
TENSOR PRODUCTS OF BANACH ALGEBRAS 

BERNARD R. GELBAUM 1 

1. Introduction. This paper is concerned with a generalization of some 
recent theorems of Hausner (1) and Johnson (4; 5). Their result can be 
summarized as follows: Let G be a locally compact abelian group, A a commu­
tative Banach algebra, B1 = Bl(G,A) the (commutative Banach) algebra of 
A-valued, Bochner integrable junctions on G, 3D?i the maximal ideal space of A, 
2ft2 the maximal ideal space of L1(G) {the [commutative Banach] algebra of 
complex-valued, Haar integr able functions on G), SJh the maximal ideal space 
of B1. Then 9K3 and the Cartesian product SDîi X SDÎ2 are homeomorphic when 
the spaces SO?*, i — 1, 2, 3, are given their weak* topologies. Furthermore, the 
association between 5DÎ3 and Wli X SDÎ2 is such as to permit a description of any 
epimorphism E3: B1 —> Bl/M% in terms of related epimorphisms E\\ A —> A/Mi 
and E2:L

1(G) ->Ll(G)/M2, where Mi is in Wu i = 1, 2, 3. 
On the other hand, Hausner (2) (and the author, independently) showed 

that a similar result is valid for generalized continuous function algebras. One 
form of the theorem is the following : Let X be a compact Hausdorff space, A a 
commutative Banach algebra, D = C(X, A) the (commutative Banach) algebra 
of A-valued continuous functions on X, 3J?i the maximal ideal space of A, 9D?2 

the maximal ideal space of C(X) (the [commutative Banach] algebra of com­
plex-valued continuous functions on X), $^3 the maximal ideal space of D. Then 
5DÎ3 and the Cartesian product Tli X 3J?2 are homeomorphic when the spaces 
S)?*, i = 1, 2, 3, are given their weak* topologies. Furthermore, the association 
between $D?3 and SDîi X SDÎ2 is such as to permit a description of any epimorphism 
Ez\ D —» D/Mz in terms of related epimorphisms E\\ A —> A/Mi and E2: C(X) 
-> C(X)/M2, where Mt is in Wii, i = 1,2, 3. 

The crucial point in the latter theorem is the proof that D is spanned by 
''simple" functions, that is, functions which are linear combinations, with 
coefficients in A, of complex-valued continuous functions on X. On the other 
hand, the very definition of B1 shows that it is spanned by "simple" functions, 
that is, this time, functions which are linear combinations, with coefficients 
in A, of complex-valued, Haar integrable functions on G. Clearly, in each 
instance, the collection of "simple" functions is an algebra which is a tensor 
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298 BERNARD R. GELBAUM 

product of A and some complex function algebra, and the object of discussion 
is the completion of this tensor product with respect to an appropriate norm. 

2. Tensor products. Let A\ and A2 be Banach algebras and let Az = 
A\ ® A2 be their algebraic tensor product (0). As is well known, (6) there 
are generally many norms which can be given to Az in terms of the norms of 
Ai and A2. Our first result is about one of these norms. 

THEOREM 1. Let || . . . ||* be the norms in Au i = 1, 2. Then the "greatest 
cross norm' (6) defined in Az by 

\ t «i4) ® M \ = inf t \\a?\\i\\ai0\\t, 

where the inf is taken over the equivalence class which defines 

t oi° ® a?, 

is a Banach algebra norm which satisfies the relationship 

W II ai ® a2 \\z = || ai ||i || a2 \\2. 

Proof. In (6) the validity of the last equality is shown. We prove here the 
fact that if p, q are in Az', then \\pq\\z < I Wh'l lulls'. To this end, let r > 0 
be given. Then there is a choice of a±(i\ a2

(i), biiJ\ b2
a) for which 

n m 

£ ai4) <g> a^ and £ b[n ® bï» 
i= l ;=1 

define the respective equivalence classes of p and q and for which 

I b l | i | l 2 l l i > ( î ; l l ^ l l x l l ^ H ^ E H ^ l k l l ^ i u ) - r . 

The last expression is 

which majorizes 

Z II^IMI^IMI^INI^I 

£ H o i V ^ l l x l l a ^ ^ l ^ - r . 

Obviously, the last expression majorizes Hulls' — r. Since r is an arbitrary 
positive number, we see H^IU'IMU' > Hulls'. This completes the proof. 

