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Abstract

Representations of non-type / groups G which may be expressed as an increasing union of type /
normal subgroups are considered. Groups with this structure are natural generalisations of the CA R
algebra (viewed as a twisted group C*-algebra) and are also group theoretic analogues of A F algebras.
This paper gives a systematic account of their representation theory based on a canonical construction
of one-cocycles for the G-action on the dual of a normal subgroup. Some examples are considered
showing how to construct inequivaknt irreducible representations (non-cohomologous cocycles) and
also factor representations by a method which generalises the well-known construction of non-isomor-
phic factors for the CAR algebra.

1980 Mathematics subject classification (Amer. Math. Soc): 22 A 25.

1. Introduction

The representation theory of non-type / groups is of interest for a variety of
reasons. For example on the one hand such groups and their representations arise
in solid state physics [4] and on the other hand the theory of von Neumann
algebras was greatly influenced by the study of representations of the canonical
anticommutation relations (CAR) which may be regarded as representations of a
certain twisted group C*-algebra; cf. [8], [17].

Thus we began in [6] to consider the representation theory of the CAR from a
group theoretical viewpoint with the idea of understanding both the existing
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I21 Cocycles and representations of groups of CAR type 21

methods of constructing CAR representations and of extending them. Subse-
quently we recognised that our methods amounted to a systematic study of
certain one cocycles for the obvious ergodic action of ©J°Z 2 on n j ° Z 2 and
moreover that they applied to a much wider class of groups. On the other hand
recent work of Baggett et al. [3] on a systematic study of various methods of
constructing cocycles for the irrational rotation C*-algebra (viewed as a twisted
group algebra) appeared complementary to our considerations and we sought to
understand it in our terms.

The other motivations for this paper were firstly that the groups for which our
techniques apply are, in a natural sense, group theoretic analogues of AF
C*-algebras (they include as special cases all UHF algebras [15]) and so one
would expect a reasonably non-pathological representation theory to exist by
analogy with [18]. Secondly a recent result of Sutherland [19] shows that, if one is
to construct factors using representations of amenable groups, then there exist
various universal models (in the sense that their representation theory contains
that of any non-type / amenable group) of which the CAR algebra, and groups of
the structure considered here, provide examples.

Consequently the preceding considerations led us to consider a class of non-type
/ second countable locally compact groups G with the following structure. We
suppose there is an increasing sequence {Gn} of type / normal subgroups with
G = U*_0Gn such that Gn is regularly embedded in Gm for all m, n with m > n
and such that the stabiliser of any irreducible representation of Go, under the
usual G-action on the dual Go, is GQ itself (see [14] for details of these notions).
The assumption of normality is crucial for our arguments although it is clearly the
most restrictive assumption (and makes it unclear for example whether all AF
algebras can arise in this way). We call such groups almost type I (ATI) and have
considered examples elsewhere [7] and will consider more here. A less restrictive
notion which comes up in connection with nilpotent groups is that of a locally
ATI group G. Here we restrict attention to a given primitive ideal J in the
primitive ideal space of C*(G). Then for any type / normal subgroup Go of G, J
determines by restriction, a G-quasiorbit 6 c Go (see [10] for this fact). Here a
G-quasiorbit is an equivalence class under the relation px — p2 if px lies in the
closure of the G-orbit through p2 and vice versa. We say G is locally A TI if for
any such / we can find an increasing sequence of type / normal subgroups
{GM}^_0 each acting smoothly on 6 c Go and with Gm acting smoothly on the
subset of the dual of Gn lying over 6 for all pairs m, n with m > n. As before we
assume the stabiliser in G of any p e 6 is Go itself. It will be clear from the
ensuing proofs that with little extra effort our methods apply equally to locally
ATI groups; however we will not bother to go through the details.

Before describing our results we make one further comment. Clearly the
assumption that G is not type / means that there are G-quasi-orbits in Go which
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are not orbits. However it follows from the theorem of Gootman and Rosenberg
[10] that the primitive ideal space of the group C*-algebra of G is parametrised by
the G-quasiorbits in Go. Now it is not difficult, using a group measure space
construction, to construct factor representation of G for each G-quasi-invariant
ergodic measure /i on Go (see Proposition 3.1 of Auslander and Moore [10]);
however irreducible representations, and explicit constructions of one cocycles for
the G-action on Go, are more difficult to manufacture. Consequently our first
result is

THEOREM 1.1. Let G be ATI with G = UnGn and fi a G-ergodic quasi-invariant
measure on Go. / / ir0 denotes a representative of the unique equivalence class of
multiplicity free representations of Go associated with ju then there is an irreducible
representation m of G such that tr\c isir0.

