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Instabilities and particle-induced patterns in
co-rotating suspension Taylor–Couette flow
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The first experimental results on pattern transitions in the co-rotation regime (i.e. the
rotation ratio Ω = ωo/ωi > 0, where ωi and ωo are the angular speeds of the inner and
outer cylinders, respectively) of the Taylor–Couette flow (TCF) are reported for a neutrally
buoyant suspension of non-colloidal particles, up to a particle volume fraction of φ = 0.3.
While the stationary Taylor vortex flow (TVF) is the primary bifurcating state in dilute
suspensions (φ ≤ 0.05), the non-axisymmetric oscillatory states, such as the spiral vortex
flow (SVF) and the ribbon (RIB), appear as primary bifurcations with increasing particle
loading, with an overall de-stabilization of the primary bifurcating states (TVF/SVF/RIB)
being found with increasing φ for all Ω ≥ 0. At small co-rotations (Ω ∼ 0), the
particles play the dual role of stabilization (φ < 0.1) and destabilization (φ ≥ 0.1) on
the secondary/tertiary oscillatory states. The distinctive features of the ‘particle-induced’
spiral vortices are identified and contrasted with those of the ‘fluid-induced’ spirals that
operate in the counter-rotation regime.
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1. Introduction

The fluid flow between two independently rotating co-axial cylinders (Couette 1888;
Taylor 1923), known as the Taylor–Couette flow (TCF), has served as a canonical
set-up to study instabilities and pattern transitions, leading to chaos and turbulence,
over the past century (Rayleigh 1917; Synge 1938; Coles 1965; Gollub & Swinney
1975; Mullin & Benjamin 1980; Andereck, Liu & Swinney 1986; Dutcher & Muller
2009; Grossmann, Lohse & Sun 2016; Lueptow, Hollerbach & Serre 2023). Adding
neutrally buoyant, non-colloidal rigid particles to Newtonian fluids can significantly alter
the flow transitions in the TCF as revealed in recent experiments (Majji, Banerjee &
Morris 2018; Ramesh, Bharadwaj & Alam 2019; Baroudi, Majji & Morris 2020; Dash,
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Anantharaman & Poelma 2020; Ramesh & Alam 2020; Moazzen et al. 2022). The
first comprehensive experimental investigation of suspension TCF was conducted by
Majji et al. (2018) for the case of pure inner cylinder rotation (Ω = ω0/ωi = 0), which
showed that the critical Reynolds number for the primary bifurcation Rec1(φ, Ω = 0)

decreases with increasing particle volume fraction φ, implying the destabilizing role
of particles. They discovered ‘particle-induced’ non-axisymmetric patterns, namely, the
spiral vortex flow (SVF) and/or ribbon (RIB), that appear as the primary bifurcating
state when the particle loading exceeds a critical value φcr ∼ 0.05. Ramesh et al.
(2019) conducted flow visualization and particle image velocimetry measurements, and
identified two co-existing/mixed states: (i) Taylor vortex flow (TVF)+wavy Taylor vortex
(WTV) and (ii) TVF+SVF, during the up-sweep run for φ ≥ 0.05; however, a transition
sequence of CCF ← SVF ← TVF ← WTV was found during the down-sweep run.
The later work of Ramesh & Alam (2020) uncovered another state of interpenetrating
spiral vortices (ISVs), i.e. the coexistence of up- and down-propagating spiral vortices,
which appears as a secondary bifurcation from the mixed ‘TVF+SVF’ state for φ ≥ 0.1.
Baroudi et al. (2020) explored the effect of inertial migration (due to finite values of the
particle Reynolds number) on observed patterns in TCF. Dash et al. (2020) carried out
experiments over a large range of Reynolds number (Re ∼ O(103)) and explored higher
order transitions for φ ≤ 0.4; they identified a power-law scaling for the normalized
torque that holds beyond the secondary bifurcation. Moazzen et al. (2022) carried out
torque measurement and flow visualization in an identical experimental set-up as used by
Ramesh et al. (2019) and determined the scaling exponents of the normalized torque in
terms of Taylor number in the TVF and WTV regimes. The earliest theoretical work on
suspension TCF is due to Ali et al. (2002), who analysed the linear stability problem
for a ‘dilute’ suspension (φ < 0.05) based on a two-fluid model, and predicted the
destabilizing role of particles at the onset of primary instability. Most recently, Kang
& Mirbod (Kang & Mirbod 2021; Kang, Schatz & Mirbod 2024) performed numerical
simulations to study pattern transitions in suspension TCF using the suspension balance
model and found a qualitative agreement (Baroudi et al. 2023) with recent experimental
findings.

Considering two independently rotating cylinders (ωi, ωo /= 0), Singh, Ghosh & Alam
(2022) explored the pattern transition scenario in the counter-rotation regime (Ω < 0)
of suspension TCF. They found that while the overall transition sequence remains the
same for Ω ≥ −0.25 as in the case of the purely inner cylinder rotation (Ω = 0), a
novel transition occurs at Ω = −0.5 in which the stationary TVF bifurcates directly
into a quasi-periodic state (characterized by two incommensurate frequencies), called
the modulated wavy vortex (MWV), even for a pure fluid (φ = 0). They also carried
out a detailed analysis of the transition scenario for the exact counter-rotation case
(Ω = −1) where the CCF bifurcates into a non-axisymmetric state (SVF) that further
transitions to a quasi-periodic state (nonlinear ISV), followed by a chaotic state, called the
non-propagating interpenetrating spirals (NISs). The follow-up article of Alam & Ghosh
(2023) came out with a master scaling relation for the dimensionless torque that holds over
large ranges of the Taylor number and the counter-rotation ratio, encompassing primary,
secondary and tertiary states. An overview of all works on suspension TCF can be found
in the review article of Baroudi et al. (2023). The present experiments aim to uncover the
pattern transition route in the ‘co-rotation’ regime (Ω > 0) of suspension TCF, with the
goal to understand the effects of particle loading and co-rotation on the emerging pattern
dynamics.
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2. Experimental details

