partitioning, the execution is sequential, and not simultaneous or iterative amongst disciplinary models. 

The essence of multidisciplinary DO is solving a coupled system rather than having a system of many 
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disciplines solved sequentially (Martins and Lambe, 2013). In this regard, the proposed framework is 

multi-objective and involves multiple disciplines but is not multidisciplinary as no strategy or 

architecture to solve coupling has been discussed. The outer layer of the framework comprises of the 

overall objective functions and the applicable constraints formulated in the standard way (equality and 

inequality constraints). In case the function derivative is noisy or unreliable, if the design variables are 

well-bounded, then a gradient-free algorithm is a suitable choice of solver despite them being less 

efficient (Kokkolaras, 2019). Rios and Sahinidis (2013) provide a comprehensive overview of various 

gradient-free optimization algorithms that exhibit different characteristics. One such subset includes 

evolutionary algorithms characterized by global search properties, proposed as global optimizer in 

Figure 1. Despite the name, the convergence established by these algorithms is likely optimal, and it 

may not be (truly) optimal as it is based on heuristics rather than mathematical principles. The 

disciplinary analyses of the models confined by design constraints typically configure a viable system. 

This system along with the respective conceivable states is fed to the inner layer. Conceivable states are 

the different states the system can transition while operating, and they may be internally constrained, or 

externally constrained. To illustrate, the max velocity that the vehicle can achieve (one of the 

conceivable states) can be limited by the engine/motor capacity or speed limits on the trajectory. The 

inner layer aims to find the optimal control strategy that directs the operation of the system for the 

intended task. Sequential linear/quadratic programming is one of the known methods to solve control 

problems. However, these methods have implementation difficulties for mixed-integer problems 

(Ghandriz et al., 2021). The logic is intuitive; mixed-integer problems are characterized by 

discontinuous functions making the computation of gradients unreliable. To make the proposed 

framework more generic and applicable for different use-cases, Dynamic Programming (DP) has been 

proposed to solve the control problem. Based on Bellman’s “Principle of Optimality” (Bellman, 1966), 

it is widely used in optimal control problems across disciplines, especially for automotive applications 

(Guzzella and Sciarretta, 2007; He et al., 2013; Ke and Song, 2018), and is one of the useful methods 

for performance benchmarking of systems executing a task in non-real-time applications. In a DP 

formulation, the state variables are discretized into a “grid” that allows the system to switch between 

conceivable states. These states may be continuous (such as vehicle velocity) or discrete (such as gear 

selection). The act of operating can either be discretized in the spatial or time domain, and there have 

been several studies in time (Luin et al., 2019) as well as spatial (Ghandriz et al., 2021; Ye et al., 2019) 

domains, respectively. Usually, a finer discretization achieves better results at the cost of computational 

time (Ye et al., 2019). The result of solving the DP layer is the vector of optimal control strategy along 

with costs incurred during the system’s operation under the control constraints. These results are utilized 

by the global optimizer to calculate objective values, and the process is iterated until convergence. 

 
Figure 1. The proposed dual-layer optimization framework to find pareto fronts based on 

system design variables, state variables, control strategies, and applicable contexts. 

4. Vehicle simulation models 
Vehicle simulation models can be broadly classified into two categories: forward and backward models. 

As the name suggests, backward models run backward, essentially calculating the cumulative force 
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required at the wheels, propagating it back towards the engine while the forward models calculate the 

cumulative force produced at the engine and propagate it towards the wheel (Pettersson et al., 2020). 

Forward models are especially useful when the system needs to be analyzed based on the driver’s input, 

while backward models have their strength in calculating the energy consumption based on system and 

contextual parameters effectively, i.e. calculating reliable energy consumption profile over the given 

instances with quicker execution time (Fiori et al., 2016). Once these models are established, there are 

three possible ways to analyze them depending on the required level of accuracy (Guzzella and 

Sciarretta, 2007). The first one is the “average operating point” approach where all the operating points 

of the propulsion system are averaged to represent a single operating point, and the corresponding 

efficiencies are chosen. The next is the “quasistatic” approach where the drive cycle is discretized into 

small instances and entities such as acceleration, gradient, total vehicle weight, etc. are assumed to be 

constant over a single instance. The last is the “dynamic” approach where the models are formulated 

using ordinary differential equations rather than only algebraic to represent the dynamic effects within 

the propulsion system and calculate a highly accurate energy consumption profile. The challenge, 

however, is the required analysis time (Fiori et al., 2016). 