The construction of w from TT0 employs a type of " inductive limit" of induced
representations and is carried out in Section 2. What it provides for us is a
particular unitary operator valued one-cocycle for the G-action on supp ju c Go.
Of course any such cocycle defines in turn a representation of G and there is some
interest in giving constructions of them. Our second result, proved in Section 3,
shows that the cocycle of Theorem 1.1 is in a sense canonical.

THEOREM 1.2. Every factor representation p of G determines a unitary operator
valued one-cocycle for the G-action on Go and this in turn is determined by

(a) a positive integer m (m = oo is permitted) and a G-quasi-invariant ergodic
measure non Go,

(b) a sequence {bn}™=l of'%(Hm) valuedBorelfunctions on Go (where Hm is the
(m)

Hilbert space m • H = H ffi • • • © H with H carrying almost all the represen-

tations of Go in the support of p),
(c) the cocycle constructed from fi in Theorem 1.1.

The sequence {bn} of Theorem 1.2 must satisfy a consistency condition which
is not particularly restrictive so that a large class of cocycles for the G-action may
be constructed for any given m and /i. This method of constructing cocycles
generalises that of [9] for the CAR algebra and we discuss in Section 4 for this
example and one other the production of non-cohomologous cocycles by our
methods. We also indicate to some extent how the one-cocycle depends on the
choices made in its construction.

For general ATI G we have not made much progress on the problem of proving
irreducibility or factoriality of the representations associated with these cocycles.
Consequently in Section 5 we return to the CAR case and some other examples
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where factor representations are easily shown to be constructable. In particular

we indicate using the results of [6] how the Powers factors [16] fit into our

approach. Finally we note that the question of irreducible representations, for the

CAR constructed by our method has already been settled by Golodets [11]. In

fact Section 3 of [6] and in part Section 5 of this paper are a group theoretic

elaboration of [11]. (Reference to [11] was inadvertantly omitted from [6].)

Finally, this paper may be regarded as a substitute for reference [9] in [6].

2. Proof of Theorem 1.1

In all the examples we have considered which exploit special cases of Theorem
1.1 [6], [7], it has proved convenient to work with "projective" or "multiplier"
representations rather than ordinary representations. The representations of the
CAR for example correspond to projective representations of an infinite discrete
abelian group [8], [17]. Consequently we will state and prove Theorem 1.1 in this
section as a theorem about projective representations.

In this context we suppose that a ; G x G - > T ( = circle group) is a 2-cocycle
on G with a(e, g) = 1 for all g e G (e is the identity of G). We may suppose
without loss of generality that a is normalised, i.e. a(g, g"1) = 1 for all g e C .
Then (G,o) is ATI if there is an increasing sequence of normal subgroups
Go c Gl c • • • c G such that for each n,Gn is a-type / (i.e. all factor a-represen-
tations of Gn are type / ) . We let (Gn,o) denote the equivalence classes of
irreducible o-representations of Gn. We suppose that the stabilizer of any p e
(Go, a) is Go itself and that Gn is regularly embedded in Gm for all m, n with
m > n. We assume of course that G is not a-type / .

Our starting point is a G-quasi-in variant strictly ergodic measure ju. on (Go, a) .
We can choose, in a Borel way, for each p G (G0,a) a concrete representative
/?(p) and form the multiplicity free representation TT0 = /(Co o)-/?(p) dji(p). Notice
that the commutant (wo(G)}' is precisely L°°((G0, a)', n) so that {TTO(G)}" 2
L°°((G0, a ) \ ju).

Because Go is regularly embedded in Gn for each n, Gn will act smoothly in the
(Go, a) . Let Ln denote the orbit space of Gn in (Go, a) . There are canonical
Borel maps pn: Ln -> Ln + 1 and qn+l: (G0,o) -» Ln + l which associate to each
point xn of Ln (or p e (Go, a) ) the unique Gn + 1 orbit (in (Go, a) ) containing it.
Now Ln and Ln + l are standard Borel spaces so there exist, for each n, Borel
cross-sections 6n: Ln + l -> Ln. Let an: Ln -» Lo be the Borel cross-section for qn

given by 81 ° ••• °0n_v Let /xn be measures on Ln defined inductively by
p*(fin-i) = Mn

 a n d l̂ o = V- *n e a c n case> M« is a n ergodic quasi-invariant measure
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on Ln under the action of Gn. By disintegration of measures we may write