All experiments are carried out in a Taylor–Couette (TC) cell mounted on a Twin-Drive
MCR-702 rheometer (Anton Paar GmbH, Austria) that has been used in our previous
studies (Singh et al. 2022; Alam & Ghosh 2023). Two independently rotating motors
are used to drive the inner and outer cylinders by specifying the rotation ratio
Ω = ωo/ωi = fo/fi in the ‘co-rotation’ regime (Ω > 0). Thanks to the beta-version of
the ‘RheoCompass’ software (2022, private communication with Anton-Paar R&D team,
Graz, Austria), we could explore the co-rotation regime of the TCF, while the original
software was written for Ω < 0; this also allowed us to sweep up to a maximum frequency
of 50 Hz, increasing the range of Reynolds numbers by a factor of 2.5 in comparison
to our recent work in the counter-rotation regime (Singh et al. 2022; Alam & Ghosh
2023). The aspect ratio of the TC cell is Γ = h/δ = h/(ro − ri) ≈ 8.46 and the radius
ratio is η = ri/ro ≈ 0.891, with (h, ri, ro) = (16.5, 16.0, 17.95) mm. The suspension is
made of rigid PMMA microspheres of mean diameter d ≈ 50 μm and material density
of ρ ≈ 1190 kg m−3 and a density-matched solvent which is a ternary mixture of water,
glycerine and ammonium thiocyanate, and we refer readers to the above two papers for
other details on experiments.

For given (Ω , φ), the experiments are started from f = fmin ∼ 0 and stopped at
f = fmax = max{ fi, fo} = 50 Hz by increasing the rotation frequency at a slow ramping
rate – such ramp-up protocols are referred to as ‘up-sweep’ runs. However, for
experiments which consist of both up- and down-sweep runs, after completing the
up-sweep run, the rotation frequency remains constant at f = fmax for a sufficiently
long time (600 s) beyond which a ramp-down protocol is followed by decreasing
the rotation frequency from f = fmax to fmin. We set the dimensionless ramping
rate to |dRe(φ)/dτ | = 0.05/μr(φ), where Re(φ) = max{Rei(φ), Reo(φ)} with Rei(φ) =
ρωiriδ/μ(φ) and Reo(φ) = ρωoroδ/μ(φ) being the inner and outer Reynolds numbers,
respectively, and τ = t/τvis, with τvis = ρδ2/μ(φ) being the viscous diffusion time;
μ(φ) = μ(0)(1− φ/φm)−2 is the suspension viscosity, μ(0) ≈ 7.90 mPa s is the shear
viscosity of the solvent, both measured at T = 22 ◦C, φm = 0.585 is the maximum packing
fraction (at random loose packing), and μr(φ) = μ(φ)/μ(0) ≥ 1 is the relative viscosity
of suspension (Guazzelli & Pouliquen 2018). During up-sweep and down-sweep runs, the
rotation frequency is increased and decreased in steps by staying for 10 s (∼70τvis at
φ = 0.3) at each step. Note that the maximum particle Reynolds number is estimated as
Rep(Ω) = ργ̇appd2

p/μ(0) = Remax
i |1−Ω/η|(d/δ)2 = (0.90, 0.26) at Ω = (0.05, 0.65),

with γ̇app = |ωiri − ωoro|/δ being the apparent shear rate across the annular gap (Alam
& Ghosh 2023). The corresponding particle Stokes number and Péclet number are
estimated as Stp = mpγ̇app/3πμ(0)dp = (0.05, 0.014) and Pe = 3πμ(0)d3

pγ̇app/4kBT =
O(109, 108), respectively, at Ω = (0.05, 0.65). Therefore, the particles can be treated as
non-Brownian particles for which the inertial effects, Rep = O(1), are non-negligible. All
experiments are performed in an air-conditioned room at T = 22± 0.5 ◦C.

For flow visualizations, a small amount (<0.1 %, Ramesh et al. 2019; Singh et al. 2022)
of anisotropic mica flakes is added to the suspension, and three 41 W LED panels are
used to illuminate the TC cell. The video images of surface flow patterns are continuously
captured using a Nikon (D750 DSLR) camera at a frame rate of 60 s−1. In addition, a
high-speed camera, Phantom v9 (DANTEC DYNAMICS), is used to capture images at
regular intervals at a frame rate of 200 s−1 so as to capture high-frequency modes. The
captured images are then analysed to extract information on the flow states by constructing
space–time diagrams and frequency maps.
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3. Results and discussion

Experiments have been conducted by choosing a value of Ω = (0.05, 0.1, 0.2, 0.3, 0.5,