THEOREM 2. Let Az be the completion of Az endowed with the ugreatest cross 
norm" ||. . .H3'. Let Ai be commutative and let Wit be their respective maximal 
ideal spaces with their respective weak* topologies, i = 1, 2. Then Az is a com­
mutative Banach algebra. Its norm ||. . .||3 satisfies the analogue 

$ liai ® a2\\z = llaillsll^lls 
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of $ ' . If ||. . .||3" is any tensor product norm relative to which Az is a normed 
algebra, with no dense reg. max. ideal {for example, if\\ • • • 113" is the greatest cross 
norm), and if A3 is the completion of A% relative to \\ • • • ||3", then Azis a com­
mutative Banach algebra and its maximal ideal space 9K3 in its weak* topology is 
homeomorphic with the Cartesian product 2Jii X 9J?2- Let t be the homeomorphism 
the existence of which is asserted: t: 2Ji3 —» 9)?i X 9JÎ2, and let t(Mz) = (Mi, M2). 
Then the epimorphisms 

Ei-.A! -iAx/Mi, E2: A2 ->A2/M2, £ 3 : Az -> Az/Mz, 

are uniquely determined by the respective maximal ideals Mif i = 1, 2, 3; Ei and 
E2 together determine Ez and conversely. 

Proof. The commutativity of A 3 and the validity of $ are clear consequences 
of the hypotheses. 

Since At/Mu i = 1, 2, 3, is the complex numbers, and since each epimor-
phism Eu i = 1, 2, 3 commutes with multiplication by complex numbers 
(cEi(a) = Et(ca), c complex, a in At) and since the complex numbers admit 
no non-trivial automorphism which commutes with multiplication by com­
plex numbers, the uniqueness of the E{ follows. 

We now proceed to set up a 1 — 1 correspondence between $D?3 and SDîi X 5DÎ2-
After this has been accomplished, the correspondence will be shown to be a 
homeomorphism. With a view to greater ultimate generality, we shall, how­
ever, show how to establish the kind of correspondence we need between 
3)îi X 5DÎ2 and a part of 9JÎ3 under conditions far less restrictive than those 
imposed in the hypothesis of Theorem 2. This correspondence will serve when 
the hypothesis of Theorem 2 is in force and will in fact prove to be the homeo­
morphism which is sought. What follows then is an interlude, justified and 
required by economy. 

During this interlude we shall not assume that Ai and A2 are commuta­
tive. 9Wi and 5DÎ2 will denote their respective spaces of (two-sided) regular 
maximal ideals. For each pair (Mi, M2) in SDîi X SDÎ2, let Ei and E2 be some 
epimorphisms Et: A t —» A i/Mu i = 1,2. For p in Az, define Ez by the 
formula 

a member of the tensor product (A1/M1) (8) (A2/M2), where 

Z ai» ® a^ 
1 = 1 

is some representation of p. Clearly Ez(p) does not depend on the repre­
sentation of p and is an epimorphism of A% . Ez': Az —> {A J Mi) ® (A2/M2). 
Let Az have the norm || • • • | |" and let £3

/(^43
/) have the quotient space 

norm (which is independent of the choice of Ei and E2). The quotient space 
norm is admissible as a true norm since Az has no dense reg. max. ideal. Then, 
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relative to these topologies, J23' is a bounded (hence uniformly continuous) 
transformation of Az and has a unique extension Ez, an epimorphism of Az 
onto the completion of (Ai/Mi) ® (A2/M2) relative to its (quotient space) 
norm. 

Let Mz = E3
_1(0). M3 is an ideal in Az. \i ux are identities modulo Mt in 

Au (i — 1, 2), then Ez{u\ ® w2) is an identity in E3(^43), whence M3 is 
regular. Consequently, there is a regular maximal ideal Nz which contains 
Mz. We shall show that Nz and Mz are the same. 

For this purpose, we define two mappings G* of A t into £3(^43), i = 1, 2, as 
follows : 

Gt((ii) = EzidiU), i = 1,2, 

where at is in A * and w is an identity modulo Mz. Clearly Gi(ai) is independent 
of the choice of u. Let Fz be some epimorphism, E3: Az —» ^43/iV3, and let il<, 
i = 1,2, be engendered by F3 as G* are engendered by E3. We will show 
that Mt = -ffrHO) = GrHO) = JSrHO), (i = 1,2). 

