THE DETERMINANT OF THE SUM OF TWO MATRICES

Chi-Kwong Li and Roy Mathias

Let A and B be $n \times n$ matrices over the real or complex field. Lower and upper bounds for $|\operatorname{det}(A+B)|$ are given in terms of the singular values of A and B. Extension of our techniques to estimate $|f(A+B)|$ for other scalar-valued functions f on matrices is also considered.

1. Introduction

We are interested in estimating the determinant of the sum of two square matrices over $\mathbb{F}=\mathbb{R}$ or \mathbb{C} given some partial information about them. For two square matrices A and B, it is well-known that knowing $\operatorname{det}(A)$ and $\operatorname{det}(B)$ gives no knowledge of $\operatorname{det}(A+B)$. For example, if $A=\left(\begin{array}{ll}0 & z \\ 0 & 0\end{array}\right)$ and $B=\left(\begin{array}{cc}0 & 0 \\ -1 & 0\end{array}\right)$, then $\operatorname{det}(A)=$ $\operatorname{det}(B)=0$, but $\operatorname{det}(A+B)=z$ (for any $z \in \mathbb{F}$). Although $\operatorname{det}(X)$ is the product of the eigenvalues of X, the above example shows that not much can be said about $\operatorname{det}(A+B)$ even if the eigenvalues of A and B are known.

Recall that the singular values of X are the nonnegative square roots of the eigenvalues of $X^{*} X\left(X^{*}=X^{t}\right.$ in the real case). We refer the readers to [3, Chapter 3] for the properties and other equivalent characterisations of singular values. It is easy to see that $|\operatorname{det}(X)|$ is the product of singular values of X. It turns out that one can obtain a containment region for $\operatorname{det}(A+B)$ in terms of the singular values of A and B. We shall present our main theorem and proof in the next section. Extensions of our result and some related problems will be discussed in Section 3.

2. Main Result and Proof

Theorem 1. There exist $n \times n$ matrices A and B over \mathbb{F} with singular values $a_{1} \geqslant \cdots \geqslant a_{n} \geqslant 0$ and $b_{1} \geqslant \cdots \geqslant b_{n} \geqslant 0$, respectively, such that $\operatorname{det}(A+B)=z \in \mathbb{F}$ if and only if

$$
\prod_{j=1}^{n}\left(a_{j}+b_{n-j+1}\right) \geqslant|z| \geqslant \begin{cases}0 & \text { if }\left[a_{n}, a_{1}\right] \cap\left[b_{n}, b_{1}\right] \neq \emptyset \\ \left|\prod_{j=1}^{n}\left(a_{j}-b_{n-j+1}\right)\right| & \text { otherwise }\end{cases}
$$

Received 1st February, 1995
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/95 \$A2.00+0.00.

To prove Theorem 1, we need several lemmas and the concept of weak majorisation. Recall that for $x, y \in \mathbb{R}^{n}, x$ is weakly majorised by y, denoted by $x \prec^{w} y$ if the sum of the k smallest entries of x is not smaller than that of $y, k=1, \ldots, n$.

Lemma 2. Suppose A and B have singular values $a_{1} \geqslant \cdots \geqslant a_{n} \geqslant 0$ and $b_{1} \geqslant \cdots \geqslant b_{n} \geqslant 0$, respectively. If $A+B$ has singular values $c_{1} \geqslant \cdots \geqslant c_{n}$, then

$$
\left(a_{1}+b_{n}, \ldots, a_{n}+b_{1}\right) \prec \prec^{w}\left(c_{1}, \ldots, c_{n}\right)
$$

Furthermore, if $b_{n}>a_{1}$ or $a_{n}>b_{1}$, then

$$
\left(c_{1}, \ldots, c_{n}\right) \prec^{w}\left(\left|a_{1}-b_{n}\right|, \ldots,\left|a_{n}-b_{1}\right|\right) .
$$

Proof: Note that if X is a square matrix with singular values $s_{1} \geqslant \cdots \geqslant s_{n}$, then the matrix $\left(\begin{array}{cc}0 & X \\ X^{*} & 0\end{array}\right)$ has eigenvalues $\pm s_{1}, \ldots, \pm s_{n}$. Applying the results in [$[7]$ to the matrix

$$
\left(\begin{array}{cc}
0 & C \\
C^{*} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & A \\
A^{*} & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & B \\
B^{*} & 0
\end{array}\right)
$$

we see that for any $1 \leqslant i_{1}<\cdots<i_{k} \leqslant n$ and $1 \leqslant j_{1}<\cdots<j_{k} \leqslant n$,

$$
\sum_{s=1}^{k} c_{i_{s}+j_{s}-s} \leqslant \sum_{s=1}^{k}\left(a_{i_{s}}+b_{j_{s}}\right)
$$

In particular, the sum of the k smallest entries of (c_{1}, \ldots, c_{n}) is not larger than that of $\left(a_{1}+b_{n}, \ldots, a_{n}+b_{1}\right)$. Thus the first assertion follows.