4.1. Energy consumption 

There are a plethora of examples in the literature on models for calculating the energy consumption of 

the vehicle as this can be one of the critical aspects for evaluating the performance of the vehicle, 

regardless of the vehicle being conventional (fuel-driven) or non-conventional (hybrid, electric, fuel 

cell, etc.). Vehicle energy consumption is affected by many factors, broadly classified into six 

categories, such as, vehicle-, weather-, traffic-, roadway-, travel- and driver-related factors (Liu et al., 

2016). Essentially, the vehicle must overcome the inertial resistance, gradient resistance, rolling 

resistance, and aero resistance during its operation, and based on Newton’s second law, the force 

required at the wheel can be calculated. 

4.2. Transmission and motors 

A gearbox is typically used to scale the output torque or speed, but due to the intrinsic nature of electric 

motors, i.e., their torque and speed characteristics and high overall efficiency contour, EVs are usually 

equipped with a single- or dual-speed gearbox (Sorniotti et al., 2011). But for battery EVs, there are 

many options for motors, such as induction motors, switched reluctance motors, and permanent magnet 

synchronous motors (PMSM) that all belong to the category of AC motors (Gundabattini et al., 2021). 

A typical PMSM has a constant torque and a constant power operating region, and the power delivered 

at any given instance by the motor is a function of motor torque and motor speed that is derived from 

the gearbox, and the motor efficiency that is based on the efficiency maps of the motor. Efficiency maps 

are the contour plots under the max achievable torque and power curves of the motor that indicate the 

power loss in its operation. For the vehicle to be as efficient as possible, the operational point (in terms 

of torque and speed) should be chosen such that these losses are minimized, but a single gear leaves no 

choice but to take relevant efficiency values as the vehicle operates (Guzzella and Sciarretta, 2007). 

4.3. Battery 

Battery packs are usually expressed in terms of capacity (kWh) or specific energy density (Wh/kg), and 

the two dimensionless parameters that describe the condition of the battery are SoC and SoH. SoC 

describes the charge remaining in the battery and SoH describes the remaining useful life of the battery, 

usually in percentages. Also, lithium-ion battery packs have a min and max allowed current (called C-

rating) that describes how much current can be drawn from the battery at the given instance. A rating of 

1C means drawing current from the battery that will discharge it within an hour (Grunditz, 2016). 

5. Context-based design and optimization of an electric hauler 
A hauler is an automotive vehicle, typically used for hauling material from one point to another in a 

mining site. In this demonstrative case, the aim is to dimension the payload capacity and the battery 

capacity of an electrical hauler, along with the selection of an appropriate motor from the catalogue. 
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Also, a variable termed “time penalty” was introduced, allowing the exploration of different optimal 

control strategies. All these constitute the design variables 𝑥̅. The overall optimization problem is 

represented in Equation 1, where the two competing objective functions used were the total time 

required to complete the intended operation and the total operational cost. The total time required was 

a function of cycle time and battery charging time, whereas the total operational cost was the sum of 

fixed cost for each subsystem, and operational costs were simplified into energy consumption. The time 

penalty essentially directs the weightage on energy and time minimization during the control simulation 

via DP. Two state variables 𝑦̅ considered were hauler velocity and battery state of charge (SoC). Hauler 

velocity was discretized into several instances between zero and max limit, where the max limit was 

arbitrarily defined while SoC was confined to operate between 20% to 80%. The hauler was constricted 

to a single gear transmission system and thus gear selection was not an optimization problem. Also, 

battery state of health (SoH) was neglected in this case. The control inputs 𝑢̅ comprised of propelling 

and braking force at the motor shaft. Contextual variables mainly influenced the disciplinary analysis, 

such as ambient temperature affecting the battery (Choi and Chang, 2020) or rolling resistance and air 

density (Wang et al., 2018), while elevation profile affecting the regenerative capability and so on. Also, 

the operational scenario was assumed to consist of a wheel loader having a 5-ton capacity. This 

constrains the payload capacity to be a multiple of 5 as no optimal will be found intermediately.   

