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Abstract

Objective: To characterize the relationship between chlorhexidine gluconate (CHG) skin concentration and skin microbial colonization.

Design: Serial cross-sectional study.

Setting/participants: Adult patients inmedical intensive care units (ICUs) from 7 hospitals; from 1 hospital, additional patients colonized with
carbapenemase-producing Enterobacterales (CPE) from both ICU and non-ICU settings. All hospitals performed routine CHG bathing in the
ICU.

Methods: Skin swab samples were collected from adjacent areas of the neck, axilla, and inguinal region for microbial culture and CHG skin
concentration measurement using a semiquantitative colorimetric assay. We used linear mixed effects multilevel models to analyze the
relationship between CHG concentration and microbial detection. We explored threshold effects using additional models.

Results:We collected samples from 736 of 759 (97%) eligible ICU patients and 68 patients colonized with CPE. On skin, gram-positive bacteria
were cultured most frequently (93% of patients), followed by Candida species (26%) and gram-negative bacteria (20%). The adjusted odds of
microbial recovery for every twofold increase in CHG skin concentration were 0.84 (95% CI, 0.80–0.87; P < .001) for gram-positive bacteria,
0.93 (95% CI, 0.89–0.98; P = .008) for Candida species, 0.96 (95% CI, 0.91–1.02; P = .17) for gram-negative bacteria, and 0.94 (95% CI, 0.84–
1.06; P = .33) for CPE. A threshold CHG skin concentration for reduced microbial detection was not observed.

Conclusions: On a cross-sectional basis, higher CHG skin concentrations were associated with less detection of gram-positive bacteria and
Candida species on the skin, but not gram-negative bacteria, including CPE. For infection prevention, targeting higher CHG skin
concentrations may improve control of certain pathogens.

(Received 15 December 2023; accepted 24 March 2024)

Introduction

Daily chlorhexidine gluconate (CHG) bathing of intensive care
unit (ICU) patients reduces skin microbial colonization and
decreases the risk of bloodstream infections, multidrug-resistant
organism acquisition, and blood culture contamination.1–3

However, the association between CHG skin concentration and
skin microbial bioburden is less understood. Some observational

studies suggest that reaching threshold CHG skin concentrations
may be needed for optimal inhibition of skin microbial growth,4,5

but this relationship has not been consistently reproduced.6

Understanding the association between CHG skin concentration
and skin microbial reduction can inform strategies for improving
CHG bathing, as bathing quality can be variable.7–9

In the context of a multicenter CHG bathing quality improve-
ment study of adult ICU patients,9 we performed a pre-planned
analysis to characterize the relationship between CHG skin
concentration and skin microbial detection. At 1 hospital, we
additionally obtained samples from adult ICU and non-ICU
patients colonized with carbapenemase-producing Enterobacterales
(CPE). We hypothesized that patients with higher CHG skin
concentrations would have less microbial detection on skin and
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sought to determine if a threshold effect existed in this relationship
(ie, an ‘adequate’ CHG skin concentration beyond which skin
microbial detection would be maximally reduced).

Methods

Study population

Multicenter cohort
Patients≥18 years old who were admitted to the medical ICU were
eligible for study participation at 7 academic hospitals with
established daily CHG bathing (hereafter called “multicenter
cohort”; see Supplement for participating sites). The median ICU
bed capacity was 22 (range, 12–27 beds). Point prevalence surveys
were conducted from January 2018 to February 2019.

CPE-colonized cohort
Due to the expected low prevalence of CPE-colonized patients in
the multicenter cohort,10 we obtained samples from an additional
group of adult ICU and non-ICU patients who were confirmed to
be colonized with CPE11 by rectal or stool culture and were
admitted from May 2018 to August 2019 (hereafter called “CPE
cohort”) at one of the participating hospitals (Rush University
Medical Center). Patients in the CPE cohort were eligible for daily
CHG bathing if admitted to the ICU or if they had a central venous
catheter while cared for in non-ICU units. Five patients were
analyzed in both the multicenter and CPE cohorts.

The project was evaluated independently by each institution’s
institutional review board and either deemed exempt or approved
with a waiver of informed consent.

