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We study sufficient conditions under which a nowhere scattered C∗-algebra A has a
nowhere scattered multiplier algebra M(A), that is, we study when M(A) has no
nonzero, elementary ideal-quotients. In particular, we prove that a σ-unital
C∗-algebra A of

(i) finite nuclear dimension, or

(ii) real rank zero, or

(iii) stable rank one with k-comparison,

is nowhere scattered if and only if M(A) is.
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1. Introduction

The study of regularity properties of multiplier algebras appears throughout the
literature; see, for example, [16, 22, 29, 36, 42]. One notable instance of this is the
study of pure infiniteness and, more concretely, of when a C∗-algebra has a purely
infinite multiplier algebra; see [23, 27, 28, 30, 32]. When this condition is relaxed
to weak pure infiniteness (in the sense of [25]) it was shown in [25, Proposition
4.11] that a C∗-algebra is weakly purely infinite if and only if its multiplier algebra
is. In general, given a certain property P, one can ask: If a C∗-algebra A satisfies
P, when does M(A) satisfy P? For example, Brown and Pedersen conjecture in [8]
that the multiplier algebra of a real rank zero C∗-algebra with trivial K1-group is
again of real rank zero; see also [31] and [56].

In this paper, we study the question above for the property of being nowhere scat-
tered (see paragraph 2.1). This notion ensures sufficient noncommutativity of the
algebra, and can be characterized in a number of ways. As shown in [49, Theorem
3.1], a C∗-algebra A is nowhere scattered if and only if it has no nonzero elemen-
tary ideal-quotients. This is in turn equivalent to no hereditary sub-C∗-algebra of
A admitting a one-dimensional representation. Every weakly purely infinite C∗-
algebra is nowhere scattered ([49, Example 3.3]) but, in contrast to the weakly
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2 E. Vilalta

purely infinite case, the multiplier algebra of a nowhere scattered C∗-algebra need
not be nowhere scattered; see examples 5.2 and 5.3.

Question 1.1. Let A be nowhere scattered. When is M(A) nowhere scattered?

One of the motivations behind question 1.1 is the study of when a multiplier alge-
bra has no characters, since such a property leads to important structure results. For
instance, it follows from [39, Theorem 3.2] that every element in a nowhere scattered
multiplier algebra can be written as the finite sum of commutators and products of
two commutators. Moreover, nowhere scatteredness for unital C∗-algebras is related
to the existence of full, square-zero elements [51, Theorem 3.6(3)]. Thus, knowing
that M(A) is nowhere scattered would have implications on its unitary group; see
[11, Section 3].

Nowhere scatteredness of a C∗-algebra A can also be characterized in terms of its
Cuntz semigroup Cu(A), a powerful invariant for C∗-algebras introduced in [15] and
further developed in [14]; see also [2, 3, 21, 25, 43, 50, 53]. Explicitly, it was shown
in [49, Theorem 8.9] that a C∗-algebra is nowhere scattered if and only if its Cuntz
semigroup is weakly (2, ω)-divisible, a notion defined by Robert and Rørdam in [40]
to study when certain C∗-algebras have characters; see paragraph 2.3. Consequently,
the study of question 1.1 leads naturally to the study of divisibility properties of
Cu(M(A)). The main divisibility properties at play in this case are weak (2, ω)-
divisibility and its bounded counterpart, known as weak (m, n)-divisibility ; see
paragraph 2.3 for the definitions.

The nowhere scattered C∗-algebras from examples 5.2 and 5.3, which fail to
have a nowhere scattered multiplier algebra, have a weakly (2, ω)-divisible Cuntz
semigroup. However, they both have unbounded divisibility, that is, for every pair
m, n ∈ N there exists a Cuntz class that is not weakly (m, n′)-divisible for any
n′ � n. Thus, we ask:

Question 1.2. Let A be a nowhere scattered C∗-algebra. When does there exist
n ∈ N such that [a] is weakly (2, n)-divisible for every a ∈ A+?

More generally, when can one find m, n ∈ N such that [a ⊗ 1m] is weakly (2m, n)-
divisible for every a ∈ A+?

This question is studied in detail in § 4, where we provide a number of examples
where one can answer question 1.2 affirmatively. Further, we also show that having
bounded divisibility is characterized by the soft part of the monoid; see theorem
4.11.

We prove in § 5 that question 1.1 has a positive answer whenever question 1.2
does.

Theorem 1.3 5.11. Let A be a σ-unital C∗-algebra. Assume that for every orthogo-
nal sequence (ai)i of positive elements in A there exist m, n ∈ N such that [ai ⊗ 1m]
is weakly (2m, n)-divisible for every i. Then M(A) is nowhere scattered.

Using the study of bounded divisibility from § 4, and that nowhere scatteredness
passes to ideals ([49, Proposition 4.2]), one obtains:

https://doi.org/10.1017/prm.2023.123 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.123


Nowhere scattered multiplier algebras 3

Theorem 1.4 5.12. Let A be a σ-unital C∗-algebra. Assume that A is of

(i) real rank zero, or

(ii) finite nuclear dimension, or

(iii) stable rank one with k-comparison.

Then A is nowhere scattered if and only if M(A) is nowhere scattered.

Further, one can generalize (iii) above by changing stable rank one for the
condition of having a surjective rank map; see proposition 4.3 and remark 4.4.

We also prove a weak converse of theorem 1.3 for stable C∗-algebras:

Theorem 1.5 5.18. Let A be a σ-unital, stable C∗-algebra. Assume that M(A) is
nowhere scattered. Then, for every a ∈ A+ and m ∈ N there exists n such that [a]
is weakly (m, n)-divisible.

Most of the results in § 3 and 4 can be translated to the more general setting
of abstract Cuntz semigroups, or Cu-semigroups for short; see for example [3] and
[21]. However, since in this paper we focus on multiplier algebras (which have no
known Cu-counterpart), we state all the results in the language of C∗-algebras.

2. Preliminaries

2.1. Nowhere scatteredness and the Global Glimm Property

As defined in [49, Definition A], a C∗-algebra is nowhere scattered if none of its
quotients contains a minimal open projection, where recall that an open projection
in a C∗-algebra B is a projection p ∈ B∗∗ that can be written as the strong limit
of an increasing sequence of positive elements in B. As noted in [49, Paragraph
2.1], an open projection p ∈ B∗∗ is minimal with respect to the order if and only if
p ∈ B and pBp = Cp. By [49, Theorem 3.1], a C∗-algebra A is nowhere scattered
if and only if no nonzero ideal-quotient of A is elementary.

One also says that a C∗-algebra A has the Global Glimm Property ([25,
Definition 4.12]) if for every a ∈ A+ and ε > 0 there exists a ∗-homomorphism
ϕ : M2(C0(0, 1]) → aAa such that the image of ϕ contains (a − ε)+.

A C∗-algebra is nowhere scattered whenever it has the Global Glimm Property.
The converse remains open, and is known as the Global Glimm Problem; see [2],
[18] and [51].

Examples of C∗-algebras with the Global Glimm Property include simple, non-
elementary C∗-algebras, Z-stable C∗-algebras and traceless C∗-algebras (which
include purely infinite C∗-algebras).

2.2. The Cuntz semigroup

For any pair of positive elements a, b in a C∗-algebra A one writes a � b if a =
limn rnbr∗n for some sequence (rn)n in A. One also says that a is Cuntz equivalent
to b, in symbols a ∼ b, whenever a � b and b � a.
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4 E. Vilalta

The Cuntz semigroup Cu(A) is defined as the quotient (A ⊗K+)/∼ equipped
with the order induced by � and the addition induced by diagonal addition; see
[15] and [14] for details.

Given elements x, y ∈ Cu(A), we write x � y whenever there exists a ∈ (A ⊗
K)+ and ε > 0 such that x � [(a − ε)+] and y = [a]. As shown in [14], every increas-
ing sequence in Cu(A) has a supremum, and every element can be written as the
supremum of a �-increasing sequence.

In recent years, the Cuntz semigroup has benefited from the study of abstract
Cuntz semigroups, or Cu-semigroups for short. Good references for this include [5],
[3] and [21]. In this paper, we will not use the language of Cu-semigroups (except
in corollary 4.13), but we will still make use of some of the abstract properties that
the Cuntz semigroup of a C∗-algebra always satisfies. These are:

(O5) Given x′, x, y′, y, z ∈ Cu(A) such that x + y � z with x′ � x and y′ � y,
there exists c ∈ Cu(A) such that y′ � c and x′ + c � y � x + c.

(O6) Given x′ � x � y + z, there exist v � x, y and w � x, z such that x′ � v +
w.

The reader is referred to [3, Proposition 4.6] (also [44]) and [38] for the respective
proofs.

2.3. Divisibility in the Cuntz semigroup

Let A be a C∗-algebra, let x ∈ Cu(A) and take n � 1 and m � 2. Following [40],
we will say that x is weakly (m, n)-divisible if, whenever x′ � x, there exist elements
y1, . . . , yn such that x′ � y1 + . . . + yn and myj � x for each j � n. Similarly, x
is weakly (m, ω)-divisible if the previous condition holds without any bound on n,
that is, allowing n to depend on x′.

The element x is said to be (m, n)-divisible (resp. (m, ω)-divisible) if one can
always set y1 = . . . = yn.

A C∗-algebra is nowhere scattered if and only if every element in its Cuntz
semigroup is weakly (m, ω)-divisible for each m, whilst a C∗-algebra has the Global
Glimm Property if and only if every element is (m, ω)-divisible for each m; see [49,
Theorem 8.9] and [51, Theorem 3.6] respectively.

3. Finite divisibility

In this section, we recall the notions of finite divisibility introduced in [40];
see definition 3.1. We prove their main properties (lemma 3.3), and study some
situations where Cu(A) contains a sup-dense subset of elements with finite divis-
ibility. We also find sufficient conditions for finite weak divisibility to imply finite
divisibility; see theorem 3.15.

Definition 3.1 [40]. Let a be a positive element of a C∗-algebra A, and let m � 2.
We let divm([a]) and Divm([a]) be the least positive integers n, n′ such that [a] ∈
Cu(A) is weakly (m, n)-divisible and (m, n′)-divisible respectively.

If no such n or n′ exist, we set divm([a]) = ∞ or Divm([a]) = ∞.

https://doi.org/10.1017/prm.2023.123 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.123


Nowhere scattered multiplier algebras 5

Remark 3.2. The class of a positive element a ∈ A+ in Cu(A) is said to be compact
if [a] � [a]. Every projection gives rise to a compact Cuntz class and, in some cases,
these are the only compact classes; see [10].

Given a compact element [a] ∈ Cu(A), then [a] is weakly (m, ω)-divisible if and
only if divm([a]) < ∞.

However, for a non-compact element [a], divm([a]) < ∞ is not equivalent to [a]
being weakly (m, ω)-divisible; see example 3.6 and remark 5.10.