If ai is in Mi, then Ei(ai) = 0, whence Ez{a\u) = Ez(aiUi ® u2) = 
Ei(aiUi) ® E2(u2) = 0 (where u = Ui ® u2). Thus Gi(ai) = 0 and hence Mi 
is contained in Gi_1(0). Since Gi-1(0) is a proper ideal and Mi is a maximal 
ideal we see that Mi = Gr^O) . 

Since aiWi ® w2 is a member of Mz which is a subset of Nz, it follows that 
Fz(aiUi ® w2) = 0 = Hi(di). We see that Mi is contained in iJi_1(0) which 
is a proper ideal of A\. Since Mx is maximal, it follows that Mi = iJi - 1(0). Of 
course, by definition, Mi = Ei - 1(0). Analogously, we can show M2 = iJ2

_1(0) 
= G2-U0) = Ea-KO). 

In order to continue we shall require the following lemmas. 

LEMMA 1. Let A be a Banach algebra, I a closed ideal of A and let E and 
E" be two epimorphisms, E: A —> A/I, E"\A—*A/I. Then, relative to the 
quotient space {norm) topology of A/1, there is an isometric automorphism a 
of A/I, a commutes with complex multiplication and E = a E"'. 

Proof. For b in A/I, let E"'(a) = b and let a(b) = E{a). If E"(a') = &. 
then a' — a is in / , whence E(af) = E(a) and thus a(b) is uniquely defined. 
If E{a") = b, then aE"{a") = E{a") = b, whence a is an automorphism, 
which clearly commutes with complex multiplication. Finally, if || • • • ||A and 
|| • • • || are the respective norms of A and A/1, we see 

| |a(J)| | = \\E(a)\\ = i n f {||a + t | U * i n I } . 

On the other hand, 

||è|| = \\E"{a)\\ = i n f { | | a + * |U l t in /} , 

whence | |a(i) | | = ||ô|| and a is an isometry. 

LEMMA 2. Let Ai be Banach algebras, Ii closed ideals %n /i i, Et, Et" epi­
morphisms, Ei\ At-^> A i/Iu Ei"\ Ai—*A i/Ii, at the isometric automorphisms 
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(Lemma 1) for which Ei = aiE", i = 1,2, and let a be the tensor product 
«i ® a2. If A\ ® A2 is given some tensor product norm with respect to which 
A i ® A 2 becomes a normed algebra, then a is an isometric automorphism of 
(Ai/Ii) ® (A2/I2) relative to the quotient space norm described earlier. If Er 

and ( £ ' ) " are the respective epimorphisms engendered by £1, E2 and E\", £ 2 " , 
then E' = a (£ ' )" . 

Proof. The fact that a is an automorphism is clear, as is the relationship 
£ ' = a{E')". If b is in (Ai/Ii) ® (A2/h), then a representative of b is an 
expression of the form 

A representative of a (b) is the expression 

2 £i(ai i}) ® £ 2 ( a ^ ) . 

The argument given in Lemma 1 may be repeated mutatis mutandis to 
show that a(b) and b have the same norm. 

LEMMA 3. Let A be a normed algebra and let a be an isometric automorphism 
of A which commutes with complex multiplication. If the completion Â of A is 
simple, so is the completion a A of aA. 

Proof. Since a is an isometry, it may be extended in a unique fashion to 
an isometric automorphism â of A which commutes with complex multipli­
cation. Clearly 5(A) = aA, whence the simplicity of A implies the sim­
plicity of aA. 

From the preceding paragraphs and lemmas we can conclude that there 
exist isometric automorphisms au pt of A J Mi which commute with complex 
multiplication and which satisfy the relations Ht = atGi = PiEi7 (i — 1 ,2) . 
If £ is the tensor product /?i 0 /32, then $ is an isometry of (A1/M1) and the 
following relationship is valid: 

FziAJ) = ]8((-4i/Mi) ® (A2/M2)) = PEt(Az'). 

Since the completion of Fz(Az') is ^3(^3) which is simple, and since /3"1 is 
an isometry, we see (Lemma 3) that the completion of P^FziAz) is simple 
and hence that the completion of Ez(Az) is simple. Hence M% = E3

_1(0) is 
a regular maximal ideal, and thus M$ = N*. 

We have shown how to associate with each pair (Mi, M2) a maximal ideal 
M%. The method of association demands that we show that Mz is uniquely 
determined in this manner by the pair (Mi, Af2), regardless of which epi­
morphisms Ei, £2 , etc., are used in the construction. 