H = \Lu>y dfin(y) where uy is (a.e. pn) a quasi-invariant measure on the orbit y of

the action of Gn on Lo. Thus uy is equivalent to the image of Haar measure mn on

Gn/G0 under the map Gog ~* an(y) • g. In fact the map £„: (Gog, y) ~* an(y) • g

is a Borel isomorphism of Gn/GQ X Ln with Lo and under this map the image of

mn X nn is equivalent to /i. Let m'n represent Haar measure on Gn/Gn_l and note

that in the same way the map fn: (Gn_lg, y) ~* 0n(y) • g is a Borel isomorphism

of Gn/Gn_1 X Ln with Ln_x, which carries m'n X /xn to a measure equivalent to

/ i n _ ! . The inverse of fn is of the form y ~» (Sn(y), pn_x(y)) where 5n: L n _ x -^

G M /G n _! is a Borel map. Evidently we may choose a Borel map yn: Gn/Gn_1 -*

Gn/G0 so that

It follows that the image of m'n X fin under yn X an is equivalent to the image of

; ! „ _ ! under <*„_!.

N o w define irn to be the representation of Gn given by

Then, by the Subgroup Theorem,

Cn/C0

JGJG0

which by the remarks above is equivalent to irn_v In particular irn\c = ITQ. We

need to be more explicit about the latter equivalence.

Let Kn be the space of the representation wn, so that it consists of functions/:

GnXLn-+H satisfying f(hg, y) = a(h, g)P(an(y)Xh)f(g, y) (h e G 0 , g e

G, y e L J and ffCii/c\\f(g, y)\\2 dmn(Gog) d,xn{y) < <x>. On ^ n , ,rn is defined

as w n ( g ) ( / X g ' , >-) = a ( g ' , g)f(g'g, y) (g, g' ^Gn,y& Ln). We define a map

Tn: K -» L2(,x, / / ) by

Then Tn is an isometry. Moreover a straightforward calculation shows that

r B K(gX/ )X*) = «„(*, x)rn(/)(xg) (x e i o , g e Gn), where MB is a B{H)

v a l u e d a - 1 - c o c y c l e , 0/2., M ^ g ^ j , x) = a(gv g2)un(g1, x)un(g2, xgl) (gx,g2^

Gn, x e Lo). Restricting to Go gives un(g, x) = j8(an(x))T-(jc)(g) where T(f: Gn/G0

-» Gn is a Borel cross-section, so that an(x) • Tn{x) = x (x G L O ) . It follows that
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"„(£> x) = Wn(x)f}(x)Wn(x)-\g) (g G Go, * G Lo) where H>; is a unitary valued
Borel function on Lo.

Write ^ ( g , x) = ^ ( x K ^ C g , JC)H;(X) . Then we define P'n{g)(f)(x) =
v'n(&-> x)f(xg) (f G -̂2(iLl» H), g G Gn). The construction yields p'n — mn and p'n\c

= w0. Finally pn are defined inductively as follows. Suppose pj, p 2 , . . . ,pn_i are
defined as representations on L2(/t, / / ) of Gx, G2,... ,Gn_x respectively, so that
Pklc,^ = P*-i' Pilc0 =

 wo> PA: ~ P* f o r aU k, and pk{g\f\x) = vk(g, x)f(xg)
(f(EL2(n,H),g<=Gk). Since p^lc^, = p«_i and pJGo = Pn_i|Go = w0, any
unitary implementing this equivalence is in the commutant of TT0 and so is
multiplication by a scalar function <p e L°°(ju) with |<JP| = 1. Define pn(g)(/)(x)
= (p(xg)y(x)v'n(g, x)f(xg) ( /G L2(/i, H), g e GJ to achieve the induction
step.

Now we are in a position to define the representation 77ofGby7r(g) = pn(g)

(g e GJ.

PROPOSITION 2.1. IT is irreducible.

PROOF. Any operator A in the commutant of w is also in the commutant of TT0

and so is a multiplication operator corresponding to some \p G L°°(H). Since this
operator also commutes with -rr(g) (g G G), we obtain ^(xg) = 4>{x) (/x a.e.).
The ergodicity of [i implies that ^ is a constant a.e. and hence A is scalar.

This completes the proof of the main result of this section.

THEOREM 2.2. Let (G,a) be ATI with G = \JnGn and fi a G-ergodic quasi-
invariant measure on (Go, a) . If TT0 denotes a representative of the unique equiva-
lence class of multiplicity free representations corresponding to ju then there is an
irreducible representation m of G such that n\G is TT0.