Let us first summarize the main properties of divm(). Part (iii) of the follow-
ing lemma is in analogy to [25, Lemma 4.9], while (iv) is a Cu-analogue of [40,
Proposition 3.6].

Recall that, given x, y ∈ Cu(A), the infimum x ∧∞y always exists; see
[1, Remark 2.6]. Here, ∞y denotes the element supn ny.

Lemma 3.3. Let A be a C∗-algebra, and let x = [a] ∈ Cu(A) and m ∈ N. Then,

(i) divm(x) � divm′(x) whenever m � m′.

(ii) divm([a]) � N(divm([b1]) + . . . + divm([br])) whenever

[b1], . . . , [br] � [a] � N([b1] + . . . + [br]).

(iii) divm([a + b]) � divm([a]) + divm([b]).

(iv) Given x, y ∈ Cu(A) such that y � x and x ∧∞y = y, then divm(y) �
divm(x).

(v) divm(x) � supk divm(xk) for every increasing sequence (xk)k in Cu(A) with
supremum x.

Proof. (i) follows directly from the definition of divm([a]).
To see (ii), let nj = divm([bj ]) for j = 1, . . . , r. We may assume that all quantities

are finite, since otherwise we are done.
Take x � [a]. Since [a] � N [b1] + . . . + N [br], we can find elements xj such that

xj � [bj ] and x � Nx1 + . . . + Nxr. The element [bj ] is weakly (m, nj)-divisible,
so we can find elements y1,j , . . . , ynj ,j such that

myi,j � [bj ], and xj � y1,j + . . . + ynj ,j

for each i and j.
Using that [bj ] � [a], one has myi,j � [a]. Further, since we also have x �

N
∑

j xj , we deduce that x � N
∑

i,j yi,j . It follows that Divm([a]) � N(n1 + . . . +
nr), as desired.

Note that, given a, b ∈ (A ⊗K)+, we have [a + b] � [a] + [b] and [a], [b] � [a + b].
Thus, (iii) follows directly from (ii).

For (iv), let x, y ∈ Cu(A) be as stated. As before, we may assume that divm(x) =
n for some n ∈ N. Take y′ � y, and apply the weak (m, n)-divisibility of x to obtain
elements y1, . . . , yn satisfying the properties from paragraph 2.3 for y′ and x.

Since myj � x for every j, and x ∧∞y = y, one obtains m(yj ∧∞y) � x ∧∞y =
y. To see that y′ � (y1 ∧∞y) + . . . + (yn ∧∞y), note that y′ is bounded by y (and
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6 E. Vilalta

thus ∞y) and by y1 + . . . + yn. Using that the map t 	→ t ∧∞y preserves addition
[1, Theorem 2.5(i)], one has

y′ � (y1 + . . . + yn) ∧∞y = (y1 ∧∞y) + . . . + (yn ∧∞y),

which shows that the elements yj ∧∞y satisfy the conditions from paragraph 2.3
for y′ and y, as required.

To prove (v), assume that the supremum supk divm(xk) is finite, since otherwise
there is nothing to prove. Let n ∈ N be such that supk divm(xk) � n, and take
x′ ∈ Cu(A) such that x′ � x. Since x = supk xk, it follows that x′ � xk for some
k ∈ N. Thus, using that divm(xk) � n, we obtain elements y1, . . . , yn with x′ �
y1 + . . . + yn and myj � xk � x for each j. We get that divm(x) � n, as desired. �

Recall that a C∗-algebra A is said to have strict comparison if [a] � [b] in Cu(A)
whenever there exists δ > 0 such that limn τ(a1/n) � (1 − δ) limn τ(b1/n) for every
2-quasitrace τ ; see [17] for more details.

Lemma 3.4. Let A be a C∗-algebra, let [a] ∈ Cu(A) and m ∈ N. Then,

divkm(k[a]) � divm([a])

for every k ∈ N.
If A has strict comparison, one has divm([a]) � divk(m+1)(k[a]).

Proof. Let n = divm([a]), which we may assume to be finite, and take x � k[a].
Then, there exists ε > 0 such that x � k[(a − ε)+]. Since [(a − ε)+] � [a], there
exist y1, . . . , yn ∈ Cu(A) such that

[(a − ε)+] � y1 + . . . + yn, and myj � [a]

for each j.
In particular, one gets

x � k[(a − ε)+] � ky1 + . . . + kyn, and m(kyj) � k[a],

which implies divkm(k[a]) � n, as desired.
Now assume that A has strict comparison of positive elements, and let n =

divk(m+1)(k[a]). As before, we may assume n to be finite. Let x � [a], which
implies kx � k[a]. Then, there exist z1, . . . , zn such that x � kx � z1 + . . . + zn

and k(m + 1)zj � k[a]. Thus, one has (km + 1)mzj � km(m + 1)zj � (km)[a].
Using [17, Proposition 6.2], we get mzj � [a]. This implies divm([a]) �

divk(m+1)(k[a]). �

Remark 3.5. Let A be a C∗-algebra and let m ∈ N. Assume that divm([a]) < ∞ for
every a ∈ A+. Lemma 3.3 (ii) implies, in particular, that divm([b]) < ∞ for every
b ∈ Mn(A)+ and n ∈ N.

Indeed, given b ∈ Mn(A)+ there exist elements b1, . . . , bn ∈ A+ and N ∈ N such
that [bi] � [b] � N([b1] + . . . + [bn]) for each i � n; see [4, 4.2] and [51, Lemma 3.3].

By lemma 3.3 (ii), we have that divm(b) < ∞, as desired.
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Nowhere scattered multiplier algebras 7

Example 3.6. Let (Ak)k be a family of unital C∗-algebras such that

k � div2([1Ak
]) � 7k

for each k.
By [40, Theorem 7.9], such C∗-algebras can be taken to be simple, unital, infinite

dimensional AH-algebras. Using [49, Proposition 4.13], one sees that A := ⊕kAk is
nowhere scattered. Thus, every element in Cu(A) is weakly (2, ω)-divisible.

Consider the element x = supn

∑n
k=1[1Ak

] ∈ Cu(⊕kAk), and denote by ιk the
induced inclusion Cu(Ak) → Cu(⊕kAk). Then,

ιk([1Ak
]) � x, and x ∧∞ιk([1Ak

]) = ιk([1Ak
]).

Thus, lemma 3.3 (iv) implies that

k � div2(ιk([1Ak
])) � div2(x).

This shows that x is weakly (2, ω)-divisible, but div2(x) = ∞; see also corollary
5.16.

We now move our attention to C∗-algebras whose Cuntz semigroup Cu(A) satis-
fies that every element (or, at least, a finite multiple of it) has finite weak divisibility.
Particularly, there will be some situations where we do not know if an element
a ∈ A+ satisfies div2([a]) < ∞, but where we do know that div2m([a ⊗ 1m]) < ∞
for some m ∈ N. This is the case, for example, when a is a positive element in
a nowhere scattered C∗-algebra of finite nuclear dimension (see proposition 4.1).
Keeping track of such elements will be important in our investigations, and so we
provide a precise definition for them:

Definition 3.7. Let A be a C∗-algebra, and let [a] ∈ Cu(A). We will say that

(i) [a] is of finite weak divisibility if div2m([a]) < ∞ for some m ∈ N.

(ii) [a] has a multiple of finite weak divisibility if div2m(m[a]) < ∞ for some
m ∈ N.

(iii) [a] has a multiple of finite divisibility if Div2m(m[a]) < ∞ for some m ∈ N.

We will denote by Cu(A)div (resp. Cu(A)mdiv and Cu(A)mDiv) the subset of
Cu(A) consisting of the elements [a] of finite weak divisibility (resp. with a multiple
of finite weak divisibility, and with a multiple of finite divisibility).

Remark 3.8. Note that one always has Cu(A)div ⊆ Cu(A)mdiv. Further, Cu(A)div

and Cu(A)mdiv agree whenever Cu(A) is unperforated. Indeed, let [a] ∈ Cu(A) and
m ∈ N be such that div2m(m[a]) = n < ∞. For any ε > 0, we have m[(a − ε)+] �
m[a]. Thus, there exist y1, . . . , yn ∈ Cu(A) such that

[(a − ε)+] � m[(a − ε)+] � y1 + . . . + yn, and 2myj � m[a].

Since Cu(A) is unperforated, we get 2yj � [a]. This shows that div2([a]) � n < ∞,
as desired.
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8 E. Vilalta

Example 3.9. If A = C, its Cuntz semigroup is isomorphic to N := N ∪ {∞}. It is
readily checked that divm(x) < ∞ if and only if x � m. Thus, one has Cu(A)div =
Cu(A)mdiv = {0, 2, 3, . . . , ∞}.

Example 3.10. Every Z-stable C∗-algebra A satisfies Cu(A) = Cu(A)div by [54,
Proposition 3.7]. More generally, recall that a C∗-algebra is said to be N -almost
divisible (see [54]) if for each pair x′, x ∈ Cu(A) satisfying x′ � x, and k ∈ N, there
exists y ∈ Cu(A) such that

ky � x, and x′ � (k + 1)(N + 1)y.

Thus, if A is N -almost divisible for some N ∈ N, one also has Cu(A) = Cu(A)div.
By [41, Theorem 3.1], every nowhere scattered C∗-algebra of nuclear dimension

N that has no nonzero, simple, purely infinite ideal-quotients is N -almost divisi-
ble. This includes residually stably finite, nowhere scattered C∗-algebras of finite
nuclear dimension, and nowhere scattered C∗-algebras of finite decomposition rank.
Consequently, one has Cu(A)div = Cu(A).

As we will see in proposition 4.1, Cu(A)mdiv = Cu(A) for any nowhere scattered
C∗-algebra of finite nuclear dimension. In fact, one has more: Cu(⊕∞

i=1A)mDiv =
Cu(⊕∞

i=1A).

Example 3.11. As shown in [49, Theorem 9.1], every element x in the Cuntz
semigroup of a nowhere scattered, real rank zero C∗-algebra is weakly divisible,
that is, there exist y, z such that x = 2y + 3z. In particular, one gets

2(y + z) � x � 3(y + z).

Thus, it follows that div2(x) � 3 for every x and, consequently, that Cu(A)div =
Cu(A).

As noted in example 3.11 above, every element in the Cuntz semigroup of a
nowhere scattered, real rank zero C∗-algebra has finite divisibility. Lemmas 3.12 and
3.14 below show that the same is true for a sup-dense subset of (non-elementary)
simple C∗-algebras and nowhere scattered C∗-algebras of topological dimension
zero. However, this may not imply that every element in such a C∗-algebra has
finite weak divisibility.

Recall that an element x ∈ Cu(A) is idempotent if x = 2x. In the Cuntz semigroup
of a simple C∗-algebra there is only one nonzero idempotent element, which we
denote by ∞.