To this end, suppose that Ei", E2
; / are chosen in place of Ei, E2i at the 

beginning of our construction. Then there are automorphisms 7* of Af/Mi 
such that E/' = yiEu (i = 1,2). Let £3" be engendered by £1" , £ 2 " as £3 
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is engendered by Eu E2, and let E 3 " engender G/' , G2" as £ 3 engenders Gi, 
G2. Then there are automorphisms 71-* of A J Mi which satisfy G/ ' = 7r*E<, 
i = 1, 2. If we set T equal to the tensor product ir\ ® 7r2, we see that E 3 " = TTEZ 

and hence that (E3")_1(0) = E%~l(Qi). Thus ikf3 is uniquely determined, even 
though the epimorphisms involved in its determination are not unique. 

The interlude is over and we continue the proof by using the complete 
hypothesis of our theorem. 

We proceed to establish a correspondence between elements of $D?3 and 
elements of SDîi X SDÎ2- If Mz is in 9K3 and if JE3 is the (unique) epimorphism, 
E3 : Ai —> ^43/M3, we can define Gu i = 1, 2, as we did above in the more 
general context. This time we define Mt to be GrHO)» (i = 1,2). We will 
show that Mi and M2 are maximal ideals which engender, in the manner 
described above, a maximal ideal which is precisely Mz- The circle will thereby 
be closed. 

The commutativity of Ai and A2 implies that A/ (and hence A%) is com­
mutative. Let u be an identity modulo Af3. Then if p (in Az)} represented by 

t ai0 ® a?, 

is so near to u that Ez{p) ^ 0, we see that so'me term in the representation 
of Ez(p) is not zero. Hence for some io, 

G1(a[i0))1G2(a
i
2
i0)) 

are both not zero. It follows, since A%/M% is the complex number system, 
that Gi are non-trivial epimorphisms, G*: A t —> C (the complex number sys­
tem), whence Mt are maximal ideals, (i = 1,2). 

Clearly, if Mz" is the maximal ideal engendered by the Mt in the manner 
described earlier, then Mz' contains Af3, and, since Mz is maximal, Mz' and 
Mz are the same. 

Thus we have established a 1-1 correspondence t between 9ft3 and 
2tti X WI2. 

The homeomorphism between 9Ji3 and 93?i X 2)?2 can be established as 
follows. If a is in a commutative Banach algebra A, M is a maximal ideal 
of ^4, then a+(M) denotes the complex number into which a is mapped when 
A is reduced modulo M. If M"03 is in 9K3, if J(Mo3) = (Mou M02) and if 
N(Mou M02) is a neighbourhood of (ikf0i, M02) in SDîi X 9D?2 we may assume 
N(Moi, M02) is of the form N(M0i) X N(M02) where N(M0i) are neighbour­
hoods of ikfoz in M*, (i = 1,2). But 

N(Moi) = {Mi \a$i(Mt) - a%(M0i)\ < rt,j = 1, 2, . . . , J i f r, > 0}. 

Consider 

N(Moz) = 
{M3|(a,i 0 w2)+(M3) - (a ;i ® O+(M 0 3 ) | < ruj = 1, 2, . . . , 7 lf 

|(«i ® a i2)+(M3) - («1 ® aj2)
+(MGz)\ < r2,j = 1, 2, . . . , J2], 
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where ut are identities modulo Mu i — 1, 2, and t(Mz) = (Mi, M2). Since 
(«i ® a2)+(M3) = a2

+(M2), we see £(iV(M03)) is contained in N(M0U M02). 
On the other hand, let 

N(Moz) = {M3|a,(M3) - %(M03)| < r,j = 1, 2, . . . / } . 

Choose 

P, = Ë a(, i 09 # î 2 in Ai 

so that ||ay - P , | | 3 " < r /3 , j = 1, 2, . . . , / . Let 

iV(Moi) = {Mi |a(/i)+(Mi) - a(/!)+(Moi)| < r/(QJn(2R1 + r)), 

i = 1,2,. . . ,wj,j = 1,2,. . . , / } , 

where 
J 

n = H nj,Ri = sup i i ( /{||a (u||i}. 

Similarly let 

iV(Mo2) = {M2| |a(/2
)+(M2) - a(/2

)+(M02)| < r/6Jn(2R2 + r)), 

i= 1,2,...,n„j= 1 , 2 , . . . , / } . 