Point prevalence surveys and swab sample collection

For the multicenter study, we conducted 6 single-day point
prevalence surveys at each hospital throughout the study period.
For each survey, all patients in the ICU had unilateral skin swab
samples collected from the anterior neck, axilla, and inguinal
region. To measure CHG skin concentrations, we used sterile
swabs moistened with sterile water (Bio-Swab, Arrowhead
Forensics, Lenexa, KS) to swab a 5 × 5 cm2 area from each body
site. For bacterial and yeast cultures, an adjacent 5 × 5 cm2 area
from each body site was sampled using flocked swabs
(FLOQSwabs, Copan, Murrieta, CA) and placed immediately into
1.2 mL Amies medium with neutralizers12,13 but without ether
sulfate.14 Swab sample collection training sessions were held with
research staff for uniform technique. For the CPE cohort, the neck,
axilla, and inguinal skin sites were sampled, and an additional
rectal or stool swab (BBL CultureSwab, Becton-Dickenson,
Franklin Lakes, NJ) was collected to confirm CPE colonization.

We collected the following patient covariates at the time of
survey: demographic information (age [≥ 90 years old recorded as
90 years], sex, body mass index), ICU and hospital length of stay,
presence of invasive devices (mechanical ventilation via endo-
tracheal tube or tracheostomy; central venous catheter), and
receipt of CHG bath at any point during current hospitalization,
prior to swab collection.

Laboratory methods

Swab samples were shipped in insulated containers on wet ice with
continuous temperature monitoring and processed at a central
laboratory (Rush University Medical Center) within 48 hours of
collection. Skin swabs were tested for CHG concentration with a
semiquantitative colorimetric assay, with a stepwise range of detection

from 4.9 μg/mL to 20,000 μg/mL.15 For culture, 100 μl volumes were
inoculated onto 5% sheep’s blood agar (Remel, Lenexa, KS) for total
bacterial counts, Columbia CNA agar (Remel) to isolate gram-
positive bacteria, MacConkey agar (Remel) to isolate gram-negative
bacteria, CHROMagar™ Staph aureus (Becton-Dickenson, Franklin
Lakes, NJ) to isolate Staphylococcus aureus, ChromID MRSA
(bioMérieux, Durham, NC) to isolate methicillin-resistant S. aureus,
CHROMagar™ Candida (Becton-Dickenson) to isolate Candida
species, bile azide esculin agar (Remel) to isolate Enterococcus species,
Spectra VRE agar (Remel) to isolate vancomycin-resistant entero-
cocci, and mSuperCARBA (CHROMagar™, Paris, France) to isolate
carbapenem-resistant Enterobacterales, Pseudomonas species, and
Acinetobacter species. Plates were incubated in aerobic conditions at
35± 2°C for 16–24 hours for bacterial isolation, and CHROMagar™
Candida agar was incubated at 37°C for up to 7 days. Presumptive
morphologicmicrobial identifications were confirmed using standard
methods and matrix-assisted laser desorption ionization time-of-
flight mass spectrometry (VITEK® MS bioMérieux). Antibiotic
susceptibilities were confirmed using gram-negative and gram-
positive panels (NM43, NC68, PC33, and PM29) on the MicroScan
WalkAway System (Beckman Coulter, Indianapolis, IN). Organisms
recovered on mSuperCARBA were tested for bla-KPC, bla-NDM,
bla-OXA-48, bla-IMP, and bla-VIM carbapenemase genes by Xpert
Carba-R (Cepheid, Sunnyvale, CA).

CHG minimum inhibitor concentration measurements

Isolates recovered from skin swab samples underwent broth
microdilution testing to determine CHG minimal inhibitory
concentrations (MICs) followingmodified Clinical and Laboratory
Standards Institute (CLSI) guidelines,16,17 starting with a 20%
solution of chlorhexidine digluconate (Sigma-Aldrich, St Louis,
MO). A representative sample of skin isolates was obtained by a
mix of random and complete sampling to select isolates dependent
on the number of isolates overall for a species, resistance type, or
individual hospital level.

