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By a tournament we mean the outcome of a round-robin 
tournament in which there are no draws. Such a tournament 
may be represented by a graph in which the n players are 
represented by ver t ices labelled 1, 2, . . . , n, and the outcomes 
of the games are represented by directed edges so that every 
pair of ver t ices is joined by one directed edge. We call such 
a graph a complete directed graph. One can also represent 
such a tournament by an nXn matr ix T = (t..) in which t 

is 1 if i beats j , and 0 otherwise, so that T is a (0,1) 
mat r ix with t . + t.. = 1 for i 4 J &nd (by definition) t. = 0. 

In the summer of 1962 K. Schutte asked P. Erdôs 
the following question: Does there exist for every k, a 
complete directed graph such that for every k ver t ices 
x , x , . o . , x there is one vertex y such that the edges 

(x.y), i = 1, 2 , . . . , k, a re all directed away from y ? Erdos [1] 
1 2 k 

proved that, provided n > (log 2 + e ) k 2 (t a positive 
constant which can be taken arbi t rar i ly close to 0 if k is 
large enough), there do exist complete directed graphs with 
this property. He also proved that such graphs do not exist 

k+1 
with n < 2 - 1. It is not obvious, and as far as we know 
it has never been proved, that if such graphs exist for a given 
n then they must also exist for every m > n. 

At the seminar of the Canadian Mathematical Congress 
in Saskatoon in August, 1963, H. Ryser asked the following: 
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Is it t rue that in every tournament mat r ix , there is a set of 4 
or fewer columns, such that every row has at least one 1 in 
at least one of these columns. L. Moser showed that the 
answer is no and in fact showed that for every large n, there 
a re tournament ma t r i ces in which for every set of 
[log n - 21og log n] columns there is some row which has no 

fat Ca ù 

1 in any of these columns. He also showed that there does 
exist, in every nXn tournament matr ix , [log (n+1)] columns 

such that every row has a 1 in at least one of these columns. 
He further observed that for n > n (k , i ) there are nXn 

o 
tournament mat r i ces in which for every k columns there a re 
i rows such that the k x i submatrix determined by these 
columns and rows consists entirely of zeros . It is easy to see 
that our resu l t s , which were obtained independently, a re closely 
related. By our methods we can obtain, almost without any 
essentially new ideas, somewhat stronger resu l t s . 

Consider a tournament on n players 1, 2 , . . . , n . Pick 
k of them, say x , x , . . . , x . Clearly one of the other 

k 
p layers , y, can obtain 2 different sets of resu l t s with the 
players x , x , • . . , x . Now we prove 

THEOREM 1. Let n > (log 2 + e ) k 2 2 k . Then there 
exists a positive a = a(z ) so that for each i < k and every 

~~ k 
choice of 1 players x , x , ? . . , x , each of the 2 c lasses 

1 2 I 
in which the remaining n-I players a re divided (two players 
are in the same c lass if they perform in an identical way against 

i 
the players x , x , . . . , x ) contains more than cm/2 p layers , 
<- ,, , /-k

n(n~i)/2% ,. , 
for all but o(2 ) of the tournaments. 

By a slightly more complicated calculation we can prove 

THEOREM 2. For every TJ > 0 there is a c = c (r\) 
2 k 

such that for n > c k 2 and any ! < k players x , x , . . . , x , 
i i l 

each of the 2 c lasses contains (1 + 6)n/2 p laye r s , where 
| ô | < T), for all but o(2 ) tournaments . 
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Theorem 2 can also be stated as follows. For every 
rj > 0 there is a c = c (r\) such that in almost all tournaments 

on n players , for every set of I players x , , x , . . . , x , 

each of the 2 c lasses will contain (l+6)n/2^ p layers , 
| ô | < Tj, provided I < log n - 2iog (log n) - c . 

Proof of theorem 1. The total number of tournaments 

of n players is 2 . Thus it will suffice to show that 
the number of tournaments which do not satisfy the conditions 

of theorem i is o(2 ). Fur ther , a simple argument 
shows that it will suffice to prove the theorem for i = k. 

