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Wolstenholme's inequality and its relation to the
Barrow and Garfunkel-Bankoff inequalities

MARTIN LUKAREVSKI

Wolstenholme's inequality
Many readers are familiar with the celebrated Finsler-Hadwiger and

Weitzenböck's inequality in triangle geometry. On the other hand,
Wolstenholme's inequality is not widely known, but is equally important
and in an indirect way can be used to derive these two. We will introduce it
and then show its strength.

Let  be real numbers and  a triangle with sides ,
semiperimeter , circumradius , inradius  and area . Then the inequality

x, y, z ABC a, b, c
s R r �

x2 + y2 + z2 ≥ 2yz cos A + 2zx cos B + 2xy cos C (1)
holds. This sublime but underused inequality is named after Joseph
Wolstenholme (1829-1891), an English mathematician who published the
result in [1]. For its proof consider the incentre  of the triangle  and the
feet of its perpendiculars  to the sides, see Figure 1. Since

, expanding the obvious inequality for the squared
dot product  yields

I ABC
X, Y , Z

|IX→| = |IY→| = |IZ→| = r
(xIX

→
+ yIY

→
+ zIZ

→)2
≥ 0

r2 (x2 + y2 + z2) + 2xyIX
→

·IY
→

+ 2yzIY
→

·IZ
→

+ 2zxIZ
→

·IX
→

≥ 0.
In the quadrilateral  we have . HenceXCYI ∠XIY = π − C

IX
→

·IY
→

= r2 cos (π − C) = −r2 cos C
and similarly for the other two dot products. Now (1) follows readily.
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FIGURE 1
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The Barrow and Garfunkel-Bankoff inequalities

Let  be an interior point of a triangle , let the feet of its
perpendiculars to the sides , ,  be denoted by , ,  and let

, , . We denote by , ,  the
angle bisectors of , ,  in triangles , ,
respectively, see Figure 2. Barrow's inequality

P ABC
BC CA AB X Y Z

2α = ∠BPC 2β = ∠CPA 2γ = ∠APB PD PE PF
∠BPC ∠CPA ∠APC BPC CPA APC

PA + PB + PC ≥ 2 (PD + PE + PF) (2)
is an obvious sharpening of the celebrated �������	��
�� inequality [2]

PA + PB + PC ≥ 2 (PX + PY + PZ) .
For seven proofs of �������	��
�� inequality, with one of them proving (2),
see [3]. Our first application of Wolstenholme's inequality is to give another
proof of Barrow's inequality (2).
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FIGURE 2

The formula for the length of the angle bisector  in triangle  is

 and it follows from considering the area of  as

sum of the areas of triangles  and . Hence for the length of the
angle bisector  in triangle  we have

AM ABC

AM =
2bc

b + c
cos 1

2A ABC

ABM AMC
PD BCP

PD =
2PB · PC
PB + PC

cos α

and similarly for , . Since , ,  are angles of a triangle, we can apply
(1) to , , , to get

PE PF α β γ
cos α cos β cos γ

x2 + y2 + z2 ≥
PB + PC
PB · PC

yz PD +
PC + PA
PC · PA

zx PE +
PA + PB
PA · PB

xy PF.
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Putting , ,  in the last inequality, the AM-GM
inequality yields

x = PA y = PB z = PC

PA + PB + PC ≥
PB + PC

PB · PC
PD +

PC + PA
PC · PA

PE +
PA + PB

PA · PB
PF

≥ 2(PD + PE + PF),
and the proof of Barrow's inequality (2) is completed.

In a second interesting application of Wolstenholme's inequality we use
it to prove the Garfunkel-Bankoff inequality [4]

tan2 A
2

+ tan2 B
2

+ tan2 C
2

≥ 2 − 8 sin
A
2

sin
B
2

sin
C
2

. (3)

We put

x = tan
A
2

,  y = tan
B
2

,  z = tan
C
2

in Wolstenholme's inequality (1) and obtain (with cyclic sum)

tan2 A
2

+ tan2 B
2

+ tan2 C
2

≥ 2 ∑ tan
B
2

tan
C
2

cos A. (4)

To calculate the right-hand side of this inequality, we use the well-known
trigonometric identity

tan
A
2

tan
B
2

+ tan
B
2

tan
C
2

+ tan
C
2

tan
A
2

= 1, (5)

which follows from Euler's formula , and the identitytan
A
2

=
(s − b)(s − c)

s(s − a)

sin 1
2A

cos 1
2B cos 1

2C
+

sin 1
2B

cos 1
2C cos 1

2A
+

sin 1
2C

cos 1
2A cos 1

2B
= 2. (6)

For the proof of (6) we invoke the formula for the product of cosines

cos
A
2

cos
B
2

cos
C
2

=
s

4R
,

which follows from Euler's half-angle formula ,

Heron's formula for the area  and .
Hence

cos 1
2A =

s (s − a)
bc

� = s(s − a)(s − b)(s − c) abc = 4R�

∑ sin 1
2A

cos 1
2B cos 1

2C
=

4R
s ∑ sin 1

2A cos 1
2A

=
2R
s ∑ sin A = 2,

where, in the last equation, the sine rule  is used. From (5), (6)sin A =
a

2R
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and , we get1 − cos A = 2 sin2 1
2A

∑ tan 1
2B tan 1

2C cos A = 1 + ∑ tan 1
2B tan 1

2C (cos A − 1)

= 1 − 2 sin 1
2A sin 1

2B sin 1
2C ∑ sin 1

2A
cos 1

2Bcos 1
2C

= 1 − 4 sin 1
2A sin 1

2B sin 1
2C,

which by (4) proves the Garfunkel-Bankoff inequality (3).