Now suppose $a_{n}>b_{1}$. Then $a_{1}-b_{n} \geqslant \cdots \geqslant a_{n}-b_{1}>0$. Applying the results in [7] to the matrix

$$
\left(\begin{array}{cc}
0 & C \\
C^{*} & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & -B \\
-B^{*} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & A \\
A^{*} & 0
\end{array}\right)
$$

we see that

$$
\sum_{s=1}^{k} c_{n-s+1}+b_{s} \geqslant \sum_{s=1}^{k} a_{n-s+1}
$$

Thus the sum of the k smallest entries of $\left(\left(a_{1}-b_{n}\right), \ldots,\left(a_{n}-b_{1}\right)\right)$ is not larger than that of $\left(c_{1}, \ldots, c_{n}\right)$. Similarly, we can show that the sum of the k smallest entries of $\left(\left(b_{1}-a_{n}\right), \ldots,\left(b_{n}-a_{1}\right)\right)$ is not larger than that of $\left(c_{1}, \ldots, c_{n}\right)$ if $b_{n}>a_{1}$. Thus the last assertion of the lemma follows.

Lemma 3. Suppose A, B are $n \times n$ matrices which satisfy the hypotheses of Lemma 2. If $a_{n}>b_{1}$ or $b_{n}>a_{1}$, then $A+B$ is invertible.

Proof: Suppose $a_{n}>b_{1}$. Then for any unit vector $x \in \mathbb{C}^{n}$, we have $\|A x\| \geqslant$ $a_{n}>b_{1} \geqslant\|B x\|$. As a result, $\|(A+B) x\| \geqslant\|A x\|-\|B x\|>0$ for any unit vector
x, and hence $A+B$ is invertible. Similarly, we can prove that $A+B$ is invertible if $b_{n}>a_{1}$.

LEMMA 4. Suppose $a_{1} \geqslant \cdots \geqslant a_{n} \geqslant 0$ and $b_{1} \geqslant \cdots \geqslant b_{n} \geqslant 0$ are such that $\left[a_{n}, a_{1}\right] \cap\left[b_{n}, b_{1}\right] \neq \phi$. There exist real $n \times n$ matrices A, B with the a_{i} 's and b_{i} 's as singular values such that $\operatorname{det}(A+B)=0$.

Proof: Choose $t \in\left[a_{n}, a_{1}\right] \cap\left[b_{n}, b_{1}\right]$. Set $A=\left(\begin{array}{cc}t & 0 \\ \alpha_{1} & \alpha_{2}\end{array}\right) \oplus \operatorname{diag}\left(a_{2}, \ldots, a_{n-1}\right) \in$ M_{n}, where $\alpha_{1}, \alpha_{2} \in \mathbb{R}$ satisfy $t \alpha_{2}=a_{1} a_{n}$ and $t^{2}+\alpha_{1}^{2}+\alpha_{2}^{2}=a_{1}^{2}+a_{n}^{2}$. Note that the existence of α_{1} and α_{2} is guaranteed by the assumption that $t \in\left[a_{n}, a_{1}\right]$. Then A has singular values $a_{1} \geqslant \cdots \geqslant a_{n}$. Similarly, one can construct $B=$ $\left(\begin{array}{cc}-t & 0 \\ \beta_{1} & \beta_{2}\end{array}\right) \oplus \operatorname{diag}\left(b_{2}, \ldots, b_{n-1}\right) \in M_{n}$ with singular values $b_{1} \geqslant \cdots \geqslant b_{n}$. It is clear that $\operatorname{det}(A+B)=0$.