Then if M3 = (Mi, M2) is in iV(Moi) X iVr(M02), we see 

|a|(M3) - 4 ( M o ) | 

< I (a, - P , ) + (M 8 ) | + | (a, - P ,0 + (^o 3 ) | + |PT(M) - PÎ(M 0 3 ) | 

< 2r/3 + £ a(/i)+(Mi)a(/2
)+(M2) - a(/i)+(M0i)a(/2

)+(M02) < r , 

and hence r 1 ^ W)i ) X N(M02)) C N(M03), and £ is a homeomorphism. The 
proof of Theorem 2 is complete. 

The following remarks are in order at this point.* 

1. A little reflection shows that Bl(G, A) is the completion of the tensor 
product of Ll{G) and A relative to the norm: 

n I / /* I n 

X) Xi(x)aJ = I X) ^i(^)^2 
i= l I' t / G U Z=1 

dx. 

2. The result of Hausner and the author shows that C(X, A) is the com­
pletion of the tensor product of C{X) and A relative to the norm: 

X) \i(x)a\ sup X ^i{oc)a \xex }. 
*At the time of the writing of this paper, the author was unaware of the results of Willcox 

(8) and of the appearance of Hausner's paper (3). Clearly the spirit expressed in the second 
paragraph, p. 876 of (8) has motivated much of our study. 
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3. The tensorial approach explains and unifies a collection of phenomena 
and symmetries hitherto observed without comprehension. 

For example, Johnson (5) shows that Bl(G,Ll(H)) and Ll(G X H) are 
isomorphic if G and H are locally compact abelian groups. From our standpoint 
B1(G, Ll(H)) is the completion of the tensor product Ll(G) (g) Ll(H). Relative 
to this format, Johnson's theorem is essentially the statement that Ll(G) 
® Ll(H) (completed) and Ll(G X H) are isomorphic. The symmetry and 
truth of this statement are clarified by the tensorial viewpoint. 

4. When either of A\ or A2 is non-commutative, the most important 
topologies for the associated spaces of two-sided regular maximal ideals are 
the kernel-hull topologies (7). In general, under these circumstances, A will 
be non-commutative and even if the "natural" 1-1 map t: 9J?3 -~* 2)?i X 9J?2 
can be constructed, the question of the bi-continuity of / seems to be open. 

5. The property ty of || • • • ||3 is irrelevant to the existence of the homeo-
morphism t. The impact of Theorem 1 and the associated part of Theorem 2 
is the existence of norms for A 3' and A 3 relative to which they become normed 
or Banach algebras. 

6. When A\ and A2 are not assumed to be commutative, the following 
results obtain: 

(i) If Ai and A2 have il approximate identities" then the 1-1 mapping t: 
SD?3 —» SDîi X 5D?2 can be constructed. 

(ii) If A i and A2 have identities e\ and e2, and if t(Mz) = (Mi, M2), then 
M2 = Mz C\ (a ® A2) and Mi = Mè C\ (Ax ® e2). 

Proof. Ad(i) By an ''approximate identity" in At is meant an A rvalued 
function vip, on a directed set Pt such that 

l i m P î Vipdf = at 

for any at in Au (i = 1, 2). We have observed that SDîi X 3Jl2 is always 
naturally embedded in 2)?3. On the other hand, for a given Mz in 3DÎ3 the 
construction of the naturally associated pair (Mi, M2) can begin with the 
mappings Gi, G2 as above. This time, however, the proof of the regularity 
and maximality of the relevant ideals proceeds differently. 

First, recognizing that A 3 is an ^4rmodule, we remark that 

limPt. vivq = q} i = 1, 2, 

for any q in A?,. Thus, if u is an identity modulo Ms, 

\imPi Ez(vivu) = Ez(u) = e, 

the identity of A^/Mz. This means that Gi(At) has e as a point of closure. 
On the other hand, Gt(A t) is a complete normed space, and thus e is in Gt(A t), 
whence Gc1^) = Mt is regular, i — 1,2. The maximality of Mi can be 
established as in the previous case, once the regularity is known. Of course, 
our observations on the ambiguity of the epimorphisms can be repeated. 
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Ad (ii) The existence of t is assured by i. ei ® A2 and A2 are isomorphic. 
Clearly M%C\ (a ® A2) is isomorphic to some ideal N2 in A2. Let £3 , G2 

have meanings as given earlier. Then, since ei ® e2 is an identity modulo Af3, 

G2(a2) = Ez((ei ® e2)a2) = £8(«i ® a2) 

and G2(a2) = 0 if and only if Ez(ei 0 «2) = 0, that is, if and only if a ® a2 

is in M%. Since e\ ® a2 is in e\ ® A2 we see G2(a2) = 0 if and only if e\ ® a2 

is in Mi C\ (ei ® A2) = N2. Thus N2 = M2 = Gr^O). 