0.65) in the co-rotation regime for different particle volume fractions φ =
(0, 0.05, 0.1, 0.15, 0.2, 0.3); the case of pure inner cylinder rotation is approximated by
conducting experiments at Ω = −10−3 ≈ 0 (Singh et al. 2022). The maximum explored
value of Ω = 0.65 is close to the Rayleigh stability line (Rayleigh 1917) of Ω = η2 ≈
0.794 beyond which the TCF is known to be stable. We have carried out a set of
experiments at a rotation ratio of Ω = ωo/ωi = 0.82 > η2 for φ = (0, 0.15) and found
that the flow remains stable over a range of shear Reynolds number Res ≤ Remax

s (φ), see
(3.1). Note that the present value of Remax

s (φ) for a specified φ is set by the maximum
frequency fmax = 50 Hz of the two motors, and Remax

s (φ) decreases with increasing Ω

and approaches zero in the limit of the solid-body rotation (Ω → 1, i.e. ωi = ωo), see the
lower boundary of the hatched region in figure 1. We first discuss how the co-rotation ratio
(Ω > 0) affects the transition scenario at fixed values of φ in § 3.1, followed by results in
§ 3.2 for the effect of particle loading on patterns at fixed Ω and discussions and theoretical
perspectives in § 3.3.

3.1. Effect of co-rotation on pattern transitions
Figure 1(a–c) displays the phase diagrams of patterns in the (Ω, Res(φ))-plane for φ = 0,
0.15 and 0.3, respectively, where

Res(Ω, φ) = 2
1+ η

|ηReo(φ)− Rei(φ)| = 2Rei(φ)

1+ η
|1−Ω| (3.1)

is the shear Reynolds number (Dubrulle et al. 2005; Eckhardt, Grossmann & Lohse
2007; Singh et al. 2022). In each panel, the empty and filled symbols mark the
critical values of Res(Ω, φ) during up- and down-sweep runs, respectively, at which the
bifurcations/transitions between two states occur. The lower boundary of the black hatched
region in each panel denotes the maximum range of Res(φ) explored (with fmax = 50 Hz)
at given (Ω , φ), while the grey patches (such as in the inset of figure 1b) represent the
hysteresis regions.

3.1.1. TCF of particle-free (φ = 0) Newtonian fluid under co-rotation
For the particle-free Newtonian fluid (φ = 0), it is seen from figure 1(a) that the primary
bifurcating state from the laminar circular Couette flow (CCF) is a stationary axisymmetric
state, called the TVF, for all Ω . The image analyses helped to correctly identify the
critical shear Reynolds number Rec1

s (φ) at the CCF↔ TVF transition. Figure 1(a) reveals
that Rec1

s (φ) gradually decreases with increasing Ω , implying the destabilization role of
co-rotation at the onset of the primary instability (Taylor 1923; Coles 1965; Andereck et al.
1986). For a quantitative comparison, the present experimental data on Rec1

s (Ω, φ = 0) are
compared with the marginal stability curve of Esser & Grossmann (1996),

r2
n − r2

p

r2
p

(
riα
√

Res

rn
√

η

)4

= Ψ

(
a
δn

δ

)−4

, (3.2)

where δ = ro − ri is the gap width, rn = ri
√

(Ω − 1)/(Ω − η2) is the neutral radius,
δn = rn − ri, rp = ri + (δ/2)Ψ (aδn/δ), a = (1− η)[

√
(1+ η)3/2(1+ 3η)− η]−1, α =

0.1566, and Ψ (x) = x and 1, respectively, for x < 1 and x ≥ 1. Equation (3.2) is denoted
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Figure 1. Phase diagrams of patterns in the (Ω , Res(φ, Ω))-plane at (a) φ = 0, (b) φ = 0.15 and (c) φ = 0.3.
The empty and filled symbols (with and without lines), respectively, represent the onset values of Res(φ) at
bifurcations during up- and down-sweep runs; the grey patches in each panel denote the hysteresis regions.
The zoomed view of the selected region in each figure is shown in the corresponding inset. The dashed line
in panel (a) represents the marginal stability curve (3.2) of Esser & Grossmann (1996). The yellow hatched
regions in panel (c) mark the parameter space where the SVF is observed during up-sweep (vertical lines) and
down-sweep (horizontal lines) runs.

by the black dashed curve in figure 1(a) which agrees well with our up-sweep data (open
triangles) on Rec1

s (Ω). From a comparison between the up- and down-sweep data at
Ω = 0.5 and 0.65 in the inset of figure 1(a), we find that the primary bifurcation is
hysteretic at large enough Ω and the degree of hysteresis (i.e. the height of the grey
patches in the inset, Res) is larger at Ω = 0.65 compared with at Ω = 0.5. Although
the CCF↔ TVF transition is known to be non-hysteretic at Ω ≥ 0 in the case of large-Γ
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TC cells (Taylor 1923; Coles 1965; Hegseth, Baxter & Andereck 1996), the presence of
axial constraints in a small-Γ cell can make the primary transition hysteretic as reported
by Heise et al. (2013) and confirmed in the present study (Γ ≈ 8.46).

Beyond the primary bifurcation at Res > Rec1
s , the TVF undergoes a secondary

bifurcation at Res = Rec2
s that gives birth to an oscillatory state, called the WTV, marked

by empty blue circles in figure 1(a). It is evident from figure 1(a) that Rec2
s (Ω) increases

rapidly with increasing co-rotation, and the stabilizing role of the co-rotation at the
secondary onset agrees qualitatively with previous experiments (Coles 1965; Andereck
et al. 1986). Note in figure 1(a) that the WTV state disappears for Ω ≥ 0.2 over the
range of Res explored in the present study. Referring to the case where only the inner
cylinder is rotating (Ω = −10−3 ≈ 0), we find that with further increase in Res > Rec2

s ,
the WTV undergoes a tertiary bifurcation, leading to the modulated wavy vortex (MWV;
the cyan region near the left top corner in figure 1a) at Res(Ω, φ = 0) ≥ Rec3

s ; the latter
is a quasi-periodic state, characterized by two incommensurate frequencies in the power
spectrum of the scattered light intensity (Andereck et al. 1986; Singh et al. 2022). Note
that the MWV is found over a small range of Res(φ) at Ω = −10−3 and ceases to exist at
Ω ≥ 0.05 over the maximum range of Res(Ω, φ) explored.