Proof of Theorem 1: (\Rightarrow) Suppose A and B have as singular values the a_{i} 's and b_{i} 's, respectively, and suppose $z=\operatorname{det}(A+B)$. If $z=0$, then clearly $|z| \leqslant \prod_{j=1}^{n}\left(a_{j}+b_{n-j+1}\right)$. Suppose $A+B$ is nonsingular and has singular values $c_{1} \geqslant \cdots \geqslant c_{n}>0$. By Lemma $2,\left(a_{1}+b_{n}, \ldots, a_{n}+b_{1}\right) \prec^{w}\left(c_{1}, \ldots, c_{n}\right)$. Since the function $f(x)=-\log (x)$ is convex and decreasing for $x>0$, we have (for example, see [5, Chapter 3, C.1.b]) $-\sum_{i=1}^{n} \log \left(c_{i}\right) \geqslant-\sum_{i=1}^{n} \log \left(a_{i}+b_{n-i+1}\right)$. Consequently, $|\operatorname{det}(A+B)|=\prod_{i=1}^{n} c_{i} \leqslant \prod_{i=1}^{n}\left(a_{i}+b_{n-i+1}\right)$. Now suppose $\left[a_{n}, a_{1}\right] \cap\left[b_{n}, b_{1}\right]=\phi$. Then $\left(c_{1}, \ldots, c_{n}\right) \prec^{w}\left(\left|a_{1}-b_{n}\right|, \ldots,\left|a_{n}-b_{1}\right|\right)$. By similar arguments as above, we conclude that $\left|\prod_{i=1}^{n}\left(a_{i}-b_{n-i+1}\right)\right| \leqslant \prod_{i=1}^{n} c_{i}=|\operatorname{det}(A+B)|$.
(\Leftrightarrow) Let $X=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ and $Y=\operatorname{diag}\left(b_{n}, \ldots, b_{1}\right)$. Then $\operatorname{det}(A+B)=$ $\prod_{i=1}^{n}\left(a_{i}+b_{n-i+1}\right)$ if $A=X$ and $B=Y ; \operatorname{det}(A+B)=\prod_{i=1}^{n}\left(a_{i}-b_{n-i+1}\right)$ if $A=X$ and $B=-Y$; and $\operatorname{det}(A+B)=\prod_{i=1}^{n}\left(b_{i}-a_{n-i+1}\right)$ if $A=-X$ and $B=Y$. If $\left[a_{n}, a_{1}\right] \cap\left[b_{n}, b_{1}\right] \neq 0$, we can construct suitable A and B such that $\operatorname{det}(A+B)=0$ by Lemma 5. Since the set of real orthogonal matrices with positive determinant is connected, the set

$$
S=\left\{\operatorname{det}\left(U_{1} X+U_{2} Y\right): U_{i} \text { is real orthogonal with } \operatorname{det}\left(U_{i}\right)=1, \text { for } i=1,2\right\}
$$

is a line segment. If n is even, then $\operatorname{det}(X-Y), \operatorname{det}(X+Y) \in S$ and hence $[\operatorname{det}(X-Y), \operatorname{det}(X+Y)] \subseteq S$. If n is odd, let

$$
c=\left(a_{1}+b_{n}\right) \prod_{i=2}^{n}\left(a_{i}-b_{n-i+1}\right) \quad \text { and } \quad d=\left|\left(a_{n}-b_{1}\right)\right| \prod_{i=1}^{n-1}\left(a_{i}+b_{n-i+1}\right)
$$

Then $c \leqslant d,[c, \operatorname{det}(X+Y)] \subseteq S$, and $[|\operatorname{det}(X-Y)|, d]$ is a subset of the line segment $\widetilde{S}=\left\{\operatorname{det}\left(U_{1} X+U_{2} Y\right): U_{1}\right.$ and U_{2} are real orthogonal with $\left.\operatorname{det}\left(U_{1}\right)=\varepsilon=-\operatorname{det}\left(U_{2}\right)\right\}$, where $\varepsilon=\left(a_{n}-b_{1}\right) /\left|a_{n}-b_{1}\right|$. Thus for any $z \in[|\operatorname{det}(X-Y)|, \operatorname{det}(X+Y)]$, there exist suitable A and B such that $\operatorname{det}(A+B)=z$. If $z \leqslant 0$ in the real case, or the argument of z equals $t \neq 0$ in the complex case, where $|z|$ lies between the upper and lower bounds in Theorem 1, one can first construct suitable A and B so that $\operatorname{det}(A+B)=|z|$. Then replace A and B by $P A$ and $P B$, where $P=\operatorname{diag}\left(e^{i t}, 1, \ldots, 1\right)$ with $t=-\pi$ when $z<0$, to get $\operatorname{det}(P A+P B)=z$.