The k players x , x , . . . , x can be chosen in J J ways 
k 

and, as already stated, there are 2 c lasses into which the 
remaining n-k players a re decomposed. Let us fix our 
attention on a part icular set of k players x , x , , . . , x 

and a part icular c lass ( i . e . , y is a member of the c lass if 
he wins against a fixed subset of the x1 s and loses against 
the complementary subset). Let us determine an upper bound 
for the number R(t) of tournaments in which our c lass contains 
exactly t p layers . 

F i r s t of all , only the games between x , x , . . . , x, 
\ Cm K. 

and the remaining n-k players a re res t r ic ted by our conditions 

so we have ( j -k(n-k) unrestricted games and these yield for 
12 I fnl , . , . 

R(t) a factor 2 » Next, the t players may be chosen 

from the n-k players in I J ways, and for the games 

between the t players and x . x . . . . , x, the outcomes a re 
1 2 k 

determined. Finally, the games between x , x . . . . , x 
1 2 k 

and any one of the remaining n-k- t players can go in 2 - 1 
ways, since the only excluded case is if such a player is in the 
given class with respect to x , x , . . . , x . Hence 

(1) R(t) 
jg.k(n.k)|n.k| k. t 

< 2 1 t i (2 - 1) 
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Since we are assuming t < [cm/2 ] = L , and since the k players 

can be chosen in I ways and there a re 2 c l a s se s , the total 

number of tournaments S which do not satisfy the conditions of 
theorem 1 fulfills the inequality 

L 
(2) S ^ ( ? ) 2 2 R(t) . 

l * t = 0 

To obtain an upper bound for S we note f irst that for k la rge , 

[ J 2 < n and that in the range 0 < t < L», R(t) is increasing 

with t. Hence using (i) and (2) we obtain 

i;u. .rL 
«3, S^W^O-ij] Z . -kL 

and 

(4) S<nk+12 lZ'[^] k+1 J 21/111 - ( h - L ) / 2 k , - k L 

Our theorem will be established if we can show that 

S = o ( 2 n < n - 1 ) / 2 ) or 

-1—1 
k+1 rn \ -kL I 2 k J (5) n [ J 2 e = o(l) , 

Now, note that I 12 < (ne/L2 ) ^ (e/or) so we must still 

prove only 

fn-L 
L Lk 

(6) n k + 4 ( | ) e 1 2 ' = o ( l ) . 

From 

n > (log 2 + c )k2 2 k 
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we find 

n > ( i .+ i ) k 2 k 

log n 1 

and 

(?) <k+ 1) l o g n < 2 - ( i . e ) , 

where € and e are posit ive numbers depending on t . 
1 2 

Taking logarithm of the left hand side of (6) and using (7) it i s 
seen that it only remains to prove that 

(8) £ l £ . L(i . log a ) . ( i . c ) S . - co . 
Zk • 2 * 

k 
Since Lr = n a / 2 and a ( l - log a) -* 0 as a -* 0 the required 
resul t fo l lows . 

We suppress the proof of theorem 2 since it i s s imi lar 
to that of theorem 1. 

By the method used in the proof of theorem 1 we can a l so 
prove 

THEOREM 3. Let c < — , n > n (e , k). Consider all 
2-

incomplete tournaments on n players who play [n ] g a m e s . 
~ , . / n ( n - l ) / 2 \ . , ,, 
The number of tournaments i s - . Almost al l of 

Un2"*] I 
these tournaments contain, for each k p layers , at least one 
player in each of the 2 c l a s s e s . 

Theorem 3 i s not very far from being bes t poss ible s ince 
•r ^ T- • 2 - 1 / k 
if the number of games i s en then we can show that for 
a lmost a l l tournaments there are k players for which there i s 
no player who plays with all of them. 

We conclude with two problems: 
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Problem 1. What is the minimum number of edges in a 
graph of n ver t ices so that it can be directed in such a way 
that to any k ver t ices x , x , . . . , x there is a ver tex y 

such that all edges (x . ,y) , i = 1, 2, . . . , k a re directed from 

x. to y ? Of course we must assume here that n is large 

enough that some complete directed graph has the required 
proper ty . 

Problem 2. Let n > k. What is the smallest number 
E(n;k) for which there is an ordinary graph of n ver t ices and 
E edges in which for every set of k ve r t i ces , there is some 
ver tex , joined to each of these k. 

We have solved this problem and hope to re turn to it. 
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