One notable difference of the present results with Andereck et al. (1986) is that the
secondary and tertiary transitions to WTV and MWV occur at higher values of Rec2

s and
Rec3

s , respectively. This may be attributed to the smaller aspect ratio of our TC cell for
which the Ekman vortices are likely to be stronger, thus delaying the onset of oscillatory
motion (Cole 1976; Mullin & Benjamin 1980).

3.1.2. Suspension TCF under co-rotation
Moving on to suspensions, figure 1(b) displays the phase diagram of patterns at φ = 0.15.
The inset of figure 1(b) confirms (as by Majji et al.’s (2018) original work for the case of
Ω = 0) that the RIB, a ‘non-axisymmetric’ state, is the primary bifurcating state over Ω ∈
(0, 0.65) during the up-sweep run (marked by the green up-triangles), while during the
down-sweep run, the TVF (marked by the filled red down-triangles) and the spiral vortex
flow (SVF, marked by filled cyan down-triangles) are found as the primary bifurcating
states over Ω = (0, 0.3) and Ω > 0.3, respectively. Note that RIB exists over a small range
of Res(φ) during the up-sweep run; it transitions to TVF with increasing Res at Ω ≤ 0.3,
and to SVF at Ω ≥ 0.5, with the latter finally transitioning to TVF with further increase in
Res. Looking at the hysteretic/bistable (i.e. the coexistence of TVF and RIB/SVF) region,
marked by the grey patch in the inset of figure 1(b), we find that the degree of hysteresis
Rec1

s (φ) = |Rec1
s (φ)↑ − Rec1

s (φ)↓| decreases with increasing co-rotation.
The characteristic features of the RIB and SVF states can be ascertained from

figures 2(a,c) and 2(b,d), respectively. While the SVF represents a helical wave that
propagates along both axial and azimuthal directions, the RIB is a superposition of left-
and right-handed spirals (Chossat & Iooss 1994), resulting in an axially standing wave
that rotates along the azimuthal direction (Majji et al. 2018; Singh et al. 2022); the latter
may also be called the rotating standing wave, RSW↔RIB. The space–time diagram
of the RIB state in figure 2(a) resembles a checkerboard-like pattern, with a dominant
frequency of ωRIB/ωi ≈ 0.1, as marked by the green circle in figure 2(c). However, the
dominant frequency of the SVF mode in figure 2(d) is located at ωSVF/ωi ≈ 0.72, which
is much larger than that of the RIB mode. This order-of-magnitude difference between
the dominant frequencies at the onset of the SVF and RIB modes persists at all Ω ,
see figure 3(a). The latter figure also confirms a key difference between SVF and RIB:
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Figure 2. (a,b) Space–time diagrams over 8 s of the (a) ribbon (RIB) and (b) spiral vortex flow (SVF) states,
and (c,d) the power spectra of the scattered light intensity as computed from images captured at a frame rate of
60 s−1. While the green circle in panel (c) refers to the frequency of RIB ( fRIB), the magenta circle and crosses
in panel (d) represent frequency of the SVF mode ( fSVF) and its harmonics. The red down- and up-triangles
mark the frequencies of the inner ( f∇ ) and outer ( fΔ) cylinders, respectively, and their harmonics. Parameter
values are (a,c) RIB at (Res, Ω, φ) = (113.70, 0.05, 0.15) and (b,d) SVF at (Res, Ω, φ) = (78.53, 0.5, 0.15)

during up-sweep runs.
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Figure 3. Dominant frequencies at the onset of RIB (circles) and SVF (diamonds), normalized by the effective
rotation rate ωsh = |ωi − ωo/η| = ωi|1−Ω/η|, at (a) φ = 0.15 and (b) φ = 0.3. The empty and filled
markers, respectively, denote the SVF data (i.e. the FFT analyses of the images from the high-speed camera at
200 fps) for up- and down-sweep runs.

the frequency (normalized by the effective rotation rate ωsh = ωi|1−Ω/η|) of RIB is
small and increases weakly with increasing co-rotation Ω (see the inset of figure 3a);
however, the normalized frequency of the spiral vortices (at the onset) increases sharply
with increasing Ω (marked by the diamond symbols in figure 3a).

With increasing Res(φ) in figure 1(b), the TVF bifurcates into WTV (marked by the
blue circles) which is a tertiary state during the up-sweep run at Ω ≤ 0.05, with an overall
bifurcation sequence of CCF→RIB→TVF→WTV. However, the WTV is found to be
the secondary state due to the non-existence of RIB, i.e. WTV→TVF→CCF, during
the down-sweep run, with the TVF↔WTV transition being hysteretic as marked by the
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Figure 4. (a,b) Space–Res(φ) diagrams (from the DSLR camera at 60 fps) and (c,d) the normalized frequency
ω/ωi versus Res(φ) (data from the high-speed camera at 200 fps), during (a,c) up-sweep and (b,d) down-sweep
runs for φ = 0.3 at Ω = −10−3.

vertical grey patch at Ω = 0.05 in figure 1(b). Comparing figure 1(b) with its particle-free
counterpart in figure 1(a), we find that the region of WTV in the (Res, Ω)-plane shrinks
with increasing φ, indicating the stabilizing role of particles on the onset of oscillatory
wavy vortices at Ω ≥ 0.