3. Extension and Related Problems

Note that if more about A and B is known, then a better containment region for $\operatorname{det}(A+B)$ can be given. For example, by the result in [2]:

There exist $n \times n$ complex matrices $A=A^{t}$ and $B=-B^{t}$ with singular values $a_{1} \geqslant \cdots \geqslant a_{n} \geqslant 0$ and $b_{1}=b_{2} \geqslant b_{3}=b_{4} \geqslant \cdots$ such that $z=\operatorname{det}(A+B)$ if and only if

$$
\operatorname{det}(X+Y) \geqslant|z| \geqslant \begin{cases}0 & \text { if }\left[a_{n}, a_{1}\right] \cap\left[b_{n}, b_{1}\right] \neq \emptyset \\ |\operatorname{det}(\sqrt{-1} X+Y)| & \text { otherwise }\end{cases}
$$

where $X=\sum_{j=1}^{n} a_{j} E_{j j}$ and $Y=\sum_{k \leqslant(n+1) / 2} b_{2 k}\left(E_{2 k-1,2 k}-E_{2 k, 2 k-1}\right)$.
Here $E_{i j}$ denotes the $n \times n$ matrix with its (i, j) entry equal to one and all other entries equal to zero.

Although our example in Section 1 shows that it is difficult to find a containment region for $\operatorname{det}(A+B)$ in terms of the eigenvalues of A and B in general, the situation may be different if A and B are normal. In fact, Marcus [4] and Oliveira [6] independently conjectured that:

If A and B are $n \times n$ complex normal matrices with eigenvalues $\alpha_{1}, \ldots, \alpha_{n}$ and $\beta_{1}, \ldots, \beta_{n}$, respectively, then $\operatorname{det}(A+B)$ lies in the convex hull of the points of the form $\sum_{i=1}^{n}\left(\alpha_{i}+\beta_{\sigma(i)}\right)$, where σ is a permutation of the set $\{1, \ldots, n\}$.

A number of special cases of this conjecture have been verified, but the general problem remains open (for example, see [1]).

It is worthwhile to point out that one can actually deduce the following result from our proof.

Theorem 5. Suppose $f\left(x_{1}, \ldots, x_{n}\right)$ is a Schur concave function on vectors with nonnegative entries, and is increasing in each coordinate. For $X \in M_{n}$, denote by $f(X)$ the functional value of f on the singular values of X. If A and B have singular
values $a_{1} \geqslant \cdots \geqslant a_{n}$ and $b_{1} \geqslant \cdots \geqslant b_{n}$, then $f\left(a_{1}+b_{n}, \ldots, a_{n}+b_{1}\right) \geqslant f(A+B)$. If, in addition, $\left[a_{n}, a_{1}\right] \cap\left[b_{n}, b_{1}\right]=\phi$, then $f(A+B) \geqslant f\left(\left|a_{1}-b_{n}\right|, \ldots,\left|a_{n}-b_{1}\right|\right)$.

The k th elementary symmetric function, $1 \leqslant k \leqslant n$, is an example of a Schur concave function that is increasing in each coordinate. Of course, it reduces to $|\operatorname{det}(X)|$ when $k=n$. It would be interesting to have a lower bound for $f(A+B)$ in general.

References

[1] N. Bebiano, 'New developments on the Marcus-Oliveira conjecture', Linear Algebra Appl. 197-198 (1994), 793-803.
[2] N. Bebiano, C.K. Li and J. da Providencia, 'Principal minors of the sum of a symmetric and a skew-symmetric matrix', (preprint).
[3] R.A. Horn and C.R. Johnson, Topics in matrix analysis (Cambridge Univsity Press, New York, 1991).
[4] M. Marcus, 'Derivation, Plücker relations, and the numerical range', Indiana Univ. Math. J. 22 (1973), 1137-1149.
[5] A.W. Marshall and I. Olkin, Inequalities: The theory of majorizations and its applications (Academic Press, New York, 1979).
[6] G.N. de Oliveira, 'Normal matrices (Research Problem)', Linear and Multilinear Algebra 12 (1982), 153-154.
[7] R.C. Thompson and L.J. Freede, 'On the eigenvalues of sums of hermitian matrices', Linear Algebra Appl. 4 (1971), 369-376.

Department of Mathematics
College of William and Mary Williamsburg VA 23187-8795
United States of America
e-mail: ckli@cs.wm.edu mathias@cs.wm.edu