Lemma 3.12. Let A be a simple, non-elementary C∗-algebra. Then, Cu(A)div is
sup-dense in Cu(A).

If A is not stably finite, then Cu(A)div = Cu(A).

Proof. Let m ∈ N. If A is simple and non-elementary, it follows from [38,
Proposition 5.2.1] that Cu(A) is (m, ω)-divisible.

Let x ∈ Cu(A) be such that x � ∞. Then, using that x is (m, ω)-divisible, there
exists a nonzero element y ∈ Cu(A) such that my � x. Using that x � ∞ = ∞y,
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Nowhere scattered multiplier algebras 9

we find n ∈ N such that x � ny. This implies that divm(x) � n. Since the subset
of elements compactly contained in ∞ is sup-dense in Cu(A), the result follows.

Now assume that A is not stably finite. Then, the element ∞ in Cu(A) is compact;
see, for example, [46, Lemma 6.21] or the proof of [7, Theorem 2.6].

It follows that every element in Cu(A) is compactly contained in ∞. Using the
argument above, we see that Cu(A)div = Cu(A). �

Remark 3.13. An inspection of the proof shows that lemma 3.12 is slightly more
general: For a C∗-algebra A, one has Cu(A)div = Cu(A) whenever every idempotent
element in Cu(A) is compact.

As defined in [9, Remark 2.5 (vi)], a C∗-algebra has topological dimension zero
whenever its primitive ideal space has a basis of compact-open subsets. Examples
include all C∗-algebras with the ideal property.

Lemma 3.14. Let A be a separable nowhere scattered C∗-algebra of topological
dimension zero. Then Cu(A)div is dense in Cu(A).

Proof. Take y ∈ Cu(A), and assume that there exists y′ ∈ Cu(A) such that y′ �
y � ∞y′. Let M ∈ N be such that y � My′. Using that y is weakly (m, ω)-divisible,
one finds y1, . . . , yn such that myi � y and y′ � y1 + . . . yn. Thus, one has y �
My1 + . . . + Myn, and we get divm(y) � Mn.

Since A is separable and of topological dimension zero, it follows from [51,
Proposition 4.18] that the Cu-semigroup Cu(A) ⊗ {0, ∞} is algebraic. Thus, we
know from [51, Lemma 4.16] that for every pair x′, x ∈ Cu(A) such that x′ � x
there exist y′, y ∈ Cu(A) satisfying x′ � y � x and y′ � y � ∞y′. The first part
of the proof shows that divm(y) < ∞ and, consequently, that Cu(A)div is dense in
Cu(A). �

3.1. The Global Glimm Problem

We finish this section by studying when Cu(A)div = Cu(A) implies Cu(A)Div =
Cu(A). More concretely, we study when an element of finite weak divisibility
has finite divisibility. Given its similarities with the Global Glimm Problem (see
Paragraph 2.1), one could call this the discrete Global Glimm Problem.

Following the ideas from [51, Section 6], we obtain:

Theorem 3.15. Let A be a C∗-algebra satisfying Cu(A)div = Cu(A). Assume that
there exist k ∈ N and maps N, M : N → N such that

(i) whenever x′ � x � ny, nz, there exists t ∈ Cu(A) such that x′ � N(n)t and
t � y, z;

(ii) whenever x′ � x and 2x � y + 2nz, there exists g ∈ Cu(A) such that 2g � y
and x′ � g + M(n)z;

(iii) whenever x1 + f, x2 + f � y and x′
i � xi � f for i = 1, 2, one can find

z1, z2 ∈ Cu(A) such that z1 + z2 � y and x′
1 + x′

2 � kz1, kz2.

Then, Cu(A)Div = Cu(A).
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Proof. Assume that (i)–(iii) are satisfied, and let x ∈ Cu(A). By assumption, we
have divm(x) < ∞, which implies div2(x) < ∞. Set n := div2(x). We will show that
Div2(x) < ∞ by proving that

Div2(x) �
(
N
(
max{N(2N2,n),M(n)})+ N

(
N(2N2,n)

))
N(k),

where N2,n := (N◦ n. . . ◦N)(2).
Let x′ ∈ Cu(A) be such that x′ � x, and take y′, y such that x′ � y′ � y � x.

Then, since x is (2, n)-divisible, we obtain y1, . . . , yn satisfying y �∑
yj and

2yj � x for each j. Take y′
j � yj such that y �∑

y′
j . By [51, Lemma 2.2], for each

j we obtain an element rj such that yj + rj � x � 2rj and y′
j � rj .

Using (i), we find r ∈ Cu(A) satisfying y � N2,nr and r � rj for every j. Take
r′ � r such that y � N2,nr′. Using (O5) at r′ � r � x, we obtain c ∈ Cu(A) such
that r′ + c � x � r + c.

In particular, since one has yj + r � x � r + c, we obtain

2y � 2y1 + . . . + 2yn � (2y1 + . . . + 2yn) + r

� (y1 + 2y2 + . . . + 2yn) + r + c � . . . � r + (2n)c.

Using (ii), we find elements g′, g ∈ Cu(A) such that

2g � r, y′ � g′ + M(n)c, and g′ � g.

Applying [51, Lemma 2.2] at 2g � r, we find d ∈ Cu(A) such that g′ + d � r � 2d.
Thus, we have y′ � y � N2,nr′ � 2N2,nd. By (i), we find f ∈ Cu(A) such that

y′ � N(2N2,n)f, and f � r′, d.

By (O6) applied at x′ � y′ � g′ + M(n)c, one finds elements s′, s, t′, t ∈ Cu(A)
such that

x′ � s′ + t′, s′ � s � y′, g′, and t′ � t � y′,M(n)c.

Set N1 := N(max{N(2N2,n), M(n)}) and N2 := N(N(2N2,n)). Applying (i) at
t′ � t � M(n)c and t′ � t � y′ � N(2N2,n)f , we obtain x1 ∈ Cu(A) such that
x1 � c, f and t′ � N1x1. Take x′

1, x′′
1 ∈ Cu(A) such that x′

1 � x′′
1 � x1 and t′ �

N1x
′
1.

Using (i) again, but this time at s′ � s � y′ � N(2N2,n)f , we obtain x2 ∈ Cu(A)
such that x2 � f, s and s′ � N2x2. As before, take x′

2, x′′
2 ∈ Cu(A) such that x′

2 �
x′′

2 � x2 and s′ � N2x
′
2.

One has

x1 + f � c + r′ � x, x2 + f � s + d � g′ + d � r � x, and x1, x2 � f.

By (iii), we find z1, z2 ∈ Cu(A) such that

z1 + z2 � x, and x′′
1 + x′′

2 � kz1, kz2.

Applying (i) one last time, we find z ∈ Cu(A) such that

z � z1, z2, and x′
1 + x′

2 � N(k)z.
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The element z satisfies 2z � z1 + z2 � x, and

x′ � t′ + s′ � (N1 + N2)(x′
1 + x′

2) � (N1 + N2)N(k)z,

as desired. �

One can check that real rank zero, or stable rank one C∗-algebras satisfy (i)–(iii)
in theorem 3.15 above. In particular, this recovers the discrete part of [2, Theorem
5.5].

Corollary 3.16. Let A be a C∗-algebra. Assume that A is either of stable rank
one, or real rank zero. Then, Cu(A)div = Cu(A) if and only if Cu(A)Div = Cu(A).

Proof. If A has real rank zero, use example 3.11. For stable rank one C∗-algebras,
this just amounts to an inspection of a number of proofs:

[2, Lemma 5.3] implies that (i) is satisfied with N = 2n − 1.
The proof of [51, Lemma 5.5], but using weak cancellation instead of residually

stably finiteness, gives (ii) in theorem 3.15 with k = 2.
Finally, (iii) follows from an inspection of [49, 7.6–7.8] using that, when A has

stable rank one, (O8) can be used without the assumption of an element being
idempotent; see Definition 7.2 and Proposition 7.5 in [49] for more details. �

Remark 3.17. One can actually show that Cu(A)mdiv = Cu(A) if and only if
Cu(A)mDiv = Cu(A) whenever A is of stable rank one. Indeed, given x ∈ Cu(A) such
that div2m(mx) < ∞, it follows directly from [2, Theorem 5.5] that Div2m(mx) <
∞.

The same result holds for real rank zero C∗-algebras by example 3.11.

Question 3.18. Let A be a C∗-algebra such that Cu(A) = Cumdiv(A). When does
A satisfy Cu(A) = CumDiv(A)?

4. Bounded divisibility

We focus in this section on C∗-algebras where there is a global bound for the
divisibility of the elements. That is, we look at those C∗-algebras A such that there
exist n, m ∈ N with divm([a]) � n for every a ∈ A+. More generally, we focus on
those that satisfy supa∈A+

div2m(m[a]) < ∞ for some m ∈ N. As we will see in
theorem 5.11, these algebras will have a nowhere scattered multiplier algebra.

We begin the section by providing sufficient conditions for this bounded divisibil-
ity to occur (propositions 4.1 and 4.3), and by showing that C∗-algebras with this
property are closed under extensions (proposition 4.5). Note that we have already
seen some examples, such as tracially Z-stable C∗-algebras, or C∗-algebras of real
rank zero; see examples 3.10 and 3.11.

In theorem 4.11, we prove that the set of soft elements characterizes when a C∗-
algebra has multiples of bounded divisibility, and we use this to deduce the property
for simple, weakly cancellative C∗-algebras of Cuntz covering dimension zero; see
corollary 4.13.
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As mentioned in [41], it is unclear if dimnuc(A) < ∞ (with A nowhere scattered)
implies div(a) < ∞ for every a ∈ A+. However, one still gets the following result,
which is a direct consequence of [41, Proposition 3.2].

Proposition 4.1. Let A be a nowhere scattered C∗-algebra of finite nuclear
dimension at most k. Then, for every [a] ∈ Cu(A), one has

div4(k+1)(2(k + 1)[a]) � 8(k + 1)2.

In particular, one has Cu(A) = Cu(A)mdiv.

Proof. If A is nowhere scattered and of nuclear dimension at most k, so is A ⊗K.
Let [a] ∈ Cu(A). Upon passing to the hereditary C∗-algebra a(A ⊗K)a, we may

assume that a is full in A ⊗K; note that a(A ⊗K)a is still nowhere scattered by
[49, Proposition 4.1], and has nuclear dimension at most k by [55, Proposition 2.5].

Recall from [49, Theorem 3.1] that A ⊗K is nowhere scattered if and only if
it has no finite-dimensional irreducible representations. By [41, Proposition 3.2],
there exists [b] ∈ Cu(A) such that

[(a − ε)+] � 4(k + 1)[b], and 4(k + 1)[b] � 2(k + 1)[a].