3. General cocycles

The construction of Section 2 isolates a particular a-1-cocycle on G X (Go, a)
for every G-ergodic quasi-invariant measure on (Go, a) . Two questions which
immediately arise however are to what extent does this cocycle depend on the
choices made in its construction and what other possibilities exist for cocycles?

We relabel the Hilbert space on which w0 acts as Ho and suppose now that m is
any primary a-representation of G such that •n\Cg is equivalent to a multiple of 770,
say m • ir0 (m = 1,2,..., oo). Note that any primary representation of G restricts
on Go to a multiple of some multiplicity free representation and moreover we can

https://doi.org/10.1017/S1446788700026471 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026471


26 A. L. Carey and William Moran (7)

assume that m acts on L2(ii, Ho) via

(3.1) ( f f ( g ) / ) ( x ) = 8M(g,x)<i(g, * ) / ( * , g ) , x G ( G 0 , a ) " , g e G ,

where 5^ is a Radon-Nikodym factor and a is a ^(/ / )-valued Borel 1-cocycle on
G X (Go, a ) (see for example [14]). Moreover it follows from the general Mackey
analysis [14] that w|c is equivalent to m • pn for every n. Thus there is a unitary
operator Bn on L2(/i, HQ):

Bnv(g)Bn-
1 = (m • pj(g), for all g e Gh.

As the Bn must he in the commuting algebra of m • ir0 there is a Borel function bn:
(Go, a )" -» * ( / ? ) such that (£„ • / ) ( * ) = bn(x)f(x), x e (Go, a ) * , / e L2(^, H) .
Thus we have

(3.2) S^g • x)bn(x)a(g, x)bn(xgYl = m • v(g, x)

for ft a.e. x.
For notational convenience assume 8^ = 1. Then from (3.2) we see that a and

the Borel cocycleg, x -* bn(x)~1m • v(g, x)bn(xg), x e X, g e GM, determine the
same representation of Gn. There is a consistency condition on the bn's of course,
namely

(3.3) br(xYlm • v(g, x)br(xg) = bn{x)'lm • v(g, x)bn{xg)

for all r < n, g G Gr and ft a.e. x. We summarize this discussion as

PROPOSITION 3.1. For each primary ^-representation ir of G there is
(a) a quasi-invariant ergodic measure ju. on (Go, a) ,
(b) a Hilbert space HQ and multiplicity free a-representation TT0 of Go on

L2^, Ho),
(c) a positive integer m such that w|G0 = m • w0,
(d) a sequence {bn}™=1 of <%(H)-valued Borel functions on (G0,o) , where

H — m • Ho, such that IT is given by (3.1) and the sequence {bn} satisfies (3.2) and
(3.3), ju a.e. x

This last result completes the proof of Theorem 1.2. It shows in particular that
the measure class of n and the multiplicity m are invariants for the equivalence
class of 77. The only question left to be settled is of what freedom exists for the
sequence {&„}? Well, any sequence {bn} of ^( i / )-valued Borel functions satisfy-
ing (3.3) can be used to define a a-1-cocycle on Gn X (Go, a) by

(3.4) an(g, x) = bn{x)~lm • v(g, x)bn{xg).

Then (3.3) guarantees that by defining

(3.5) a(g,x) = an(g,x) for all geGn

the function a: G X (Go, a) -» <2C(//) becomes a a-1-cocycle on (Go, a) .
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Now the questions raised at the beginning of this section may be reinterpreted
using the preceding observations. By making different choices in the construction
of the cocycle v one chooses a different sequence of ^(//)-valued Borel functions
{bn} on (Go, a) and so defines a new cocycle via (3.4) and (3.5). Note that the
sequence { bn } is always arbitrary to the extent that a second sequence {b'n } will
produce the same cocycle an at the nth stage provided cn = b'nb~l defines a
multiplication operator Cn say on L2(n, Ho), which commutes with m • pn(g) for
all g e G , . This freedom is important for it may be possible to choose cn so that
the sequence B'n of unitary multiplication operators corresponding to b'n = cnbn

converges weakly to a unitary B. Then for example in the case m = 1 it follows
easily that B will intertwine the representation with cocycle (3.3) with the
representation IT constructed in Theorem 2.2. Conversely if the representation
with cocycle (3.5) is equivalent to •n then there is a choice of bn such that Bn

converges weakly to an intertwining operator.
The other question raised at the beginning of this section may be elaborated on

to ask when a sequence {bn}^_l produces a cocycle (3.5) for which the corre-
sponding representation is irreducible or factorial and whether non-cohomolo-
gous cocycles may be constructed. Put another way this last point requires us to
describe the equivalence relation, on the set of allowed sequences {bn}™=1 which
arises from looking at the equivalence classes of cohomologous cocycles defined
by (3.5).