Statistical design and analysis

We performed linear mixed effects multilevel modeling to analyze
the relationship between CHG skin concentration (log2-trans-
formed) and microorganism recovery (yes/no as primary outcome
andCFU/25cm2 as secondary outcome), controlling for clustering of
body sites within patients (random effect). Fixed effects in themodel
included hospital, body site, and CHG skin concentration. CHG
concentrations below the limit of detection (< 4.9 μg/mL) were
coded as 0 μg/mL for analysis. Descriptive statistics were also
performed. SAS version 9.4 (Cary, North Carolina) was used for all
analyses. A series of exploratory analyses considered the possibility
of thresholds for microorganism detection by dichotomizing CHG
concentration at each increment and adding the dichotomous
variable to the model with the linear CHG skin concentration (log2-
transformed). Ten thresholds were considered for each outcome.

Results

For the multicenter cohort, we obtained samples from 736 (97%) of
759 eligible patients from 7 hospitals, with amean of 17.5 (SD= 5.2)
patients per ICU per survey. A total of 2,176 skin sites were sampled.
In theCPE cohort, 68 patients withCPE colonization based on rectal
or stool cultures were identified, and 203 skin sites were sampled.
Patient characteristics are shown in Table 1.
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Microorganisms cultured

In the multicenter cohort, gram-positive bacteria were detected
most frequently (93%), followed by Candida species (26%) and
gram-negative bacteria (20%; see Table 2); there was variability in
the distribution of pathogens by body site. In the CPE cohort, there
were 78 CPE organisms identified from 68 rectal or stool swab
samples; KPC-producing K. pneumoniae were identified most
frequently (Supplementary Table S1). Of 68 patients confirmed to
be CPE-colonized by rectal or stool culture, 26 (38%) had skin sites
with detectable CPE. Of the 26 patients with CPE detected on both
skin and rectal/stool cultures, 25 had concordant CPE species and
resistance mechanisms detected. Three patients were co-colonized
with carbapenemase-producing K. pneumoniae (2 KPC, 1 NDM)
and another CPE (including KPC-producing Citrobacter freundii,
KPC-producing Escherichia coli, and NDM-producing E. coli)

based on rectal or stool culture; however, only carbapenemase-
producing K. pneumoniae was cultured from the skin.

Relationship between CHG skin concentrations and microbial
recovery

Median CHG skin concentrations are noted in Table 1. In the
multicenter cohort, the adjusted odds of detecting gram-positive
bacteria orCandida species on skin decreased linearly with increasing
CHG skin concentrations. For every twofold increase in CHG
skin concentration, the adjusted odds of microbial recovery
decreased by 16% (P < .001) for gram-positive bacteria and 7%
(P= .008) forCandida species (Figure 1, Table 3).We did not observe
a significant association between CHG skin concentration and
detection of gram-negative bacteria by culture (Figure 1, Table 3). In
the CPE cohort, after adjusting for age and body site, we did not

Table 1. Patient demographics and clinical factors

Covariate Multicenter cohort (N=736) CPE cohort (N=68)

Age, years, mean (SD) 58.6 (16.3) 57.1 (16.6)

Male, n (%) 377 (51) 28 (41)

Body mass index, kg/m2, median (IQR) 27.3 (22.6, 32.6) 25.7 (22.2, 30.6)

Mechanical ventilation, n (%) 296 (40) 17 (25)

Tracheostomy, n (%) 117 (16) 26 (38)

Central venous catheter, n (%) 376 (51) 22 (33)

ICU day of swab specimen collection,a median (IQR) 4 (2, 8) 2 (1, 3)b

Hospital day of swab specimen collection,a median (IQR) 5 (3, 13) 2 (2, 4)

CHG bath received, n (%) 653 (90) 51 (75)

Hours since last CHG bath, median (IQR) 10 (5, 17) 11 (9, 29)
Median CHG skin concentration,c μg/mL (IQR) 39.1 (4.9, 312.5) 78.1 (<4.9, 312.5)

Note. CHG, chlorhexidine gluconate; CPE, carbapenemase-producing Enterobacterales; ICU, intensive care unit; IQR, interquartile range; SD, standard deviation.
aDays from admission to swab specimen collection.
bIncludes 44 ICU patients at the time of sample collection.
cIncludes 2,163 skin swabs for the multicenter cohort and 201 skin swabs for the CPE cohort.