3. Group Representations. In the particular case where Ai = Ll(G), 
G is a locally compact abelian group, and A2 is a commutative Banach algebra 
with an involution and an identity, there are some interesting group repre­
sentations which can be found. 

If a(x) is in G+ (the character group of G), then îorf(x) in Az = B1(G1 A2), 
the mapping wa'- Az —> A2 defined by 

*•«(/(*)) = f(x)a(x) dx 
*J G 

is a homomorphism. If we define an "involution" in A 3 by the formula 
Z1" (x) = (/(x -1))* where * is the involution in A2, then ira(f* (x)) = (*•«(/(#))*. 
Clearly ira is continuous, and actually ira is an epimorphism (which com­
mutes with multiplication by elements of A2), since Ta(\(x)ei) = ei, if A(x) 
is in Ll(G) and X+(a) = 1. 

On the other hand, let 3 be the non-empty set of inverses in A2 and let 
x be a f*^42-epimorphism: ir: Az —+ A2j that is, TT commutes with multiplica­
tion by elements of A2 and 7r(/"*") = (x/)*. For arb i t rary / in 7r_1(30 define 
«*•(#) by the formula (ir (fx)) (irf)"1. Then, in the usual fashion, one can show: 
ax(xy) = ar(x)ar(y); a -̂Oxr1) = (ar(x))*\ aT(e) = e2; aT(x) is/-free, bounded, 
continuous; ir(ux) ->aT(x) for any approximate identity {u} in Ll(G), where 
e is the identity of G, e2 is the identity of A. We call ar(x) SL unitary representa­
tion of G into 3- The direct computation which follows shows that 

*(/(*)) = f/(*)M*))*d*. 

If we let g be in 7r_1(3i), then 

J\f(*)M*))*d* = (j^Wx^-O^jCTte))-1 = ^W(^))"1 = r(/). 

Hence there is a 1-1 correspondence between \*A2-epirnorphisms w of Az onto 
A2 and unitary representatives aT of G into 3 \ 

Let G denote the group of all such unitary representations aT(x). The 
compact-open and weak* topologies (for mappings of A 3 into A 2) are identical 
for G. In general, G is not locally compact. 
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The proofs of the last two statements are straightforward and are therefore 
omitted. 

If M2 in 3JÎ2 is fixed, then {air{x))+{M2)} as a function on G is a member 
of G+. Hence, for each M2 in 9K2, there is an epimorphism 

EM2 'G-+G, 

given by: 

EMMX)) = Mx))+ ( ikf 2 ) . 

If 7T is fixed, then (a7r(x))+(Af2) is a G+-valued function on 9ft2, and actually 
(ar(x))+(M2) is in C(9K2, G+). 

If ^42 and A2
+ are isomorphic, if A2+ = C(9Ji2), that is, if A2 and C(3W2) 

are equivalent, and if (3 is in C(99?2, G
+), define 7r̂  in A% by: 

**(/(*)) = yjjix^TM^dxJ (M2). 
Then 

( % (x ) ) + (M 2 ) = 0(*;M2) . 

We have thus far shown that there is a natural mapping y of 5 into C(9J?2,G
+) 

given by 
7(Û!XW) = aT(x) + (M2) 

and that if A2 and C(9K2) are equivalent, then the natural mapping y carries 
G onto C(3»2, 5+ ) . 

Before stating the next theorem we shall require the following discussion. 
If <x{x) is in G+, then for each x there is a unique real number /3(x), 

0 < /3(x) < 2x such that a(x) = exp (i/3(x)). For example, if G is the circle 
group (the reals reduced modulo 2ir), and if a(x) is in G+, then there is an 
integer n such that a{x) = exp(i{nx}) where {nx} is the residue of nx modulo 
2w. Although exp (i{x\) is a character in this case, exp (i{|{x}}) ls n ° t (since, 
for example, exp (i{%{2ir — y}}) = exp (i(%)(2ir — y)) —> exp (iw) = — 1 as 
3/1 0, whereas exp (i{|{27r — y}}) should approach 1 as y [ 0 if exp (i{^{2ir 
— y}}) is a character). Hence, in general, even if exp (i@(x)) is a character, 
exp (i{s/3(x)}) is not necessarily a character for all real 5. 