Thus, we obtain that 2(k + 1)[(a − ε)+] � 8(k + 1)2[b]. Since 2(k + 1)[a] can be
written as the supremum of the elements 2(k + 1)[(a − ε)+] with ε → 0, it follows
that div4(k+1)(2(k + 1)[a]) < 8(k + 1)2, as desired. �

Let us denote by F (A) the central sequence algebra, as defined in [24, Definition
1.1]. Given a separable, unital C∗-algebra A, it is not known if A being Z-stable
is equivalent to F (A) admitting no characters; see [26]. Although this question
remains open, one does have the following result from [12, Part II, Article B,
Proposition 2.8].

Proposition 4.2 [12]. Let A be a separable C∗-algebra. Assume that F (A) admits
no characters. Then, for every m ∈ N there exists n such that divm([a]) � n for all
a ∈ A+.

Proof. It follows from [40, Corollary 5.6] that F (A) has no characters if and only
if div2([1]) < ∞ in Cu(F (A)). Let n0 = div2([1]). [12, Part II, B, Proposition 2.8]
implies that div2([a]) � n0 for every a ∈ A+.

An inductive argument now shows that supa∈A+
divm([a]) < ∞ for every m ∈ N;

see, for example, [51, Lemma 3.4]. �

Given [a], [b] ∈ Cu(A), recall that we write [a] <s [b] whenever there exists γ < 1
such that λ([a]) � γλ([b]) for every λ ∈ F (Cu(A)) ∼= QT(A); see [41, 2.1].

Let k ∈ N. As defined in [54, Definition 2.1], a C∗-algebra A is said to have k-
comparison if for every [a], [b0], . . . , [bk] ∈ Cu(A) such that [a] <s [bi] for all i, we
have [a] �

∑
i[bi].

Also recall that A has a surjective rank map if every element in L(F (Cu(A)))
can be realized as a rank function; see [2, Section 7] for details.
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Proposition 4.3. Let A be a nowhere scattered C∗-algebra with k-comparison.
Assume that the family of separable sub-C∗-algebras of A with a surjective rank
map is σ-complete and cofinal. Then, Div2(k+1)((k + 1)[a]) � 4(k + 1)3 for every
[a] ∈ Cu(A).

Proof. Let x := [a]. By [48, Proposition 6.1] and [20, Proposition 3.8.1], there exists
a separable sub-C∗-algebra B ⊆ A that has a surjective rank map, is nowhere scat-
tered, contains x and is such that the induced inclusion map Cu(B) → Cu(A) is an
order-embedding.

By definition, every element in L(F (Cu(B))) can be realized as a rank function.
Thus, there exists y ∈ Cu(B) such that ŷ = 1

3(k+1) x̂. This implies, in particular,
that

2(k + 1)ŷ � 2
3
x̂, and x̂ � 3(k + 1)ŷ =

3
4
(4(k + 1))ŷ.

Applying k-comparison, one obtains 2(k + 1)y � (k + 1)x and x � 4(k + 1)2y in
Cu(B). Using that the map Cu(B) → Cu(A) is an order-embedding, the same is
true in Cu(A). Thus, we have

2(k + 1)y � (k + 1)x � 4(k + 1)3y,

as desired. �

Remark 4.4. As shown in [2, Theorem 7.14], a separable, nowhere scattered C∗-
algebra of stable rank one always has a surjective rank map. Thus, proposition 4.3
above applies to all stable rank one C∗-algebras with k-comparison.

In fact, it was shown in [2, Theorem 8.12] that a separable, nowhere scattered
C∗-algebra of stable rank one has k-comparison if and only if it has strict compar-
ison. Consequently, we get that div2(x) � 4 for every x ∈ Cu(A). Further, a small
modification of the proof shows that Cu(A) is almost divisible (i.e. 0-almost divis-
ible). Indeed, following the notation of the proof, given any x ∈ Cu(A) and any
k ∈ N find y ∈ Cu(B) such that ŷ = 2

2k+1 x̂. A direct computation shows that

kŷ =
2k

2k + 1
x̂, and x̂ �

(
2k + 1
2k + 2

)
(k + 1)ŷ.

Using strict comparison, one gets ky � x � (k + 1)y, as desired.

The following is a generalization of [49, Proposition 4.2].

Proposition 4.5. Let I be an ideal of a C∗-algebra A. Assume that there exist
m0, m1, n0, n1 ∈ N such that

div2m0(m0[a]) � n0, and div2m1(m1[b]) � n1

for every a ∈ (A/I)+ and every b ∈ I+. Then,

div2m0m1((m0m1)[c]) � m0(m1n0 + n1)

for every c ∈ A+.

https://doi.org/10.1017/prm.2023.123 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.123


14 E. Vilalta

Conversely, div2m(m[a]), div2m(m[b]) � n for every a ∈ (A/I)+ and b ∈ I+

whenever supc∈A+
div2m(m[c]) � n for some m, n ∈ N.

Proof. It follows from [13] that Cu(I) can be identified with an ideal of Cu(A), and
that Cu(A/I) is naturally isomorphic to the quotient Cu(A)/Cu(I). We will make
these identifications without explicitly writing the isomorphisms.

Let c ∈ A+, and set x := [c]. Denote by Cu(π) : Cu(A) → Cu(A/I) the induced
quotient map. Given x′, x′′ in Cu(A) such that x′ � x′′ � x, we can apply the
bounded divisibility of Cu(A/I) to obtain elements y′′

j , y′
j , yj ∈ Cu(A) for j =

1, . . . , n0 such that

(2m0)Cu(π)(yj) � Cu(π)(m0x), Cu(π)(m0x
′′) � Cu(π)(y′′

1 ) + . . . + Cu(π)(y′′
n0

),

and y′′
j � y′

j � yj for each j. Note that this is possible because Cu(π)(x) = [π(c)]
and Cu(π)(x) has a representative in (A/I)+.

Take w ∈ Cu(I) such that w = 2w, and

(2m0)y′
j � (2m0)yj � m0x + w, and m0x

′′ � y′′
1 + . . . + yn0

′ + w.

Using [49, Proposition 7.8], we find elements z′j , zj ∈ Cu(A) satisfying

(2m0)zj � m0x, y′′
j � z′j + w, and z′j � zj

for every j = 1, . . . , n0.
In particular, we have

x′ � x′′ � m0x
′′ � z′1 + . . . + z′n0

+ w.

Applying (O6), we obtain an element r̃ ∈ Cu(A) such that

x′ � z′1 + . . . + z′n0
+ r̃, and r̃ � x′′, w.

Note that, since r̃ � x′′ � [c] with c ∈ A+, there exists b ∈ A+ such that r := [b]
satisfies r � r̃ and x′ � z′1 + . . . + z′n0

+ r; see, for example, [49, Lemma 3.3(1)].
Further, since we also have [b] � w, one gets b ∈ I+. Take r′ � r such that x′ �
z′1 + . . . + z′n0

+ r′.
Now, using that div2m1(m1[b]) � n1, one gets elements r1, . . . , rn1 such that

(2m1)ri � m1r, and m1r
′ � r1 + . . . + rn1

for each i � n1.
Thus, it follows that

(m0m1)x′ � (m0m1)z′1 + . . . + (m0m1)z′n0
+ m0r1 + . . . + m0rn1

and

(2m0m1)z′j � (m0m1)x, (2m0m1)ri � (m0m1)r � (m0m1)x

for each i and j.
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This proves that

div2m0m1((m0m1)x) � m0(m1n0 + n1),

as desired.
The converse follows from a standard argument; see [51, Proposition 3.9]. �

The previous result also works, mutatis-mutandis, with Div() instead of div(). In
this case, an inspection of [51, Theorem 3.10] gives the following:

Theorem 4.6. Let I be an ideal of a C∗-algebra A. Assume that there exist
m0, m1, n0, n1 ∈ N such that

Div4m0(m0[a]) � n0, and Div4m1(m1[b]) � n1

for every a ∈ I+ and every b ∈ (A/I)+. Then, there exist M, N ∈ N depending only
on m0, m1, n0, n1 such that

Div2M (M [c]) � N

for every c ∈ A+.
Conversely, Div2m(m[a]), Div2m(m[b]) � n for every a ∈ (A/I)+ and b ∈ I+

whenever supc∈A+
Div2m(m[c]) � n for some m, n ∈ N.

Proof. Assume first that I and A/I satisfy the stated conditions. Let c ∈ A+ and
take ε > 0. Set

x := [c], x′′ := [(c − ε)+], and x′ := [(c − 2ε)+].

As before, denote by π the induced quotient map Cu(A) → Cu(A/I). Applying
Div4m1(m1π(x)) � n1 to π(x′′) � π(x), we find y ∈ Cu(A) such that

4m1π(y) � m1π(x), and m1π(x′′) � n1π(y).

Take y′, y′′ ∈ Cu(A) such that y′ � y′′ � y and m1π(x′′) � n1π(y′). Find w ∈
Cu(I) such that

4m1y
′′ � 4m1y � m1x + w, m1x

′′ � n1y
′ + w, and w = 2w.

Applying [49, Proposition 7.8] at the first inequality and the pair y′ � y′′, we find
z ∈ Cu(A) satisfying

4m1z � m1x, and y′ � z + w.

Choose z′ ∈ Cu(A) such that z′ � z and y′ � z′ + w. Note that we have

4m1z + m1x � 2m1x. (4.1)

Further, using that y′ � z′ + w, we obtain

x′ � x′′ � m1x
′′ � n1y

′ + w � n1z
′ + w.
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Applying (O6), we find r̃ ∈ S such that

x′ � n1z
′ + r̃, and r̃ � x′, w.

Proceeding as in the previous proof, note that, since x′′ = [(c − ε)+] and r̃ � w ∈
Cu(I), we can find a ∈ I+ such that r := [a] satisfies r � r̃ and x′ � n1z

′ + r. Take
r′ with r′ � r and x′ � n1z

′ + r′.
Applying Div4m0(m0r) � n0 to m0r

′ � m0r, we get t ∈ Cu(I) such that

4m0t � m0r, and m0r
′ � n0t. (4.2)

Recall that r � x. Combining (4.1) and (4.2) we obtain

4m0m1(z + t) � 4m0m1z + m0m1x � 2m0m1x.

One also gets

2m0m1x
′ � 2m0m1(n1z

′ + r′) � 2m1(m0n1z
′ + n0t) � 2m0m1n0n1(z′ + t),

which shows that Div4m0m1(2m0m1x) � 2m0m1n0n1, as desired.
As in the proof of the previous proposition, we note that the converse follows

from similar arguments to those in [51, Proposition 3.9]. �

As noted in lemma 3.12, having a sup-dense subset of elements with finite weak
divisibility does not imply that every element has such property. However, proposi-
tion 4.8 below shows that it is enough to check finite weak divisibility for strongly
soft elements (which, in general, are not sup-dense).