A vehicle typically contains many design constraints 𝑔𝑑 and control constraints 𝑔𝑐, many of those were 

deliberatively ignored since it doesn't influence the demonstration of the proposed framework. One of 

the applied inequality design constraints was that the volume of the battery pack cannot exceed the base 

volume available beneath the hauler. The design constraints also included gradeability and acceleration 

requirements. The control constraints mainly comprised of acceleration limits based on motor torque 

and battery discharge capacity. 

                 𝑚𝑖𝑛 𝑓(𝑥̅, 𝑦̅)           𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑, 𝑇𝑜𝑡𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑠𝑡  

with respect to       𝑥̅             𝑃𝑎𝑦𝑙𝑜𝑎𝑑, 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦, 𝑀𝑜𝑡𝑜𝑟 𝑡𝑦𝑝𝑒, 𝑇𝑖𝑚𝑒 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 

                                   𝑦̅            𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑔𝑟𝑖𝑑, 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑒 𝑔𝑟𝑖𝑑  

subjected to      𝑔𝑑(𝑥̅)          𝐷𝑒𝑠𝑖𝑔𝑛 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠  

                        𝑔𝑐(𝑥̅, 𝑦̅)          𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (1) 

To simulate the operation of the hauler, deterministic DP was implemented that is based on the 

procedure explained by Guzzella and Sciarretta (2007) in their Appendix-III. This work also uses their 

pseudo-code as a skin for finding the optimal control strategy of the hauler. A similar procedure can 

also be found in He et al. (2013), however, their purpose was optimal energy management, whereas the 

purpose in this work is to find the optimal velocity for the hauler. As explained previously, the operation 

needs to be discretized into several instances in spatial or time domain, and for each instance in 

deterministic DP problems, the successive state of the system 𝑦(𝑘 + 1) is a function of the initial state 

𝑦(𝑘) and the control inputs 𝑢(𝑘) as shown in Equation 2: 

𝑦(𝑘 + 1) = 𝑓(𝑦(𝑘), 𝑢(𝑘))  (2) 

The end step calculation is given by Equation 3: 

𝐽𝑁(𝑦(𝑁)) = 𝐿(𝑦(𝑁))  (3) 

And the intermediate step calculation is given by Equation 4: 

𝐽𝑘
𝑜(𝑦(𝑘)) = 𝑚𝑖𝑛

𝑢(𝑘)
 {𝐿(𝑦(𝑘), 𝑢(𝑘)) + 𝐽𝑘+1

𝑜 (𝑦(𝑘 + 1))}  (4) 

Where 𝐽𝑘
𝑜(𝑦(𝑘)) represents the min cost to reach the state 𝑦(𝑘) from the end of the operational cycle as 

the algorithm commences from the targeted end goal and solves the problem recursively to reach the 

point 𝑘, 𝐿 represents the instantaneous step cost and 𝑦(𝑘 + 1) represents the state achieved on the 

application of control 𝑢(𝑘). The 𝑢(𝑘) that minimizes Equation 4 is the optimal control policy 𝐶𝑜 for 

the inferred system from the point of interest 𝑘 to the end of the cycle, as shown in Equation 5: 

𝐶𝑜 = {𝑢𝑜(𝑘), 𝑢𝑜(𝑘 + 1), … , 𝑢𝑜(𝑁 − 1)}  (5) 
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In this work, a spatial discretization was used as the drive cycle was available in terms of latitude, 

longitude, and altitude. The segment length for the discretized path was calculated as smooth splines 

and the altitude was used to calculate the segment gradient. The instantaneous step cost comprised of 

energy cost, time cost, and speed deviation cost, as shown in Equation 6: 

𝐿 = (1 −  𝛽) (
𝑒

𝑒𝑛𝑜𝑟𝑚
) +  𝛽 (

𝑡

𝑡𝑛𝑜𝑟𝑚
) + (𝜙 ∗ |𝑣 − 𝑣𝑠𝑒𝑡|) (6) 

Where, 𝑒 is the step energy consumption, 𝑡 is the step time, and 𝑒𝑛𝑜𝑟𝑚 and 𝑡𝑛𝑜𝑟𝑚 are the normalization 

factors, respectively. 𝛽 is the time penalty, referred from 𝑥̅, adapted from the work of (Ye et al., 2019). 