On the other hand, if G is the additive group of real numbers, and a(x) is 
in G+, then there is a real number t such that a(x) = exp (i{tx}), {tx} the 
residue of tx modulo 2T. In this case, for any real s, exp (i{s{tx}}) is again 
a character. 

If a group G has the property that exp (if3(x)) is a character implies 
exp (i{sl3(x)}) is a character, for all real 5, we shall call G real-closed. 

THEOREM 1. If A2 is semisimple y is 1-1; //te converse is false. If A2 and 
C(2ft2) are equivalent and G is real-closed, then y : G —> C(3Jt2, G+) is aw 
isomorphism and conversely, if G is real-closed and y is an isomorphism, then 
A2 = C(2R2). 
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Proof. Assume A2 is a semisimple and assume 

7(0*1) = 7(0*2)-

If 

01*1 7e o T 2 , t h e n 7Ti 5* 7T2 

and there is an / in A such that 7ri(/) = ai ^ a2 = ^(Z) . But 

(ax - a2)
+(ikf2) = y /(*)(«,! (*) - a„2(x))*^xj+(ikr2) = 0 

for all M2, a contradiction of the semisimplicity of A 2. 
Assume ^42 has a radical, i£2. Then R2 is a non-trivial group R2° relative 

to the multiplication: r\ 0 r2 = r 1 + r2 — ^ir2. 
Now 

7(0*1) = 7(0*2) if, and only if, aT1(s) - a,r2(x) 

is in i£2 for all x. But 

0*1 (x) — aTi(x) £ i?2 for all x if, and only if, 1 — « ^ ( x ) * ^ ^ ) = r(x) £ i?2 

for all x. Clearly r(x) is a representation of G into i?2° (i£2 as a group re 0). 
Hence 7 is not 1-1 if, and only if, there is a non-trivial representation r(x) 
of G into i?2°. 

However, R2° contains no elements (different from 0) of finite order. For 
, <n- , 
(r)o(r)o . . . o(r) = rn{o) = 1 - (1 - r)n. 

If rHo) = 0, r in R2°, r 9* 0, then ( - l)N+lrN = PN where PN is a polynomial 
of degree N-n in w, with coefficients which are polynomials of degree not 
more than n-\ in r. Thus Hr̂ H > nN~n\\Q0\\, where 

Q.= Z (-l)*+1nC*r*. 

Hence | | ^ | | a w > n«-n/N>\\Q0\\w-+n, as ^ - > 00, a contradiction of the 
fact that r is in R2. 

Thus if G has only elements of finite order, r{x) cannot be non-trivial. On 
the other hand, if G = R2° (with discrete topology), then r(x) = x serves. 
Hence the monomorphy of 7 depends both on the presence or absence of the 
radical in A2 and on the nature of G. 

If A2 and C(9W2) are equivalent, then, of course, A2 is semisimple and 
hence 7 is 1-1, and, as we have shown, an epimorphism. Thus 7 is an 
isomorphism. 

On the other hand, if 7 is an isomorphism and if A2
+ is a proper subset 

of C(3Jt2) let z(M2) be in the complement of A2
+. Let z = u + iv. Then one 

of u, v is not in A2
+, whence we may assume z is real-valued. Since 1 is in 

A2
+, A2

+ contains all constants and hence for some constant c, z(M2) + c > 0, 
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all M2. Hence we assume for any w,0 <w<l, there is a z(M2) in C(jSfl2) — A2+ 
such that 

w = inf { z(M2)\M2 in 2ft2} < sup {z(M2)\M2 in 2fl2} = 1. 

Choose g(x) in Ll(G) so that: g = 0 outside some compact neighbourhood N 
of the identity e in G; g(x) > 0; g+(cO > 0; \\g\\i = 1; g+(a) takes on at least 
three values. Clearly 1 = g+(e+) < !|g+||œ < ||^||i = 1. Let g+(a0) = w 9* 0, 1. 
Then 0 < w < 1 and we now assume z(M2) and w are related as indicated 
earlier. If a0(x) = exp (i/50(x)), let 

A(s) = I g(x) exp(i {s/3o(x)}) dx = I g(x) exp(isp0(x)) dx. 
J G J G 

Then we see that for real s: 

(a) h (s) is in C°° ( — °° , œ ) ; 
(b) h(s) is real; 
(c) |A<n)(*)| < Kn where K = sup {\/30(x)\\x in N). 