4.7. Strongly soft elements and retracts

Let A be a C∗-algebra. As defined in [52], we denote by Cu(A)soft the set of
strongly soft elements, that is, those elements x ∈ Cu(A) such that for every x′ �
x there exists t ∈ Cu(A) satisfying x′ + t � x � ∞t. When A is residually stably
finite, [a] ∈ Cu(A) is strongly soft if and only if aAa has no nonzero, unital quotients;
see [52, Proposition 4.16].

Under certain assumptions, given any x ∈ Cu(A) one can find the largest strongly
soft element below x. When this is the case, we denote by σ : Cu(A) → Cu(A)soft
the map that sends an element x to the largest strongly soft element dominated by
x.

In [6, Theorem 5.6], it is shown that σ can always be defined whenever A is
separable, has the Global Glimm Property and its Cuntz semigroup is left-soft
separative, that is, if for any triplet of elements y, t ∈ S and x ∈ Ssoft satisfying

x + t � y + t, t � ∞y, and t � ∞x,

we have x � y; see [6, Definition 3.2]. As explained in [6, Section 3], C∗-algebras
with strict comparison or stable rank one have a left-soft separative Cuntz
semigroup.

In this case, σ is an order- and suprema-preserving superadditive map that
satisfies x � σ(x) + t whenever x � ∞t. Recall that a map φ is superadditive if
φ(x + y) � φ(x) + φ(y).
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Proposition 4.8. Let A be a separable C∗-algebra with the Global Glimm Property
such that Cu(A) is left-soft separative, and let x ∈ Cu(A) and m ∈ N. Then

divm(σ(x)) − 1 � divm(x) � divm(σ(x)) + 1.

Proof. First, to see that divm(σ(x)) � divm(x) + 1, assume that divm(x) = n for
some n ∈ N, since otherwise there is nothing to prove.

Let s � σ(x). Using that σ preserves suprema of increasing sequences, we can
find x′ � x such that s � σ(x′).

Since A satisfies the Global Glimm Property, one can use [52, Proposition 7.7]
to deduce that there exists t ∈ Cu(A)soft such that (nm)t � x � ∞t. Note that
(nm)t � σ(x) because t is strongly soft. Using that x is weakly (m, n)-divisible,
one finds z1, . . . , zn ∈ Cu(A) such that

σ(x′) � z1 + . . . + zn, and mzj � x

for every j.
Now, using that zi � ∞t for every i and that Cu(A) is left-soft separative, we

obtain

σ(x′) � z1 + . . . + zn � (σ(z1) + t) + z2 + . . . + zn � σ(z1) + . . . + σ(zn) + nt.

Further, using that σ is superadditive, we also get mσ(zj) � σ(mzj) � σ(x). Since
n(mt) � σ(x), we deduce that divn(σ(x)) � n + 1, as desired.

To prove that divm(x) � divm(σ(x)) + 1, take t ∈ Cu(A) such that mt � x �
∞t. Note that this can be done because A has the Global Glimm Property and,
consequently, Cu(A) is (m, ω)-divisible; see paragraph 2.3. Using that x � ∞t, we
have x � σ(x) + t. Let x′ � x. Since x′ � σ(x) + t, we can use (O6) to obtain an
element y such that x′ � y + t with y � σ(x).

Let n be such that σ(x) is weakly (m, n)-divisible. Then, there exist z1, . . . , zn

satisfying

y � z1 + . . . + zn, and mzj � σ(x)

for each j.
We obtain

x′ � z1 + . . . + zn + t, mt � x, and mzj � σ(x) � x

for every j, which implies that divm(x) � n + 1. �

Lemma 4.9. Let A be a C∗-algebra, and let s, t ∈ Cu(A). Assume that s is strongly
soft. Then, the element s ∧∞t is strongly soft in Cu(A).

Proof. Let x′, x ∈ Cu(A) be such that x′ � x � s ∧∞t. By definition, this implies
that x′ � s and x′ � ∞t.

Since s is strongly soft, we find y ∈ Cu(A) such that x′ + y � s � ∞y. Thus,
using that taking infima with an idempotent is a monoid morphism ([1, Section
2]), we have

x′ + y ∧∞t = (x′ + y) ∧∞t � s ∧∞t � ∞y ∧∞t = ∞(y ∧∞t).

This shows that s ∧∞t is strongly soft. �
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Lemma 4.10. Let A be a C∗-algebra with the Global Glimm Property. Then, for
x′, x ∈ Cu(A) such that x′ � x, there exist s1, s2 ∈ Cu(A)soft such that s1, s2 � x
and x′ � s1 + s2.

Proof. Let x′, x ∈ Cu(A) satisfy x′ � x. It follows from [52, Proposition 7.7] that
there exists y ∈ Cu(A)soft satisfying y � x � ∞y. In particular, one has x′ � ∞y.

By [52, Proposition 5.6], we can take y′, y′′ ∈ Cu(A)soft such that y′ � y′′ � y
and x′ � ∞y′. Since y′′ is soft, we find t ∈ Cu(A)soft such that y′ + t � y′′ � ∞t; see
[52, Proposition 4.13]. Now, by (O5) applied to y′′ � y � x, there exists c ∈ Cu(A)
satisfying

y′′ + c � x � y + c.

Thus, we have

y′ + (c + t) � x � y + c � y + (c + t).

Using that x′ � ∞y′, we obtain

x′ � x ∧∞y′′ � (y + (c + t)) ∧∞y′′ = y ∧∞y′ + (c + t) ∧∞y′′

and

y ∧∞y′, (c + t) ∧∞y′′ � x.

By lemma 4.9, the elements y ∧∞y′′ and t ∧∞y′′ are strongly soft. Further, note
that one gets

(c + t) ∧∞y′ = c ∧∞y′ + t ∧∞y′′

with c ∧∞y′′ � ∞y′′ � ∞(t ∧∞y′′).
Using [52, Theorem 4.14(2)], we deduce that (c + t) ∧∞y′′ is also strongly soft.

Set s1 := y ∧∞y′′ and s2 := (c + t) ∧∞y′′. We have s1, s2 ∈ Cu(A)soft,

s1, s2 � x, and x′ � s1 + s2,

as required. �

When Cu(A) is not left-soft separative, we still have the following:

Theorem 4.11. Let A be a C∗-algebra with the Global Glimm Property, and let
m ∈ N. Then, the following are equivalent:

(i) there exists n ∈ N such that div2m(m[a]) � n for every [a] ∈ Cu(A);

(ii) there exists n ∈ N such that div2m(m[a]) � n for every [a] ∈ Cu(A)soft.

Proof. That (i) implies (ii) is trivial.
To prove the converse, let x′, x ∈ Cu(A) be such that x′ � x. Using lemma 4.10,

one finds s1, s2 ∈ Cu(A)soft satisfying s1, s2 � x and x′ � s1 + s2. In particular,
ms1, ms2 � mx and mx′ � ms1 + ms2.
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By lemma 3.3 (ii), we have

div2m(mx) � div2m(ms1) + div2m(ms2) � 2n,

as desired. �

Corollary 4.12. Let A be a C∗-algebra with the Global Glimm Property. Assume
that Cu(A)soft is a retract of a Cu-semigroup S satisfying sups∈S div2k(ks) < ∞
for some k ∈ N. Then, there exist n, m ∈ N such that div2m(m[a]) � n for every
[a] ∈ Cu(A).

Proof. Using that Cu(A)soft is a retract of S, it follows that

div2k(ky) � sup
s∈S

div2k(ks) < ∞

for every y ∈ Cu(A)soft.
Applying theorem 4.11, there exist n, m ∈ N such that div2m(mx) � n for every

x ∈ Cu(A). �

Recall from [50, Definition 3.1] that one says that Cu(A) has covering dimension
zero if, whenever x′ � x � y1 + y2, there exist z1, z2 ∈ Cu(A) such that x′ � z1 +
z2 � x. Examples of dimension zero include the Cuntz semigroup of any real rank
zero C∗-algebra, as well as other semigroups, such as the Cuntz semigroup of the
Jacelon–Razak algebra; see [50, Section 5].

We say that a Cuntz semigroup is weakly cancellative if x � y whenever x + z �
y + z for some element z. Stable rank one C∗-algebras have a weakly cancellative
Cuntz semigroup by [44, Theorem 4.3].

Corollary 4.13. Let A be a simple, non-elementary C∗-algebra of Cuntz covering
dimension zero. Assume that Cu(A) is weakly cancellative. Then there exists n ∈ N

such that div2([a]) � n for every [a] ∈ Cu(A).

Proof. Assume first that A is separable. [50, Theorem 7.10] shows that the sub-
monoid Cu(A)soft is a retract of an almost divisible Cu-semigroup S; see also the
proof of [50, Proposition 7.13].

As explained in example 3.11, almost divisibility implies div2(s) � 3 for every
element s ∈ S. Thus, the result in this case follows from corollary 4.12 above.

If A is not separable, one can use the same techniques as in the proof of
proposition 4.3 to get the desired result. �

5. Nowhere scattered corona and multiplier algebras

In this section, we study when a multiplier algebra of a σ-unital, nowhere scattered
C∗-algebra A is nowhere scattered. Our main result is that this happens whenever
supa∈A+

div2m(m[a]) < ∞ for some m ∈ N; see theorem 5.11. Note that the supre-
mum is not taken over all the elements of the Cuntz semigroup (i.e. over A ⊗K),
but only over those with a representative in A+. This set is called the scale of the
Cuntz semigroup in [4, 4.2].

https://doi.org/10.1017/prm.2023.123 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.123


20 E. Vilalta

As an application, we prove in theorem 5.12 that nowhere scattered C∗-algebras
of finite nuclear dimension, or real rank zero, or stable rank one and k-comparison
all have a nowhere scattered multiplier algebra. We also show in theorem 5.18 that,
for stable C∗-algebras, the multiplier algebra being nowhere scattered implies that
every element in the algebra has finite weak divisibility.

Let us begin the section with some examples:

Example 5.1. Let A be a weakly purely infinite C∗-algebra. It was shown in [25,
Proposition 4.11] that M(A) is weakly purely infinite, and thus nowhere scattered
by [49, Example 3.3].

As a similar example, it follows from [32] that a simple, σ-unital, non-elementary
(i.e. nowhere scattered) C∗-algebra with continuous scale has a purely infinite
corona algebra. This implies that M(A) is nowhere scattered by [49, Proposition
4.2]; see also [23] and [30].

The examples below appeared in [49, Examples 4.14, 4.15]. We recall them here
for the convenience of the reader.

Example 5.2. Let Ak be the family of separable, simple, AH-algebras from [40]
(see example 3.6). As shown in [40, Corollary 8.6], the product

∏
k Ak has a one-

dimensional, irreducible representation. By [49, Theorem 3.1], this implies that∏
k Ak is not nowhere scattered. Consequently, A := ⊕Ak is a nowhere scattered

C∗-algebra with a multiplier algebra M(A) ∼=∏k Ak that is not nowhere scattered.