Also, for the given drive cycle, there can be several stops along the path such as extraction, crusher, 

charging station, etc. Thus, 𝑣𝑠𝑒𝑡 represents the set velocity at various instances along the drive cycle and 

it can also take zero as a value. 𝜙 is a conditionally activated speed deviation penalty which is zero 

unless a velocity is set for the given instance. Then, the speed deviation penalty takes a very high value, 

forcing the hauler velocity to be exactly equal to the set velocity. Finally, the inconceivable states of the 

hauler were handled by assigning an infinite cost, and no auxiliary power requirement was assumed. 

5.1. Implementation of disciplinary models 

In this work, a quasistatic approach was adopted to calculate reasonably accurate energy consumption 

profiles within a shorter timeframe. Especially, this choice was made as they enable a certain level of 

flexibility in the simulation architecture, allowing easier swapping of models, integration into more 

complex frameworks, and simulation of different drive cycles (Fiori et al., 2016).  

The total hauler mass was calculated as a sum of the curb weight, battery weight, and payload. The 

design bounds of the battery capacity varied the weight of the battery to a notable extent. Thus, the 

battery weight was considered separately. The curb weight and payload are interdependent, i.e., if the 

value of one of the entities increases, the other increases accordingly. To capture this relation, a 

regression model was built based on the previous experiences of the company partners and the available 

data of past designs. This model predicts the curb weight as a function of payload. Also, since the path 

followed by the hauler in the mining site is fixed for this case, the instances when the hauler is loaded 

or unloaded can be easily distinguished for each instance. This change in total hauler mass is reflected 

in all the disciplinary analyses below. 

The modeling of the vehicle energy consumption was analogous to the VT-CPEM (Virginia Tech 

Comprehensive Power-Based EV Energy Consumption Model) (Fiori et al., 2016) which needs inputs 

of instantaneous velocity along with vehicle parameters and contextual variables. Equation 7 shows the 

formulation used: 

𝑃𝑤 = (𝐶𝑖𝑚𝑎 + 𝑚𝑔sin(𝜃) + 𝐶𝑟𝑚𝑔cos(𝜃) +
𝐶𝑑𝜌𝑎𝐴𝑓𝑣2

2
) 𝑣 (7) 

Where, 𝑃𝑤 = power at wheel, 𝐶𝑖 = mass correction factor to account for inertial forces, 𝑚 = total hauler 

mass (including payload), 𝑎 = acceleration, 𝑔 = gravitational acceleration, 𝜃 = road gradient, 𝐶𝑟 = 

coefficient of rolling resistance, 𝐶𝑑 = coefficient of aerodynamic resistance, 𝜌𝑎 = density of air, 𝐴𝑓 = 

vehicle frontal area, 𝑣 = velocity. The rationale for choosing VT-CPEM against, for example, the VSP 

(Vehicle-Specific Power) model (Luin et al., 2019) is that the mass of the vehicle is a conditional 

parameter (loaded and unloaded) in this study, and vehicle drag is independent of mass. Thus, scaling 

the specific power with mass can endure incorrect results (Luin et al., 2019). Also, 𝐶𝑟 modelled as a 

function of velocity can increase the accuracy (Fiori et al., 2016), however, it was assumed to be a 

constant for this demonstrative case. 