Hence h (s) is entire. Since h(0) = 1, h{\) = w < 1, we see h (s) is not 
constant. Hence there is an interval (V, s"), 0 < s' < s" < 1 where A'(5) < 0, 
and on ($', 5") A(5) has a continuous real-valued inverse: s = h~1(t)f 

where A(s") = t" < t < t' = h(s'). Let y(M2) = as(ikf2) + ô be such that 
/" < y(M2) < t'. Then y(M2) is not in A2+ and if fe(M2) = hr1(y(M2))f then 
£(M2) is in C(3K2), and &(7kf2) is real-valued. For/(x) = g(x)e2 (e2 the identity 
of A2) consider 

I f(x) exp(ik(M2)p0(x)) dx = I f(x) exp(i [k(M2)Po(x)}) dx 
J Q J G 

= h(k(M2)) = y(M2). 

Clearly exp (i{k(M2)l3o(x)}) is in C($D?2, G
+) and by hypothesis (G is real-

closed) there is an a in G such that y (an) = exp (i{k(M2)(30(x)}). But then 
( T T ( / ) ) + ( ^ 2 ) = y(Af2), contradicting the fact that y(M2) is not in A2+. The 
proof of the theorem is complete. 

4. Miscellany. If G is locally compact abelian, Ai = L1(G)J and if A 2 
has an involution (A2 is assumed to have no identity and is not assumed to 
be commutative) easily verified extensions of the above read as follows: 

1. Suppose A2 is extended to A2e by the adjunction of an identity. Let AZe be 
the completion of the tensor product of A1 and A2e. Call an epimorphism w : A z—*A 2 

extendable if there is an epimorphism ire: AZe —> A2e which coincides with ir on 
Az {naturally embedded in AZe). Then the extendable epimorphisms ir: A% —» A2 

are in 1—1 correspondence with the unitary representations of G into the 
multiplicative group of A2e. 

2. If v(x) is a continuous homomorphism 

V:G->G°A2 
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(the multiplicative group of A 2 relative to o), then the formula: 

*(/) = f / ( * ) < & - f f(x)(v{x))*dx 
•J G • / G 

defines an extendable epimorphisni -K: A% —> A2. The extension of w is given by 
the formula: 

<ire(\(x)e+f(x)) = ( (Hx)e+f(x))(e- (v(x))*)dx. 
J G 

More generally, if a(x) is a numerical function, a2(x) an A 2-valued function 
such that (1 — a(x))(e — a2(x)) = u(x) is a unitary representation of G into 
the multiplicative group of A2e, then the formula 

*(/) = f / ( * ) ( 1 - a(x))dx - { f(x)(a2(x))*dx 
*J G J G 

defines an extendable epimorphism TT:A^—> A2. The extension ire is given by 
the formula 

7Te(X(x)e+/(x)) = I (\(x)e + f(x))(u(x))*dx. 
J G 

Conversely, an extendable epimorphism IT: A% —> A2 serves to define two func­
tions a(x), a2(x) such that (1 — a(x))(e — a2(x)) — u(x) is a unitary repre­
sentation of G into the multiplicative group of A2e. 

The last result stems from defining Tx on A2e as follows: If a2e is in A2ef 

and a2e = ire(\(x)e + f(x)) then let Tx{a2e) = ire{\e + / ) — vê(\xe + /*). 
This definition of Tx is (\e + /)-free. Tx satisfies the classic criterion: 

Tx(ab) = (Txa)b 

for membership in A2e considered as a subalgebra of the ring E(^4e) of endo-
morphisms of Ae. Hence Tx = a(x)e + a2{x) and the verification of the 
result follows immediately. 

Remark. The criterion mentioned above is not valid for algebras having no 
identity. For example, if A2 = L1( — œ, oo), Tf = fx, then T(f*g) = (Tf)*g. 
But there is no h in A2 such that Tf = h*f, as is well known. 

The standard techniques also show that a(x)e + a2(x) = lim uwe(uxe) for 
any approximate identity {u} in A. 
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