Example 5.3. In [45, Theorem 1], Sakai constructs a simple C∗-algebra A such
that its derived algebra D(A) satisfies D(A)/A ∼= C. Using that D(A) ∼= M(A) for
simple C∗-algebras (see the remarks after [35, Proposition 2.6]), one sees that M(A)
cannot be nowhere scattered.

The following lemma will play an important role in the proof of proposition 5.9.

Lemma 5.4. Let A be a C∗-algebra. The following are equivalent:

(i) A is nowhere scattered.

(ii) For every a ∈ A+ and n ∈ N, the class [a ⊗ 1n] ∈ Cu(A) is weakly (2n, ω)-
divisible.

(iii) For every a ∈ A+, there exists n = n(a) ∈ N such that the class [a ⊗ 1n] ∈
Cu(A) is weakly (n + 1, ω)-divisible.

Proof. We know from [49, Theorem 8.9] that A is nowhere scattered if and only
if every element in Cu(A) is weakly (2, ω)-divisible. Using [49, Theorem 8.9], it
follows that every element is (2n, ω)-divisible for every n ∈ N. This proves that (i)
implies (ii), and it is trivial that (ii) implies (iii).

To see that (iii) implies (i), assume for the sake of contradiction that A is not
nowhere scattered. Then, we know from [49, Theorem 3.1] that there exist ideals
I ⊆ J ⊆ A such that J/I is elementary, that is, Cu(I/J) ∼= Cu(C) ∼= N; see [19,
Theorem 4.4.4].
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Note that, since we are assuming that A satisfies (iii), both I and I/J satisfy
(iii) as well. Let φ be an isomorphism from Cu(I/J) to N. Now, it follows from [51,
Lemma 3.3] that for every positive element b ∈ (I/J) ⊗K there exists a ∈ (I/J)+
such that [b] � ∞[a] in Cu(I/J). Thus, let a ∈ (I/J)+ be such that φ([a]) �= 0. We
get 1 � 1 � φ([a]) and, using Rørdam’s lemma (see e.g. [46, Theorem 2.30]), there
exists a′ ∈ (I/J)+ such that 1 = φ([a′]).

Take n ∈ N such that [a′ ⊗ 1n] is weakly (n + 1, ω)-divisible. Since φ is an iso-
morphism, we must have that φ([a′ ⊗ 1n]) = n is also weakly (n + 1, ω)-divisible.
However, the only element x ∈ N such that (n + 1)x � n is zero. This contradicts
the weak (n + 1, ω)-divisibility of [a′ ⊗ 1n].

Thus, A has no nonzero elementary ideal-quotients, as desired. �

Remark 5.5. In the proof of ‘(iii) =⇒ (i)’ in lemma 5.4 above, we have used that a
C∗-algebra is nowhere scattered if and only if it has no elementary ideal-quotients.
As shown in [49, Proposition 8.8], a Cu-semigroup S satisfying (O5)–(O8) has
no elementary ideal-quotients if and only if every element in S is weakly (2, ω)-
divisible.

In light of this, one might expect ‘(iii) =⇒ (i)’ to hold for every Cu-semigroup
S satisfying (O5)–(O8), that is, that every element in S is weakly (2, ω)-divisible
whenever for every element x ∈ S there exists nx such that nxx is weakly (nx +
1, ω)-divisible.

However, this is not true: For example, S = {0, 1, ∞} is a Cu-semigroup sat-
isfying (O5)–(O8). S is not weakly (2, ω)-divisible, but every element in S has a
properly infinite multiple. Thus, it satisfies (iii), but not (i).

The reason for this disparity is due to the fact that, in the context of abstract
Cuntz semigroups, N is not the only elementary Cu-semigroup. In fact, {0, 1, ∞}
is elementary; see [49, Section 8].

Lemma 5.6 below is [25, Lemma 4.10], which uses some of the ideas from [16]. It
was stated with the assumption of weak pure infiniteness, but an inspection of their
proof shows that this is not actually needed. This was also stated, in a different
way and with a different proof, in [22, Theorem 4.2].

Note that both of the strictly convergent sums in the right-hand side consist of
pairwise orthogonal terms.

Lemma 5.6. Let A be a σ-unital C∗-algebra, let T ∈ M(A)+ and let ε > 0. Then A
has an increasing, countable, approximate unit (en)n of positive contractions with
en+1en = en such that

T = a +
∞∑

n=1

f
1/2
2n−1Tf

1/2
2n−1 +

∞∑
n=1

f
1/2
2n Tf

1/2
2n , fn := en − en−1

with e0 = 0 and a ∈ A satisfying ‖a‖ � ε.

In the proof of proposition 5.9 we will also need the following:

Lemma 5.7. Let A be a C∗-algebra, and let a, b ∈ A+ be elements such that [a], [b] ∈
Cu(A) have multiples of finite weak divisibility. Then, [a + b] has a multiple of finite
weak divisibility.
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In particular, there exists n ∈ N such that (a + b) ⊗ 1n has a (n + 1, ω)-divisible
class.

Proof. Let na, nb ∈ N be such that div2na
(na[a]), div2nb

(nb[b]) < ∞.
Using that nanb[a + b] = [a ⊗ 1nanb

+ b ⊗ 1nanb
], we can apply lemma 3.3 (iii)

and get

div2nanb
(nanb[a + b]) � div2nanb

(nanb[a]) + div2nanb
(nanb[b]).

Thus, applying lemma 3.4 to both summands, we obtain

div2nanb
(nanb[a + b]) � div2na

(na[a]) + div2nb
(nb[b]) < ∞,

as desired. �

Lemma 5.8. Let A be a σ-unital C∗-algebra, and let (ai)∞i=1 be a bounded sequence
in A of pairwise orthogonal elements such that R =

∑
i ai is strictly convergent and

ai ⊥ ei−1 for every i � 1, where (ei)i is an approximate unit as in lemma 5.6.
Let m ∈ N. Then for every ε0 > 0, one has

div2m(m[R]) � sup
i

sup
0�ε�ε0

div2m(m[(ai − ε)+])

in Cu(M(A)).

Proof. Let ε0 > 0. Assume that n := supi supε�ε0
div2m(m[(ai − ε)+]) is finite,

since otherwise there is nothing to prove. Fix ε � ε0 positive. By assumption,
(ai − ε

4 )+ ⊗ 1m is weakly (2m, n)-divisible for each i. Thus, we can find elements
bi,j ∈ A ⊗K for j = 1, . . . , n such that

m[(ai − ε/3)+] � [bi,1] + . . . + [bi,n], and 2m[bi,j ] � m[(ai − ε/4)+]

for each i and j.
It follows from [40, Lemma 2.3(i)] that there exist elements ci,j ∈ Mm(A)+ with

ci,j � bi,j such that

(ai − 2ε/3)+⊗1m =
n∑

j=1

ci,j .

Set di,j := ((ai − 2ε/3)+ ⊗ 1m)ci,j((ai − 2ε/3)+ ⊗ 1m) ∈ Mm(A). Note that every
entry in di,j is in aiAai, and is thus orthogonal with ei−1. To see that the sums
Rj :=

∑
i di,j are strictly convergent, we proceed as in [22, Proposition 4.4]. Using

that ci,j � ai ⊗ 1m at the third step, we have

d2
i,j = ((ai − 2ε/3)+⊗1m)

(
ci,j((ai − 2ε/3)+⊗1m)2ci,j

)
((ai − 2ε/3)+⊗1m)

� ‖ci,j‖2‖(ai − 2ε/3)+⊗1m‖3((ai − 2ε/3)+⊗1m)

�
(

sup
i

‖ai ⊗ 1m‖5

)
((ai − 2ε/3)+⊗1m),

where note that the supremum over i is finite because the sequence (ai)i is bounded.
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Now, given any t ∈ Mm(A) and any pair n < k, and using that the di,j ’s are
pairwise orthogonal on i (and that so are the ai’s), one has∥∥∥∥∥t

k∑
i=n

di,j

∥∥∥∥∥
2

=

∥∥∥∥∥t
(

k∑
i=n

d2
i,j

)
t∗
∥∥∥∥∥

�
(

sup
i

‖ai ⊗ 1m‖5

)∥∥∥∥∥t
(

k∑
i=n

(ai − 2ε/3)+⊗1m

)
t∗
∥∥∥∥∥

�
(

sup
i

‖ai ⊗ 1m‖5

)
‖t‖
∥∥∥∥∥t
(

k∑
i=n

(ai − 2ε/3)+⊗1m

)∥∥∥∥∥
and, similarly,∥∥∥∥∥

(
k∑

i=n

di,j

)
t

∥∥∥∥∥
2

�
(

sup
i

‖ai ⊗ 1m‖5

)
‖t‖
∥∥∥∥∥
(

k∑
i=n

(ai − 2ε/3)+⊗1m

)
t

∥∥∥∥∥
Since

∑
i ai is strictly convergent, so is

∑
i(ai − 2ε/3)+ ⊗ 1m. Thus, it follows that

Rj =
∑

i di,j is a strictly convergent sum. Further, note that we have

(R − 2ε/3)3+ ⊗ 1m =
n∑

j=1

Rj

and, therefore, m[(R − ε)+] �∑n
j=1[Rj ].

Let δ > 0 be such that m[(R − ε)+] �
∑n

j=1[(Rj − δ)+]. Applying [22, Lemma
2.2] at

di,j ⊗ 12m � ci,j ⊗ 12m � bi,j ⊗ 12m � (ai − ε/4)+⊗1m

we find elements ri,j such that

(di,j − δ)+⊗12m = ri,j(ai ⊗ 1m)r∗i,j , and sup
i

‖ri,j‖2 � 4
ε

sup
i

‖di,j ⊗ 12m‖.

Set xi,j := (ai ⊗ 1m)1/2r∗i,j(di,j ⊗ 12m − δ)+. We get

x∗
i,jxi,j = (di,j − δ)3+ ⊗ 12m, and xi,jx

∗
i,j ∈ (ai ⊗ 1m)Mm(A)(ai ⊗ 1m),

with both ((ai ⊗ 1m)1/2r∗i,j)i and (r∗i,j(di,j ⊗ 12m − δ)+)i being bounded sequences
for each fixed j.

Let j be fixed. To see that
∑

i xi,j is strictly convergent, we argue as before. First,
note that one has

x∗
i,jxi,j � sup

i
‖di,j ⊗ 12m‖2((di,j − δ)+⊗12m), and

xi,jx
∗
i,j � 4

ε
sup

i
‖di,j ⊗ 12m‖3(ai ⊗ 1m),

where each suprema is bounded because (di,j)i is a bounded sequence.
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For any given pair n < k and any t, one has∥∥∥∥∥
(

k∑
i=n

xi,j

)
t

∥∥∥∥∥
2

�
(

sup
i

‖di,j ⊗ 12m‖2

)
‖t‖
∥∥∥∥∥
(

k∑
i=n

(di,j − δ)+⊗12m

)
t

∥∥∥∥∥ , and

∥∥∥∥∥t
(

k∑
i=n

xi,j

)∥∥∥∥∥
2

� 4
ε

sup
i

‖di,j ⊗ 12m‖3

∥∥∥∥∥t
(

k∑
i=n

ai ⊗ 1m

)∥∥∥∥∥ .