The pattern transitions differ significantly at higher particle loadings, see figure 1(c)
which depicts the phase diagram of patterns in the (Ω, Res)-plane at φ = 0.3, with a major
finding that the SVF is the primary bifurcating state at all Ω ∈ (0, 0.65) during both up-
and down-sweep runs; the corresponding variation of the dominant frequency of the SVF
mode at its onset with Ω can be ascertained from figure 3(b). It is seen in figure 1(c) that
the effect of co-rotation on spiral vortices is to decrease the onset value of Rec1

s (φ, Ω) with
increasing Ω; the rate of decrease of Rec1

s with Ω (i.e. dRec1
s /dΩ) is larger at φ = 0.3 than

that at φ = 0.15, indicating that the co-rotation has more destabilizing effect on primary
bifurcation at higher particle loading. The grey patch in the inset of figure 1(c) clarifies
that there is a small hysteresis for the CCF↔SVF transition at Ω ≤ 0.3, but the degree of
hysteresis (Res(φ)) decreases with increasing Ω , eventually becoming non-hysteretic
at Ω ≥ 0.5. The phase diagram in figure 1(c) can be sub-divided into two parts:
(i) Ω ≥ 0.1 over which only the SVF is found in the explored range of Res(φ); and
(ii) Ω ≤ 0.05 over which the SVF undergoes successive transitions to produce secondary
and higher-order states. The sequence of latter transitions can be appreciated from figure 4
that depicts (a,b) the space-Res(φ) diagrams and (c,d) the normalized frequency maps
ω/ωi at Ω = −10−3 ≈ 0.

For the ‘up-sweep’ run in figure 4(a,c) at φ = 0.3, the SVF state (denoted by the
filled magenta circles in panel c) exists at 112.2 ≤ Res(φ) < 245.3; the magenta crosses
represent the harmonics of the SVF mode. A high-frequency wavy mode, marked by
the filled blue circles in figure 4(c), appears in the frequency map at Res(φ) ≥ 245.3.
Interestingly, both the spiral mode and the wavy mode are found to coexist at 245.3 ≤
Res(φ) < 300.5 over which the pattern resembles wavy spiral vortices (WSV). A snapshot
of the WSV state is shown in figure 5(a) that clarifies the waviness of the spiral vortices,
while figure 5(c) reveals the presence of two distinct frequencies ( fSVF and fw) marked by
magenta and blue circles, respectively. The WSV mode ceases to exist at Res(φ) ≥ 300.5,
and the WTV state takes over at 300.5 ≤ Res(φ) < 367.7, see figure 4(c). The structural
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Figure 5. Patterns of (a,c) WSV (wavy spiral vortex) at Res(φ) = 290.90 and (b,d) WTV (wavy Taylor
vortex) at Res(φ) = 326.30 during up-sweep run at Ω = −10−3 for φ = 0.3, consisting of (a,b) snapshots
and space–time plots and (c,d) power spectra.

characteristics of the single-frequency WTV mode can be ascertained from figure 5(b)
and the corresponding power spectrum in figure 5(d) at Res(φ) = 326.3. At Res(φ) ≥
367.7, we find the appearance of an additional low-frequency mode (incommensurate) in
figure 4(c), a distinct characteristic of a quasi-periodic mode, called the MWV.

The above MWV state bifurcates into WTV at Res(φ) ≈ 318.5, during the
‘down-sweep’ run (figure 4b,d) with decreasing Res(φ), which continues to exist until
Res(φ) ≈ 218.3; the WTV bifurcates into TVF at Res(φ) ≈ 218.3 that further transitions
to SVF and finally the laminar CCF state appears at Res(φ) ≤ 121.2. Increasing the
co-rotation ratio slightly to Ω = 0.05 (see figure 1c), the WSV and MWV states disappear
and a transition sequence of CCF↔ SVF↔ TVF↔WTV is found during both up- and
down-sweep runs, with the primary bifurcation representing a non-axisymmetric (SVF)
mode.