Table 2. Prevalence of microorganisms by body site on skin of intensive care unit patients at 7 hospitals where chlorhexidine gluconate bathing was routine

Organism Neck (N=732) Axilla (N=730) Inguinal (N=714) Any sitea (N=736)

Gram-positive bacteria, n (%) 614 (84) 463 (63) 457 (64) 682 (93)

Selected gram-positive species

Staphylococcus aureus, n (%) 66 (9) 27 (4) 35 (5) 96 (13)

Methicillin-resistant S. aureus, n (%) 21 (3) 8 (1) 11 (2) 28 (4)

Enterococcus speciesb, n (%) 73 (10) 41 (6) 127 (18) 177 (24)

Vancomycin-resistant enterococcib, n (%) 24 (3) 12 (2) 45 (6) 61 (8)

Gram-negative bacteria, n (%) 62 (8) 46 (6) 89 (12) 150 (20)

Selected gram-negative species

Acinetobacter species, n (%) 9 (1) 5 (0.7) 7 (1) 15 (2)

Klebsiella pneumoniae, n (%) 23 (3) 17 (2) 23 (3) 45 (6)

Pseudomonas aeruginosa, n (%) 16 (2) 12 (2) 21 (3) 44 (6)

Candida species, n (%) 78 (11) 61 (8) 120 (17) 188 (26)

Selected Candida species
Candida auris, n (%) 1 (0.1) 2 (0.3) 0 (0) 3 (0.4)

aOrganism detection on any body site.
bE. faecalis and E. faecium.
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observe a significant association between CHG skin concentrations
and recovery of CPE from skin. Through visual inspection (Figure 1)
and modeling, we also did not observe a threshold CHG skin
concentration for reduced detection of gram-positive bacteria, gram-
negative bacteria, Candida species, and CPE. The relationship
between CHG skin concentrations and skin detection of specific
species of gram-positive and gram-negative bacteria is shown in
Table 3.

In sensitivity analysis, we assessed the relationship between
CHG skin concentration and skin microbial recovery on a
continuous scale (colony forming units, or CFU/25cm2); a stacked
histogram depicting CHG skin concentration versus CFU of skin
microbial recovery is presented in Figure 2. Adjusted analysis with
continuous CFU/mL as a modeled outcome did not meaningfully
change the results found in the primary analysis.

CHG minimum inhibitory concentrations

A subset of isolates (467) from patients in the multicenter cohort and
31 CPE isolates from the CPE cohort were selected for CHG MIC
testing (Supplementary Table S2). Gram-positive bacteria tested such
as Staphylococcus aureus demonstrated relatively low MIC values,
compared with gram-negative bacteria and Candida species tested.

Discussion

Among hospitalized patients, in whom skin CHG concentrations
and microbial cultures were obtained cross-sectionally, higher CHG

skin concentrations were associatedwith less frequent skin detection
of gram-positive bacteria and Candida species, but not with gram-
negative bacteria, including CPE. For gram-positive bacteria and
Candida species, the relationship was linear across all measured
CHG skin concentrations, without a threshold effect observed.

We performed this study in the context of a CHG bathing quality
improvement project in the ICU, which assessed the effectiveness of
measurement and feedback of CHG skin concentrations to hospital
unit leadership and bathing staff to improve the quality of CHG
bathing.9 A common question generated from feedback on CHG
skin concentrations was whether there is an ‘adequate’ level of
measured CHG skin concentration that would correlate with
optimal microbial control. Based on limited data from prior studies,
potential thresholds of 18.75 μg/mL for control of gram-positive
bacteria and 128 μg/mL for control of CPE had been proposed.4,5

Both prior studies utilized skin concentration measurement in a
longitudinal fashion within patients (eg, serially before and after a
CHG bath in the same patient). Our current study utilized a cross-
sectional approach toCHG skinmeasurement that was independent
of time from the last CHG bath received, representing a more
pragmatic approach for unit-wide skin sampling by healthcare
personnel. The findings of our current study and others6 suggest that
on a cross-sectional basis, there is not a threshold target for CHG
skin concentration that correlates with optimal skin microbial
control for some organisms.