Let xi,j(s, r) denote the (s, r)-th entry of xi,j . Then, the sums xj(s, r) :=∑
i xi,j(s, r) are all strictly convergent. Set xj := (xj(s, r))s,r ∈ Mm,2m2(M(A)).

One gets

x∗
jxj = (Rj − δ)3+ ⊗ 12m ∼ (Rj − δ)+⊗12m,

and

xjx
∗
j ∈ (R ⊗ 1m)Mm(M(A))(R ⊗ 1m).

It follows that, in Cu(M(A)), we have 2m[(Rj − δ)+] � m[R] for each j ∈ N.
Since [R] = sup0�ε�ε0

[(R − ε)+], we have that m[R] is weakly (2m, n)-divisible,
as desired. �

Let us say that a sequence (ai)i of positive elements in a C∗-algebra A is orthog-
onal if the elements in the sequence are pairwise orthogonal, that is, if aiaj = 0
whenever i �= j.

Proposition 5.9. Let A be a σ-unital C∗-algebra. Assume that for every orthog-
onal sequence (ai)i of positive elements in A there exist m, n ∈ N such that
div2m(m[ai]) � n for each i. Then div2m(m[T ]) < ∞ for every T ∈ M(A)/A.

In particular, M(A)/A is nowhere scattered.

Proof. Let π : M(A) → M(A)/A denote the quotient map. Using lemmas 5.6 and
5.8, we deduce that each positive element in the corona algebra can be written as
π(R1) + π(R2) with [R1], [R2] having multiples of finite weak divisibility.

By lemma 5.7, every element of the form [π(T )] in Cu(M(A)/A) with T ∈
(M(A)/A)+ has a multiple of finite weak divisibility. Lemma 5.4 shows that the
corona algebra is nowhere scattered, as desired. �

Remark 5.10. Let A be the simple, nowhere scattered C∗-algebra from example
5.3. It follows from proposition 5.9 above that there must exist an element a ∈
(⊕∞

i=1A)+ whose Cuntz class does not have a multiple of finite weak divisibility.

Using proposition 5.9, we can now prove the main result of the paper.

Theorem 5.11. Let A be a σ-unital C∗-algebra. Assume that for every orthogonal
sequence (ai)i in A+ there exist m, n ∈ N such that div2m(m[ai]) � n for each i.
Then M(A) is nowhere scattered.

Proof. Using that nowhere scatteredness works well with extensions (see [49,
Proposition 4.2]), the result is a direct consequence of proposition 5.9. �

https://doi.org/10.1017/prm.2023.123 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.123


Nowhere scattered multiplier algebras 25

It follows from the results in [37] that the multiplier algebra of a simple, separable
C∗-algebra of real rank zero does not admit a character. Theorem 5.12 (i) below
generalizes this result.

Theorem 5.12. Let A be a σ-unital C∗-algebra. Assume that A has

(i) real rank zero, or

(ii) finite nuclear dimension, or

(iii) k-comparison and a surjective rank map.

Then A is nowhere scattered if and only if M(A) is nowhere scattered.

Proof. Assume that M(A) is nowhere scattered. [49, Proposition 4.2] implies that
A is nowhere scattered as well.

Conversely, assume that A is nowhere scattered. It follows from example 3.11,
proposition 4.1 and proposition 4.3 respectively that (i), (ii) and (iii) imply that
every sequence of positive elements (orthogonal or not) in A+ has uniformly
bounded multiple divisibility. Thus, we can use theorem 5.11 to get the desired
result. �

Question 5.13. Let A be a nowhere scattered C∗-algebra such that [a] has a multi-
ple of finite weak divisibility for every a ∈ A+. Does it follow that M(A) is nowhere
scattered?

Note that this would imply that the simple C∗-algebra from example 5.3 contains
a (2, ω)-divisible element of infinite weak divisibility.

Remark 5.14. The assumption from theorem 5.11 above is not equivalent to
nowhere scatteredness, not even in the simple or σ-unital case:

(1) The example from example 5.2 is σ-unital. Thus, there exist σ-unital, nowhere
scattered C∗-algebras that do not satisfy the condition from theorem 5.11.

(2) By lemma 3.12, the set of classes with finite weak divisibility is sup-dense
in the Cuntz semigroup of a simple, non-elementary C∗-algebra A. However,
and as made explicit in example 5.3, this is not enough for the multiplier
algebra M(A) to be nowhere scattered.

Further, note that if the converse of theorem 5.11 holds for some family of C∗-
algebras, one must have that any unital, nowhere scattered C∗-algebra A in the
family must satisfy supa∈A+

div2m(m[ai]) < ∞ for some m.

As another application of lemma 5.8, we can study when multiplier algebras have
a character:
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Proposition 5.15. Let A be a σ-unital C∗-algebra, and let (ei)i be an approximate
unit as in lemma 5.6. Assume that

sup
i

sup
0�ε�ε0

div2m(m[(ei − ei−1 − ε)+]) < ∞

for some ε0 > 0.
Then, M(A) does not admit a character.

Proof. Using lemma 5.8, we see that the unit 1 =
∑

i(ei − ei−1) in M(A) satisfies
div2m(m[1]) < ∞.

The result now follows from [40, Corollary 5.6]. �

In particular, proposition 5.15 recovers [40, Corollary 8.5]:

Corollary 5.16. The product of unital C∗-algebras Ai does not admit a character
whenever the supremum of div2([1i]) is finite.

5.1. Stable C∗-algebras

The multiplier algebra of a σ-unital, stable C∗-algebra A has been studied exten-
sively. For example, [42] studies when the corona algebra of A is simple, while in
[34] it is shown, using its multiplier algebra, that a nowhere scattered C∗-algebra
of finite nuclear dimension has the corona factorization property.

In what follows, we show that [a] must have a multiple of finite weak divisibility
for every a ∈ A+ if M(A) is to be nowhere scattered; see theorem 5.18. Thus, if
question 5.13 has an affirmative answer, this would imply that the multiplier algebra
of a σ-unital, stable C∗-algebra is nowhere scattered if and only if every element in
the algebra has a multiple of finite weak divisibility.

Lemma 5.17 below was stated for (m, ω)-divisibility in [51]. We now provide the
analogous statement for weak (m, ω)-divisibility, which only needs to assume the
element (and not the whole Cuntz semigroup) to be divisible.

Lemma 5.17. Let A be a C∗-algebra, and let a ∈ (A ⊗K)+. Then, if [a] is weakly
(m, ω)-divisible, there exists a sequence (yn)n ⊆ Cu(A) such that myj � [a] �∑∞

j=1 yj for every j ∈ N.

Proof. Let εn be a strictly decreasing sequence converging to 0, and let xn :=
[(a − εn)+]. For each n, apply (m, ω)-divisibility to xn � [a] to find elements yn,j

such that

xn �
∑

j

yn,j , and myn,j � [a].

for every j. In particular, note that one gets

xn �
n∑

k=1

∑
j

yk,j �
∞∑

k=1

∑
j

yk,j

By taking supremum on n, one sees that the elements (yn,j)n,j satisfy the desired
conditions. �
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Note that, in general, one cannot adapt the previous proof to show that there
exist y1, . . . , ym with 2yj � [a] � y1 + . . . + ym whenever [a] is (2, m)-divisible.

However, this is the case for σ-unital C∗-algebras whose multiplier algebra is
nowhere scattered:

Theorem 5.18. Let A be a σ-unital, stable C∗-algebra. Assume that M(A) is
nowhere scattered. Then, for every a ∈ A+ and m ∈ N there exist finitely many
elements y1, . . . , yn ∈ Cu(A) such that

myj � [a] � y1 + . . . + yn

for every j � n.
In particular, [a] has a multiple of finite weak divisibility for every a ∈ A+.

Proof. Let a ∈ A+ and m ∈ N. By [2, Proposition 2.8] and its proof there exists a
projection pa ∈ M(A) such that, for every x ∈ Cu(A), one has x � [a] if and only
if x � [pa] in Cu(M(A)).

Assume that M(A) is nowhere scattered. Thus, Cu(M(A)) is weakly (m, ω)-
divisible by [49, Theorem 8.9]. It follows from remark 3.2 that divm([p]) < ∞ for
every projection p ∈ M(A).

Then, since we have [a] � [pa] � [pa], there exist finitely many elements
z1, . . . , zn in Cu(M(A)) such that

[a] � [pa] � z1 + . . . + zn, and mzj � [pa]

for each j � n.
Since M(A) is a C∗-algebra, we know from [1, Remark 2.6] that the infimum

yj := zj ∧∞[a] exists for each j. Any representative of this element is contained in
the ideal generated by a and, therefore, must be a positive element in A. Thus, we
have [a] � y1 + . . . + yn in Cu(M(A)) with yj ∈ Cu(A) for each j.

Further, we also get myj = m(zj ∧∞[a]) � [pa]. Thus, myj � [a] in Cu(M(A)).
Finally, note that, since A is an ideal of M(A), a pair of elements in A are Cuntz

subequivalent in M(A) if and only if they are Cuntz subequivalent in A; see, for
example, [46, Proposition 2.18].

Consequently, we have

[a] � y1 + . . . + yn, and myj � [a]

in Cu(A), as desired. �

Remark 5.19. Note that there exist stable, nowhere scattered C∗-algebras with
a multiplier algebra that is not nowhere scattered. Indeed, simply take A as in
example 3.6. Then, A ⊗K is a nowhere scattered C∗-algebra by [49, Proposition
4.12] that contains a (2, ω)-divisible element of infinite weak divisibility.

It follows from theorem 5.18 that M(A ⊗K) cannot be nowhere scattered.

In this paper, we have studied conditions under which a multiplier algebra
M(A) is nowhere scattered. A problem that seems to be much more involved is
to determine when M(A) has the Global Glimm Property.
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Question 5.20. Assume that A has the Global Glimm Property. When does M(A)
also have the Global Glimm Property?

Note that this has a positive solution whenever supa∈A+
Div2m(m[a]) < ∞ and

M(A)/A satisfies a condition that ensures that the Global Glimm Problem can be
answered affirmatively. For example, Lin and Ng show in [33] that M(Z ⊗K)/Z ⊗
K has real rank zero. Thus, since Z ⊗K is covered by theorem 5.11, we get that
M(Z ⊗K)/Z ⊗K is nowhere scattered. By [18] (see also [51, Proposition 7.4]),
M(Z ⊗K)/Z ⊗K has the Global Glimm Property. Consequently, M(Z ⊗K) also
has the Global Glimm Property by [51, Theorem 3.10].