3.2. Effect of particle loading at fixed Ω and the scaling of SVF frequencies
Figures 6(a) and 6(b) display the phase diagrams of patterns in the (φ, Res(φ, Ω)) plane
at Ω = 0.05 and 0.65, respectively, that refer to of (a) a nearly stationary outer cylinder
(Ω = 0.05 ∼ 0) and (b) close to the Rayleigh line Ω = η2 ≈ 0.8 (Rayleigh 1917). The
inset of figure 6(a) indicates that the TVF, RIB and SVF appear as the primary bifurcating
state at φ ≤ 0.05, 0.1 ≤ φ ≤ 0.2 and φ > 0.2, respectively. Note also in figure 6(a)
that while a transition sequence of CCF ↔ SVF ↔ TVF ↔ WTV holds at φ = 0.3
during both up- and down-sweep runs, the SVF emerges as an intermediate state between
RIB and TVF during the up-sweep run at φ = 0.2. An overall transition sequence of
CCF→RIB→TVF→WTV is found during the up-sweep run at φ = (0.1, 0.15), but the
RIB state disappears during the down-sweep run at φ = 0.15, see the inset of figure 6(a).
For the higher co-rotation case of Ω = 0.65 in figure 6(b), the (φ, Res(φ))-plane can be
divided into two regions where the primary bifurcating states are axisymmetric (TVF at
φ < 0.15) and non-axisymmetric (SVF/RIB at φ ≥ 0.15) modes, depending on the particle
loading. The higher-order mode transitions are absent in figure 6(b), due to the smaller
range of explored Res (with fmax = 50 Hz) at Ω = 0.65.
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Figure 6. (a,b) Phase diagram of patterns at (a) Ω = 0.05 and (b) Ω = 0.65; the line style and colour coding
are the same as in figure 1. Enlarged views of selected regions in panels (a,b) are shown in corresponding
insets. (c) Variations of the normalized frequency of the spiral vortices, ωSVF/ωsh, with (i) Res(0) at Ω = 0.65
for different φ (main panel) and (ii) ωSVF/ωi versus Ω at φ = 0.3 (inset); the dashed line in the inset of panel
(c) is given by (3.3). (d) ‘Res(0)-independent’ frequency of spirals at φ = 0.3 for different Ω; the open and
filled symbols for each Ω denote the data for up- and down-sweep runs, respectively.

Collectively, figure 6(a,b) indicates that the effect of particle loading at Ω = 0.05 and
0.65 is to decrease the critical values of Rec1

s (φ) for primary bifurcations, confirming the
destabilizing role of particles on the onset of primary states (TVF/SVF/RIB). However,
the critical Reynolds number ReWTV

TVF (φ) for the TVF↔WTV transition at Ω = 0.05
(figure 6a) has a non-monotonic dependence on the particle loading, indicating the dual
role of stabilization (at φ < 0.10) and destabilization (at φ ≥ 0.10) on the WTV mode.

The SVF such as in figures 1(c) and 6(a,b) truly represent particle-induced patterns
since they are absent in the particle-free TCF. Two distinctive features of these spirals
are as follows: its wave speed (i) is nearly independent of the ‘fluid’ shear Reynolds
number Res(0); and (ii) increases weakly with increasing particle volume fraction (φ), as
confirmed in the main panel of figure 6(c) at Ω = 0.65. This finding is in stark contrast to
the scaling for the wave speed of the ‘fluid-induced’ spirals, ωSVF ∝ Res(0)−0.78μr(φ)0.42

(Singh et al. 2022), that are found in the counter-rotation regime of the suspension TCF.
The third distinctive feature of the ‘particle-induced’ spirals is that its wave speed increases
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with increasing Ω ,

ωSVF(Ω)

ωi
= α1Ω + α2 ⇒ ωSVF(Ω)

ωsh
= (α1Ω + α2)

(
1− Ω

η

)−1

, (3.3)

see the black dashed line in the inset of figure 6(c), indicating the linear variation of
ωSVF/ωi with the rotation ratio Ω; here, (α1, α2) ≈ (0.522, 0.46) and ωsh = ωi(1−Ω/η)

is the effective rotation rate across the annular gap. The limiting value of ωSVF(Ω = 0) ≈
0.46ωi from (3.3) agrees closely with that reported by Ramesh et al. (2019), ωSVF/ωi ≈
0.45, see their figure 16(c), for the case of the pure inner cylinder rotation (Ω = 0). While
the data in the inset of figure 6(c) represent the onset SVF frequency, its independence with
Res(0) at any Ω is confirmed in figure 6(d). We conclude that the spiral vortices become
progressively faster as we move closer to the Rayleigh line (Ω = η2 or Reo = ηRei) beyond
which the TCF is stable and the fluid inertia Res(0) has a negligible effect on its wave
speed.

3.3. Discussion and theoretical perspectives
Returning to figure 4, the observed differences in the transition sequence for φ = 0.3
between up- (figure 4a,c) and down-sweep (figure 4b,d) runs indicate the multi-stability
among different patterns at Ω = −10−3 ≈ 0 for which the transitions occur with
pronounced hysteresis. Such hysteretic patterns/states mirror previous findings at Ω = 0
(Majji et al. 2018; Ramesh et al. 2019; Dash et al. 2020; Moazzen et al. 2022) and are
known to persist in the counter-rotation regime Ω < 0 (Singh et al. 2022) too. Concerning
the effect of co-rotation on hysteresis, the insets of figure 1(b,c) confirmed that the degree
of primary hysteresis decreases in the co-rotation regime for finite φ > 0.

One interesting finding in figure 4(c,d) is that the fundamental (passage) frequency of
the wavy vortices ωWTV/ωi decreases with increasing shear Reynolds number Res(φ) at
Ω ≈ 0; we verified that this observation holds for all Ω > 0 and φ. This result echoes the
previous findings of: (i) Singh et al. (2022) in the counter-rotating (Ω < 0) suspension
TCF and (ii) King et al. (1984) in the particle-free TCF at Ω = 0. Possible reasons for the
initial decay of ωWTV(Res) with increasing Res could be: (i) the increase in the wave-length
of the wavy vortices; (ii) the generation of the harmonics of the fundamental mode; and
(iii) the appearance of incommensurate modes (MWV) in the same limit – this remains an
open issue for the future.