The gearbox efficiency was assumed to be constant, adopted from Ostadi and Kazerani (2014), and thus, 

the power at the gearbox can be scaled proportionately. For motor, two different PMSMs, available at 

“HVH Series Electric Motor - BorgWarner” (n.d.) were chosen, and their peak torque and power 

characteristics were utilized. Also, a regression model of the efficiency map was built. With all this 

information, the power at the motor can be calculated using Equations 8, 9, and 10: 

𝜔𝑚 = 𝜔𝑤𝑔𝑟 (8) 
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𝑇𝑚 =
𝑃𝑔

𝜔𝑚
 (9) 

𝑃𝑚 = 𝑃𝑔 + {

(1−𝜂𝑚)𝑃𝑔

𝜂𝑚
, 𝑃𝑔 > 0 

(𝜂𝑚 − 1)𝑃𝑔, 𝑃𝑔 < 0 
 (10) 

Where, 𝜔𝑤 = wheel speed, 𝜔𝑚 = motor shaft speed 𝑔𝑟 = gear ratio, 𝑃𝑔 = power at gearbox, 𝑇𝑚 = torque 

at motor, 𝜂𝑚 = motor efficiency, and 𝑃𝑚 = power at motor, respectively. Max torque limit was a control 

constraint, and the unreachable states were assigned an infinite cost. Furthermore, inertial flywheels 

were not modeled in the powertrain, and thus no energy was stored in the powertrain, allowing end-to-

end energy balance (Ghandriz et al., 2021). The functioning of the motor in the regeneration mode was 

assumed to be the same as the propulsion mode. Also, the regenerative braking efficiencies can be a 

function of deceleration (Fiori et al., 2016) or ambient temperature (Luin et al., 2019), but it was 

assumed to be independent of these entities due to lack of data for the case.  

The data for the lithium-ion battery pack, available at “Lithium Ion Batteries (Li-Ion) - Panasonic” (n.d.) 

was used, where battery cells were combined and scaled to represent a battery pack. Although, the 

properties of the pack can be considerably different from the cell (Huria et al., 2012). The max 

charge/discharge current at the battery is often limited by the DC-AC converter (Grunditz, 2016). As 

there was no DC-AC converter modeled for this demonstrative case, two assumptions were made. 

Firstly, the max current was assumed to be limited to 2C, and secondly, there were no converter losses. 

Thus, the power at the battery is equal to the power at the motor, and the current at the battery can be 

calculated using Equation 11: 

𝐼𝑏 =
𝑉𝑜𝑐−√𝑉𝑜𝑐

2 −4𝑅𝑏𝑃𝑏

2𝑅𝑏
  (11) 

Where, 𝑃𝑏 = power at battery, 𝐼𝑏 = current at battery needed to achieve 𝑃𝑏, 𝑉𝑜𝑐 = open-circuit voltage, 

𝑅𝑏= internal resistance, respectively. Internal resistance during charging and discharging was assumed 

to be the same. To make the model more accurate, however, dynamic effects due to varying SoC and 

temperature were modeled. While there are several methods proposed in the literature, this work adopted 

the methodology proposed by Huria et al. (2012) that produces accurate results when experimental data 

is available. Using the catalogue data instead, and referring to their steps, 𝑉𝑜𝑐 was modelled as a function 

of SoC while 𝑅𝑏 was modeled as a function of SoC and temperature. Also, the working region of the 

battery was assumed to be between 20% and 80% over the drive cycle, a region where the voltage drop 

is quite linear. Based on the current withdrawn, coulomb counting method can be used to determine the 

successive state of charge, as shown in Equation 12: 

𝑆𝑜𝐶(𝑘 + 1) = SoC(𝑘) − (
𝐼𝑏𝛥𝑡

3600𝑄𝑏
)  (12) 

Where, 𝑄𝑏 = battery capacity, 𝛥𝑡 = step time, 𝐼𝑏 = current at battery, 𝑆𝑜𝐶 = battery state of charge, 

respectively. Furthermore, a good margin from breakdown voltage is necessary (Grunditz, 2016), and 

thus 500V was chosen as the max voltage in the system and was not varied in this study. Given the 

assumed voltage, based on catalogue data, the number of cells in series can be calculated, and the design 

variables associated with the battery capacity essentially drive the ampere-hours of the battery, and 

hence the number of cells in parallel. Based on the number of cells in series and parallel, the battery 

parameters such as weight, volume, cost, etc. can be calculated. 