Acknowledgements
The author was partially supported by MINECO (grant No. PID2020-113047GB-
I00/AEI/10.13039/501100011033 and No. PRE2018-083419), by the Departament
de Recerca i Universitats de la Generalitat de Catalunya (grant No. 2021-SGR-
01015) and by the Fields Institute for Research in Mathematical Sciences. The
author thanks Hannes Thiel for his comments on a first draft of this paper. He also
thanks the referee for their valuable suggestions.

References

1 R. Antoine, F. Perera, L. Robert and H. Thiel. Edwards’ condition for quasitraces on
C*-algebras. Proc. Roy. Soc. Edinburgh Sect. A 151 (2021), 525–547.

2 R. Antoine, F. Perera, L. Robert and H. Thiel. C*-algebras of stable rank one and their
Cuntz semigroups. Duke Math. J. 171 (2022), 33–99.

3 R. Antoine, F. Perera and H. Thiel. Tensor products and regularity properties of Cuntz
semigroups. Mem. Amer. Math. Soc. 251 (2018), viii+191.

4 R. Antoine, F. Perera and H. Thiel. Cuntz semigroups of ultraproduct C*-algebras. J. Lond.
Math. Soc. (2) 102 (2020), 994–1029.

5 P. Ara, F. Perera and A. S. Toms, K-theory for operator algebras. Classification of C*-
algebras, in Aspects of operator algebras and applications, Contemp. Math. Vol. 534 (Amer.
Math. Soc., Providence, RI, 2011), pp. 1–71.

6 A. Asadi-Vasfi, H. Thiel and E. Vilalta, Ranks of soft operators in nowhere scattered C*-
algebras, preprint arXiv:2310.00663 [math.OA], 2023.

7 J. Bosa. Stable elements and property (S). J. Math. Anal. Appl. 512 (2022), 126171. 16.

8 L. G. Brown and G. K. Pedersen. C*-algebras of real rank zero. J. Funct. Anal. 99 (1991),
131–149.

9 L. G. Brown and G. K. Pedersen. Limits and C*-algebras of low rank or dimension.
J. Operator Theory 61 (2009), 381–417.

10 N. P. Brown and A. Ciuperca. Isomorphism of Hilbert modules over stably finite
C*-algebras. J. Funct. Anal. 257 (2009), 332–339.

11 A. Chand and L. Robert. Simplicity bounded normal generation, and automatic continuity
of groups of unitaries. Adv. Math. 415 (2023), 108894. 52 p.

12 M. S. Christensen, Regularity of C*-algebras and central sequence algebras, 2017, Thesis
(Ph.D.). University of Copenhagen (Denmark).

13 A. Ciuperca, L. Robert and L. Santiago. The Cuntz semigroup of ideals and quotients and
a generalized Kasparov stabilization theorem. J. Operator Theory 64 (2010), 155–169.

14 K. T. Coward, G. A. Elliott and C. Ivanescu. The Cuntz semigroup as an invariant for
C*-algebras. J. Reine Angew. Math. 623 (2008), 161–193.

15 J. Cuntz. Dimension functions on simple C*-algebras. Math. Ann. 233 (1978), 145–153.

16 G. A. Elliott. Derivations of matroid C∗-algebras. II. Ann. Math. (2) 100 (1974), 407–422.

17 G. A. Elliott, L. Robert and L. Santiago. The cone of lower semicontinuous traces on a
C∗-algebra. Amer. J. Math. 133 (2011), 969–1005.

https://doi.org/10.1017/prm.2023.123 Published online by Cambridge University Press

https://arxiv.org/abs/2310.00663
https://doi.org/10.1017/prm.2023.123


Nowhere scattered multiplier algebras 29

18 G. A. Elliott and M. Rørdam, Perturbation of Hausdorff moment sequences, and an appli-
cation to the theory of C*-algebras of real rank zero, in Operator Algebras: The Abel
Symposium 2004, Abel Symp., Vol. 1 (Springer, Berlin, 2006), pp. 97–115.

19 M. Engbers, Decomposition of simple Cuntz semigroups, Ph.D. Thesis, WWU Münster,
2014.

20 I. Farah, B. Hart, M. Lupini, L. Robert, A. Tikuisis, A. Vignati and W. Winter. Model
theory of C*-algebras. Mem. Amer. Math. Soc. 271 (2021), viii+127.

21 E. Gardella and F. Perera, The modern theory of Cuntz semigroups of C∗-algebras, preprint
arXiv:2212.02290 [math.OA], 2022.

22 V. Kaftal, P. W. Ng and S. Zhang. Strict comparison of positive elements in multiplier
algebras. Canad. J. Math. 69 (2017), 373–407.

23 V. Kaftal, P. W. Ng and S. Zhang. Purely infinite corona algebras. J. Operator Theory
82 (2019), 307–355.

24 E. Kirchberg, Central sequences in C*-algebras and strongly purely infinite algebras, in
Operator Algebras: The Abel Symposium 2004, Abel Symp. Vol. 1 (Springer, Berlin, 2006),
pp. 175–231.

25 E. Kirchberg and M. Rørdam. Infinite non-simple C*-algebras: absorbing the Cuntz algebra
O∞. Adv. Math. 167 (2002), 195–264.

26 E. Kirchberg and M. Rørdam. When central sequence C*-algebras have characters. Internat.
J. Math. 26 (2015), 1550049. 32.

27 D. Kucerovsky, P. W. Ng and F. Perera. Purely infinite corona algebras of simple C∗-
algebras. Math. Ann. 346 (2010), 23–40.

28 D. Kucerovsky and F. Perera. Purely infinite corona algebras of simple C∗-algebras with
real rank zero. J. Operator Theory 65 (2011), 131–144.

29 N. S. Larsen and H. Osaka. Extremal richness of multiplier algebras and corona algebras of
simple C∗-algebras. J. Operator Theory 38 (1997), 131–149.

30 H. X. Lin. Simple C∗-algebras with continuous scales and simple corona algebras. Proc.
Amer. Math. Soc. 112 (1991), 871–880.

31 H. Lin. Exponential rank of C*-algebras with real rank zero and the Brown-Pedersen
conjectures. J. Funct. Anal. 114 (1993), 1–11.

32 H. Lin. Simple corona C∗-algebras. Proc. Amer. Math. Soc. 132 (2004), 3215–3224.

33 H. Lin and P. W. Ng. The corona algebra of the stabilized Jiang-Su algebra. J. Funct. Anal.
270 (2016), 1220–1267.

34 P. W. Ng and W. Winter. Nuclear dimension and the corona factorization property. Int.
Math. Res. Not. 2010 (2010), 261–278.

35 G. K. Pedersen. Applications of weak∗ semicontinuity in C∗-algebra theory. Duke Math. J.
39 (1972), 431–450.

36 F. Perera. Extremal richness of multiplier and corona algebras of simple C∗-algebras with
real rank zero. J. Operator Theory 44 (2000), 413–431.

37 F. Perera and M. Rørdam. AF-embeddings into C*-algebras of real rank zero. J. Funct.
Anal. 217 (2004), 142–170.

38 L. Robert. The cone of functionals on the Cuntz semigroup. Math. Scand. 113 (2013),
161–186.

39 L. Robert. On the Lie ideals of C∗-algebras. J. Operator Theory 75 (2016), 387–408.

40 L. Robert and M. Rørdam. Divisibility properties for C*-algebras. Proc. Lond. Math. Soc.
(3) 106 (2013), 1330–1370.

41 L. Robert and A. Tikuisis. Nuclear dimension and Z-stability of non-simple C*-algebras.
Trans. Amer. Math. Soc. 369 (2017), 4631–4670.

42 M. Rørdam. Ideals in the multiplier algebra of a stable C∗-algebra. J. Operator Theory 25
(1991), 283–298.

43 M. Rørdam. On the structure of simple C*-algebras tensored with a UHF-algebra. II.
J. Funct. Anal. 107 (1992), 255–269.

44 M. Rørdam and W. Winter. The Jiang-Su algebra revisited. J. Reine Angew. Math. 642
(2010), 129–155.

45 S. Sakai. Derivations of simple C*-algebras. III. Tohoku Math. J. (2) 23 (1971), 559–564.

https://doi.org/10.1017/prm.2023.123 Published online by Cambridge University Press

https://arxiv.org/abs/2212.02290
https://doi.org/10.1017/prm.2023.123


30 E. Vilalta

46 H. Thiel, The Cuntz semigroup, lecture notes available at www.math.uni-muenster.de/u/
hannes.thiel/, 2017.

47 H. Thiel. Ranks of operators in simple C*-algebras with stable rank one. Comm. Math.
Phys. 377 (2020), 37–76.

48 H. Thiel and E. Vilalta. Covering dimension of Cuntz semigroups II. Internat. J. Math.
32 (2021), 2150100. 27 p.

49 H. Thiel and E. Vilalta, Nowhere scattered C*-algebras, J. Noncommut. Geom. (to appear),
preprint arXiv:2112.09877 [math.OA], 2021.

50 H. Thiel and E. Vilalta. Covering dimension of Cuntz semigroups. Adv. Math. 394 (2022),
108016. 44 p.

51 H. Thiel and E. Vilalta. The Global Glimm Property. Trans. Amer. Math. Soc. 376 (2023),
4713–4744. DOI: 10.1090/tran/8880. 2022.

52 H. Thiel and E. Vilalta, Soft operators in C*-algebras, preprint arXiv:2304.11644
[math.OA], 2023.

53 E. Vilalta. A local characterization for the Cuntz semigroup of AI-algebras. J. Math. Anal.
Appl. 506 (2022), 125612. 47.

54 W. Winter. Nuclear dimension and Z-stability of pure C*-algebras. Invent. Math. 187
(2012), 259–342.

55 W. Winter and J. Zacharias. The nuclear dimension of C*-algebras. Adv. Math. 224 (2010),
461–498.

56 S. Zhang. A Riesz decomposition property and ideal structure of multiplier algebras.
J. Operator Theory 24 (1990), 209–225.

https://doi.org/10.1017/prm.2023.123 Published online by Cambridge University Press

www.math.uni-muenster.de/u/hannes.thiel/
www.math.uni-muenster.de/u/hannes.thiel/
https://arxiv.org/abs/2112.09877
https://arxiv.org/abs/2304.11644
https://doi.org/10.1017/prm.2023.123

	1 Introduction
	2 Preliminaries
	2.1 Nowhere scatteredness and the Global Glimm Property
	2.2 The Cuntz semigroup
	2.3 Divisibility in the Cuntz semigroup

	3 Finite divisibility
	3.1 The Global Glimm Problem

	4 Bounded divisibility
	4.7 Strongly soft elements and retracts

	5 Nowhere scattered corona and multiplier algebras
	5.1 Stable C*-algebras

	References