The future work on theoretical fronts should focus on predicting the onset of primary
and higher-order transitions from linear (Taylor 1923; Majji et al. 2018; Gillissen &
Wilson 2019) and nonlinear (Shukla & Alam 2009) stability analyses or direct numerical
simulations (Kang & Mirbod 2021; Kang et al. 2024) of the pertinent continuum equations
(Nott & Brady 1994; Morris & Boulay 1999). The underlying constitutive model for
the particle stress must account for inertial migration phenomena (Majji & Morris 2018;
Ramesh et al. 2019; Baroudi et al. 2020) since the particle Reynolds number Rep ∼ O(1)

remains an order-one quantity in all these experiments. The discrepancies between model
predictions (Gillissen & Wilson 2019; Kang & Mirbod 2021) and experimental results
(Majji et al. 2018; Ramesh et al. 2019) have been critically analysed in a recent review
article by Baroudi et al. (2023) who concluded that the existing continuum models
are not adequate to describe the behaviour of inertial suspensions. A stringent test of
the applicability of such theoretical models would be to verify if they can predict the
distinction between particle-induced and fluid-induced spirals in terms of their wave
speeds (3.3), a key finding of the present work.
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4. Conclusions

Based on the first set of experiments in the co-rotation regime (Ω ≥ 0) of the suspension
Taylor–Couette flow (TCF), we showed that while the bifurcation sequence of CCF ↔
TVF ↔ WTV holds in a dilute suspension (φ ≤ 0.05), the non-axisymmetric states,
such as the SVF and RIB, are born as primary bifurcations with increasing particle
loading (φ ≥ 0.1), as summarized in figures 1(b,c) and 6(a,b). The latter states are
analogues of the ‘particle-induced’ patterns reported in the recent studies at Ω = 0 (Majji
et al. 2018; Ramesh et al. 2019). Both the co-rotation (Ω) and the particle loading
(φ) are found to promote an early onset of the primary instability (TVF/SVF/RIB) and
hence destabilizing. Increasing Ω delayed/suppressed the onset of WTV, indicating its
stabilizing role on the secondary/tertiary WTV state, but the particle loading can stabilize
(φ < 0.1) or destabilize (φ ≥ 0.1) WTV at small Ω ∼ 0. The distinguishing feature of the
‘particle-induced’ spiral vortices is quantified in terms of its wave speed which is found
to increase with increasing Ω but remain nearly independent of the fluid inertia (Res(0))
– the latter finding is in contrast to the strong dependence on (Res(0), φ) of the wave
speed of the ‘fluid-induced’ spirals (Singh et al. 2022) that operate in the counter-rotating
TCF (Coles 1965; Andereck et al. 1986). Theoretical explanations of the particle-induced
signatures on our experimental results are awaited.

Acknowledgements. We sincerely thank Mr D. Das and Dr S. Raha of Anton-Paar India Pvt. Ltd. for
arranging discussions with the R&D Team of Anton-Paar GmBH (Graz, Austria) – this led to the updated
version (2022) of the RheoCompass software for the co-rotation regime of two motors. M.G. acknowledges
the Science and Engineering Research Board (India) for the Postdoctoral Fellowship (PDF/2020/000916)
during 2021–2022; he also acknowledges JNCASR for continued support (2023–) via the Centre’s Postdoctoral
Fellowship.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Manojit Ghosh https://orcid.org/0000-0003-1439-1797;
Meheboob Alam https://orcid.org/0000-0002-8900-5224.

REFERENCES

ALAM, M. & GHOSH, M. 2023 Unified torque scaling in counter-rotating suspension Taylor–Couette flow.
Phil. Trans. R. Soc. A 381 (2243), 20220226.

ALI, M.E., MITRA, D., SCHWILLE, J.A. & LUEPTOW, R.M. 2002 Hydrodynamic stability of a suspension
in cylindrical Couette flow. Phys. Fluids 14 (3), 1236–1243.

ANDERECK, C.D., LIU, S.S. & SWINNEY, H.L. 1986 Flow regimes in a circular Couette system with
independently rotating cylinders. J. Fluid Mech. 164, 155–183.

BAROUDI, L., MAJJI, M.V. & MORRIS, J.F. 2020 Effect of inertial migration of particles on flow transitions
of a suspension Taylor–Couette flow. Phys. Rev. Fluids 5, 114303.

BAROUDI, L., MAJJI, M.V., PELUSO, S. & MORRIS, J.F. 2023 Taylor–Couette flow of hard-sphere
suspensions: overview of current understanding. Phil. Trans. R. Soc. A 381 (2243), 20220125.

CHOSSAT, P. & IOOSS, G. 1994 The Couette-Taylor Problem. Springer.
COLE, J.A. 1976 Taylor-vortex instability and annulus-length effects. J. Fluid Mech. 75, 1–15.
COLES, D. 1965 Transition in circular Couette flow. J. Fluid Mech. 21, 385–425.
COUETTE, M.M. 1888 Sur un nouvel appareil pour l’etude du frottement des fluids. Comptes. Rend. 107,

388–390.
DASH, A., ANANTHARAMAN, A. & POELMA, C. 2020 Particle-laden Taylor–Couette flows: higher-order

transitions and evidence for azimuthally localized wavy vortices. J. Fluid Mech. 903, A20.
DUBRULLE, B., DAUCHOT, O., DAVIAUD, F., LONGARETTI, P-Y, RICHARD, D. & ZAHN, J-P. 2005

Stability and turbulent transport in Taylor–Couette flow from analysis of experimental data. Phys. Fluids
17 (9), 095103.