One can have fun putting whatever one wants into (1) to obtain other
interesting inequalities. As an instance of a third application, Schur's
inequality of second degree for the sides of a triangle

a2 (a − b) (a − c) + b2 (b − a) (b − c) + c2 (c − a) (c − b) ≥ 0,
is easily obtained by taking , ,  and rearranging with

the cosine formula . We remark that the general

Schur's inequality

x = a2 y = b2 z = c2

cos A =
b2 + c2 − a2

2bc

xk (x − y) (x − z) + yk (y − x) (y − z) + zk (z − x) (z − y) ≥ 0,
holds for any three positive numbers ,  and  and all .x y z k ≥ 0

Relations in a sextet of triangle inequalities
We finish this Article by considering the relations between six well-

known triangle inequalities. The first Garfunkel-Bankoff inequality (3) is
equivalent to the familiar Kooi's inequality [4, 5]

s2 ≤
R (4R + r)2

2 (2R − r)
. (7)

Actually in [4] Bankoff used Kooi's inequality to solve the problem posed
by Garfunkel, and showed that the two inequalities can be transformed into
each other. The two inequalities are equivalent to the more recent [6]

a2 + b2 + c2 ≥ 4� 3 +
R − 2r

R
+ (a − b)2 + (b − c)2 + (c − a)2 . (8)

The three equivalent inequalities are equalities only for the equilateral
triangle. We shall call (8) the ‘strong Finsler-Hadwiger inequality’ since by
Euler's inequality  it is an obvious sharpening of the famous Finsler-
Hadwiger inequality [7, 8, 9]

R ≥ 2r

a2 + b2 + c2 ≥ 4� 3 + (a − b)2 + (b − c)2 + (c − a)2 . (9)
The fourth inequality in our sextet is named after the Swiss

mathematicians Paul Finsler (1894-1970) and Hugo Hadwiger (1908-1981).
Between the strong Finsler-Hadwiger and the Finsler-Hadwiger inequality,
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we encounter still another prominent one, Gerretsen's inequality

s2 ≤ 4R2 + 4Rr + 3r2. (10)
Gerretsen's inequality implies the Finsler-Hadwiger inequality (9), see [10],
and is implied by Kooi's inequality [6]. It has many applications in triangle
geometry, see for example [11] where it is used in connection with the inarc
centres [12]. For another application, see [13] where Gerretsen's inequality
in its equivalent form  is used to prove the
inequality , where ,  and  are the circumcentre, orthocentre
and incentre of the triangle. The last result for the distances between triangle
centres plays a central role in the proof of a conjectured inequality for the
altitudes of the excentral triangle, see [14].

a2 + b2 + c2 ≤ 8R2 + 4r2

OH ≥ OI O H I

Finsler-Hadwiger seems to be stronger, but surprisingly is actually
equivalent to the last, sixth, Weitzenböck's inequality [15]

a2 + b2 + c2 ≥ 4 3�, (11)
named after the Austrian mathematician Roland Weitzenböck (1885-1955).
In [16, 17] the excentral and circummidarc triangle [12] are employed to
prove the logical equivalence of the two. So, when Weitzenböck's inequality
is applied to the sides of these triangles, the Finsler-Hadwiger inequality
pops up. Weitzenböck's inequality itself is given eleven proofs in [18], but,
for the convenience of the reader, to the multiple proofs we add yet another,
very simple, one-line proof:

Twelfth proof. It uses nothing more than the well-known  and the
Cauchy-Schwarz inequality

s ≥ 3 3r

4 3� ≤
4s2

3
=

(a + b + c)2

3
≤ a2 + b2 + c2.

Equality holds if, and only if, the triangle is equilateral. The inequality is a
perennial mathematics contest problem and had a prominent appearance as
question number 2 at the third International Mathematical Olympiad held in
1961 in Hungary. Had the unknown author of the contest problem known
about reference [15] As IMO problems are supposed to be original, this does
not seem likely.

To summarise, we have the following relationship in the sextet of
triangle inequalities:

Garfunkel-Bankoff ⇔ Kooi ⇔ strong Finsler-Hadwiger

⇓
Gerretsen ⇒ Finsler-Hadwiger ⇔ Weitzenböck

That is

(3) ⇔ (7) ⇔ (8) ⇒ (10) ⇒ (9) ⇔ (11) .
And it all begins with Wolstenholme's inequality (1).
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