WhetherCHGbathing effectively controls gram-negative bacterial
skin colonization, transmission, and infection is uncertain. In a

Figure 1. Relationship between chlorhexidine gluconate concentration and adjusted odds of microbial detection on the skin. Abbreviations: CHG, chlorhexidine gluconate; OR,
odds ratio. Note: Odds of culture detection of microbial organisms on the skin at each CHG skin concentration were estimated using mixed effect models that included a random
intercept for body sites clustered within the patient and fixed effects for hospital, body site, and CHG skin concentration. Bars represent 95% confidence intervals. OR represents
the change in odds of microbial recovery for every twofold increase in CHG skin concentration, as presented in Table 3.
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longitudinal assessment of ICU patients, CHG bathing transiently
reduced all pathogens, including gram-negative organisms on the
skin, but rebound of microbial detection near baseline levels was

observed at 4 hours post-bath for gram-negative organisms.5 Routine
CHG bathing in the ICU has not been consistently associated with
reductions in gram-negative infections.1,18,19 Nevertheless, CHG
bathing has been shown to decrease KPC-producing K. pneumoniae
skin colonization shortly after a bath.4 Furthermore, CHGbathing has
been utilized in a bundled intervention to interrupt the transmission
of KPC-producing K. pneumoniae in the long-term acute care
hospital setting, leading to decreases in KPC-producing K. pneumo-
niae and all-cause bacteremia.20

Our study has limitations. First, reductions in skin microbial
colonization were used as a surrogate for reduced risk of pathogen
transmission and infection. However, skin colonization contrib-
utes to the pathogenesis of infections such as central line-
associated bloodstream infections (CLABSIs),21 and reductions in
skin microbial burden has been associated with reduced
environmental and healthcare worker hand contamination.3

Second, we may have been underpowered to detect correlations
between CHG skin concentrations and less prevalent species or
groups of organisms. Certain organism species may also
demonstrate relationships with CHG skin concentrations that
diverge from patterns observed at the genus level.22 Third, we did
not assess prior or current receipt of systemic antimicrobial agents.
Additional research is needed on the impact of broad-spectrum
antibiotics on the skin ecology of critically ill patients. Major
strengths of our study included the multicenter prospective design
over a geographically diverse group of healthcare facilities,
standardized skin sampling techniques, and utilization of culture
protocols that targeted multiple organisms of medical importance.

In conclusion, we found that within the range of CHG skin
concentrations detected among hospitalized patients undergoing
routine CHG bathing, there was an association between higher
CHG skin concentration and less frequent detection of gram-
positive bacteria and Candida species on the skin, without an
observed threshold effect. We did not find such a relationship for
gram-negative bacteria. For infection prevention, CHG bathing

Table 3. Effect of chlorhexidine gluconate skin concentration on the odds of
recovering selected microorganisms from the skin by culturea

Organism
Odds ratio
(95% CI) P value

Gram-positive bacteria 0.84 (0.80–0.87) <.001

Selected gram-positive species

Staphylococcus aureusb 0.85 (0.8–0.91) <.001

Methicillin-resistant S. aureus 0.86 (0.75–0.98) .02

Enterococcus speciesb,c 0.97 (0.93–1.02) .19

Vancomycin-resistant enterococcic 0.97 (0.90–1.06) .52

Gram-negative bacteria 0.96 (0.91–1.02) .17

Selected gram-negative species

Acinetobacter species 1.04 (0.88–1.21) .66

Klebsiella pneumoniae 0.93 (0.84–1.02) .13

Pseudomonas aeruginosa 1.02 (0.92–1.13) .68

Carbapenemase-producing
Enterobacterales species

0.94 (0.84–1.06) .33

Candida species 0.93 (0.89–0.98) .008

Note. CI, confidence interval; CHG, chlorhexidine gluconate; CPE, carbapenemase-producing
Enterobacterales. Mixed effect models included a random intercept for body sites clustered
within patient and fixed effects for hospital, body site, and CHG skin concentration. Hospitals
without positive detection of the target microorganism were excluded from the analysis.
Odds ratios represent the change in odds of microbial recovery for every twofold increase in
CHG skin concentration.
aResults from the multicenter cohort of 7 hospital intensive care units, except CPE skin
detection from patients with CPE colonization based on rectal or stool culture hospital-wide
at a single center.
bModel with a random effect for multiple body sites within the patient did not converge; the
random effect was removed for this outcome.
cE. faecalis and E. faecium.

Figure 2. Unadjusted relationship between chlorhexidine gluconate concentration and microbial colony forming units on skin. Abbreviations: CHG, chlorhexidine gluconate.
Note: Different y-axis scales on panels. The skin area swabbed is 25 cm2.
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strategies that achieve higher CHG skin concentrations may
improve control of certain pathogens.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/ice.2024.81.
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