995 R4-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

78
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0003-1439-1797
https://orcid.org/0000-0003-1439-1797
https://orcid.org/0000-0002-8900-5224
https://orcid.org/0000-0002-8900-5224
https://doi.org/10.1017/jfm.2024.785


Instabilities and patterns in co-rotating suspension TCF

DUTCHER, C.S. & MULLER, S.J. 2009 Spatio-temporal mode dynamics and higher order transitions in high
aspect ratio Newtonian Taylor–Couette flows. J. Fluid Mech. 641, 85–113.

ECKHARDT, B., GROSSMANN, S. & LOHSE, D. 2007 Torque scaling in turbulent Taylor–Couette flow
between independently rotating cylinders. J. Fluid Mech. 581, 221–250.

ESSER, A. & GROSSMANN, S. 1996 Analytic expression for Taylor–Couette stability boundary. Phys. Fluids
8, 1814–1819.

GILLISSEN, J.J.J. & WILSON, H.J. 2019 Taylor–Couette instability in sphere suspensions. Phys. Rev. Fluids
4, 043301.

GOLLUB, J.P. & SWINNEY, H.L. 1975 Onset of turbulence in a rotating fluid. Phys. Rev. Lett. 35, 927–930.
GROSSMANN, S., LOHSE, D. & SUN, C. 2016 High–Reynolds number Taylor–Couette turbulence. Annu. Rev.

Fluid Mech. 48, 53–80.
GUAZZELLI, E. & POULIQUEN, O. 2018 Rheology of dense granular suspensions. J. Fluid Mech. 852, P1.
HEGSETH, J.J., BAXTER, G.W. & ANDERECK, C.D. 1996 Bifurcations from Taylor vortices between

corotating concentric cylinders. Phys. Rev. E 53, 507.
HEISE, M., HOFFMANN, C., WILL, C., ALTMEYER, S., ABSHAGEN, J. & PFISTER, G. 2013 Co-rotating

Taylor–Couette flow enclosed by stationary disks. J. Fluid Mech. 716, R4.
KANG, C. & MIRBOD, P. 2021 Flow instability and transitions in Taylor–Couette flow of a semidilute

non-colloidal suspension. J. Fluid Mech. 916, A12.
KANG, C., SCHATZ, M.F. & MIRBOD, P. 2024 Hysteresis and ribbons in Taylor–Couette flow of a semidilute

noncolloidal suspension. Phys. Rev. Fluids 9, 023901.
KING, G.P., LI, Y., LEE, W., SWINNEY, H.L. & MARCUS, P.S. 1984 Wave speeds in wavy Taylor-vortex

flow. J. Fluid Mech. 141, 365–390.
LUEPTOW, R.M., HOLLERBACH, R. & SERRE, E. 2023 Taylor–Couette and related flows on the centennial

of Taylor’s seminal Philosophical Transactions paper. Phil. Trans. R. Soc. A 381 (2243), 20220140.
MAJJI, M.V., BANERJEE, S. & MORRIS, J.F. 2018 Inertial flow transitions of a suspension in Taylor–Couette

geometry. J. Fluid Mech. 835, 936–969.
MAJJI, M.V. & MORRIS, J.F. 2018 Inertial migration of particles in Taylor–Couette flows. Phys. Fluids 30,

033303.
MOAZZEN, M., LACASSAGNE, T., THOMY, V. & BAHRANI, S.A. 2022 Torque scaling at primary and

secondary bifurcations in a Taylor–Couette flow of suspensions. J. Fluid Mech. 937, A2.
MORRIS, J.F. & BOULAY, F. 1999 Curvilinear flow of non-colloidal suspensions: the role of normal stresses.

J. Rheol. 43, 1213–1237.
MULLIN, T. & BENJAMIN, T.B. 1980 Transition to oscillatory motion in the Taylor experiment. Nature 288,

567–569.
NOTT, P.R. & BRADY, J.F. 1994 Pressure-driven flow of suspensions: simulation and theory. J. Fluid Mech.

275, 157–199.
RAMESH, P. & ALAM, M. 2020 Interpenetrating spiral vortices and other coexisting states in suspension

Taylor–Couette flow. Phys. Rev. Fluids 5, 042301.
RAMESH, P., BHARADWAJ, S. & ALAM, M. 2019 Suspension Taylor–Couette flow: co-existence of stationary

and travelling waves, and the characteristics of Taylor vortices and spirals. J. Fluid Mech. 870, 901–940.
RAYLEIGH, LORD 1917 On the dynamics of revolving fluids. Proc. R. Soc. Lond. A 93, 148–153.
SHUKLA, P. & ALAM, M. 2009 Landau-type order parameter equation for shear-banding in granular plane

Couette flow. Phys. Rev. Lett. 103, 068001.
SINGH, S.P., GHOSH, M. & ALAM, M. 2022 Counter-rotating suspension Taylor–Couette flow: pattern

transition, flow multiplicity and the spectral evolution. J. Fluid Mech. 944, A18.
SYNGE, S.L. 1938 On the stability of a viscous liquid between rotating co-axial cylinders. Phil. Trans. R. Soc.

Lond. A 167, 250–256.
TAYLOR, G.I. 1923 Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc.

A 223, 289–343.

995 R4-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

78
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.785

	1 Introduction
	2 Experimental details
	3 Results and discussion
	3.1 Effect of co-rotation on pattern transitions
	3.1.1 TCF of particle-free (=0) Newtonian fluid under co-rotation
	3.1.2 Suspension TCF under co-rotation

	3.2 Effect of particle loading at fixed  and the scaling of SVF frequencies
	3.3 Discussion and theoretical perspectives

	4 Conclusions
	References