5.2. Exemplary results from the demonstrator 

The Pareto-optimal solutions have been presented in Figure 2, where all the dominated solutions have 

been removed for improved decision-making. The hauler payload capacity is in the multiples of 5 tons 

since the wheel loader capacity was assumed to be 5 tons, and thus there are no intermediate optimal 

solutions. The Pareto front not only enables decision-making between different hauler configurations 

but also the control strategy. Each grey bar in Figure 2 represents the same configuration, but a different 

control strategy. To illustrate, designs B and C have the same configuration, but different objective 

values are achieved by adjusting the time penalty, and hence the control inputs of forces. Figure 3 
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illustrates this distinction, where different optimal velocity profiles incur different operational costs by 

depleting SoC differently. The usefulness of the control strategy becomes more apparent when jointly 

view w.r.t different configurations. For example, instead of increasing the time penalty for design A 

further, a better choice would be to use design B. Basically, design configuration and control strategy 

can be compared head-to-head for making a utility choice for the given operational scenario. Figure 3 

also shows a notable regeneration of energy based on the SoC curve. The loading of the hauler happens 

at a higher altitude and then it rides downhill. This is one of the favorable conditions where the overall 

SoC depletion is lesser, often not the case in actual mining sites. 

 
Figure 2. Scatter plot showing the pareto optimal designs of the hauler. Each design within a 

grey square box has the same design configuration but a different control strategy. 

 
Figure 3. Optimal hauler velocity and SoC for design point B (shown by solid lines) and C (shown 

by dashed lines) in Figure 2 

6. Discussion and Conclusion 
In this paper, a framework was proposed to make early design decisions based on contextual factors and 

how the system will perform in the given context. A practical implementation on a demonstrator of an 

electrical hauler was presented. The work presented in the paper shall be regarded as preliminary results 

of a wider research effort focusing on the development of a generalizable model-driven simulation 

approach to support the transition towards electromobility and autonomy. The aim is to be able to deploy 

multi-disciplinary simulation models to support engineering decisions in the early stages of design. The 

validation of the framework is limited to its preliminary implementation in a single case of a hauler in a 

mining context. Research is currently taking place in several parallel case studies related to autonomy 

and electromobility to investigate further improvement and seek additional validation of the presented 

findings. 

The approach builds on established DO and optimal control techniques in SE. Having system states as 

responses is common practice in DO (Martins and Lambe, 2013), but usually these states are a function 

of nominal or averaged system control. Control problems often consider the system to be well-
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established, and the goal becomes turning the right knobs to achieve the desired performance output, 

see, for example, (Ghandriz et al., 2021; He et al., 2013; Ke and Song, 2018). The proposed framework 

attempts the confluence of these two domains, enabling making decisions about the configuration and 

the control of the system simultaneously, especially early in the design phase for relatively mature 

systems. Typically, design decisions are not taken in real-time, and thus, the real-time performance of 

the algorithm was not critical for this study. Regarding changing contexts, the ambient temperature was 

assumed to be fixed throughout the demonstrative case. To simulate proper temperature effects, an 

approximate thermodynamic model and a coolant model needs to be built, and this has been subjected 

to future studies. Considering the time required for convergence, improvement can be made at the global 

optimizer level and DP level. Teaching-learning-based optimization is argued to be quicker when the 

problem is highly nonlinear with many constraints for each sampling interval (Ostadi and Kazerani, 

2014). Also, for DP, there are techniques such as coarse discretization, elimination of unreachable states 

(Ke and Song, 2018), varying step-size DP (Ye et al., 2019), approximate DP (Powell, 2007), to reduce 

computational time. While some of these techniques can be argued to be a niche in a specific domain, 

more studies in different disciplines are needed to make a decisive supposition. Nonetheless, in the wake 

of autonomous vehicle technology enabling rigid path definition and typical shorter drive cycles of 

haulers in a mining scenario, combining DO and DP seems to be an approachable technique. 
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