Definitive answers to these questions are not available in this generality. In the
next section we give a general construction of sequences {bn}™_1 and investigate
some examples.

4. Constructing cocycles

We start this section by showing that it is always possible to construct
sequences {6n}"_i of Borel functions having the properties required in the
previous section and hence a-1-cocycles for arbitrary ergodic quasi-invariant
measures ju. and multiplicity factors m.

For each n we may choose an arbitrary Borel function dn: Gn/Gn_x X L n ^
<2f(//m) having the property that for all / e Ln, dn{-, I) takes its values in the
commutant of {m • v(g, x)\g e G and x lies in the orbit / } . (This may well be a
nontrivial restriction when v is not circle valued and m = 1.) Then define bx by
bx(x) = d^Ggg, /) for x = ax(/) • g, I e Lx, g e Gv Assume bk has been defined
so that bk(x) lies in the appropriate commutant and
(4-1)

bm(x) bm(xg) = bn(x)' bn(xg) for all m, n with k > m > n, for all g ^ Gn.

https://doi.org/10.1017/S1446788700026471 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026471


28 A. L. Carey and William Moran [91

Then (3.3) holds for all m, n < k. We first define bk+1 on the cross-section
{ « t + i ( ' ) l ' 6 L t + i ) by bk+1(ak+l(l)) = dk+1(Gk,l), / e i t + 1 . Now for each
lk e Lk there is an lk+l e Lk+1 and g e G^+1 such that ak+i(lk+i)g = «*(/*)•
Define bk+1(ak(lk)) = dk + 1(Gkg, lk+1). This defines Z>fc+1 on the cross-section
{otk(lk)\lk G Lfc}. It remains to define bk+l on the G^-orbits through the points
of this cross-section. But (4.1) forces the choice, for x = ak(lk) • g, g e Gk, of
bk + 1(x) — bk + l(ak(lk))bk(ak(lk))~

l • bk(x). It is now straightforward to verify
that (3.3) holds for all m, n < k + 1.

This construction demonstrates the existence of a wide class of cocycles. We
isolate from the preceding construction the following result.

PROPOSITION 4.1. If m = 1 and the sequence {bn} is chosen via the construction
above then every bn is T-valued and the representation with cocycle (3.5) is
irreducible.

PROOF. This follows in similar fashion to Proposition 2.1.

The construction of cocycles by Garding and Wightman [9] admits a gener-
alisation in the setting of ATI groups provided some additional structure is
present. Assume the following condition holds:

(*) the cross-sections {an}^°_i of the orbit space {Ln}^L1 may be chosen so
that there exists a Borel map £„: Gn/Gn_1 -* Gn with

o^-iK-i) = K ( O -U^-!*)!/„ G Ln,g e Gn).
In our setting the construction of [9] amounts to assuming (*) and that

dk + l(Gk, /) = 1 for all / e Lk+l, thus allowing a very simple expression for the
cocycle. Every x e (G0,o) determines a sequence of orbits {qn(x)}™_l (notation
as in Section 2) with each qn(x) e Ln being the Gn-orbit containing x. It is then
easy to check that

•bn(«*-l(<ln-l(xg)))

The special form for the dn now gives

x), q2(xj)

, qn(x)) ^ ( G . - I A , . ^ , ) , qn(xg)) • • • dY[Gohqiix

where a^q^x)) • hQi(x) = x with Aft(jc)e Gl and hqk(x) is the element of Gk

determined by (*) such that oik(qk(x))hilk(x) = ak_1(qk_1(x)) for k = 2,3,... ,n.
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EXAMPLE 4.2. Since we have claimed that our construction generalises that of
[9] let us consider briefly the example of that paper, that is of the action © J°Z 2

on I l f Z2 . In this case one takes G = Go © Go, with Go = ®^°Z2 and Gn =
® " Z 2 ffi Go. The 2-cocycle a on G which makes the twisted group algebra [5]
C*(G, a) isomorphic to the CAR algebra is given in [6] and will not concern us
here. For each k let Vk be a unitary operator on Hn (it is automatically in the
commutant of {m • v(g, x)\x & Go, g & Gk}). Note that an expression for
v{g, x) is given in Section 5 and in equation (3) of [9]. Now G satisfies condition

(*) (in fact with Sk = (0,...,0, 1 , 0 , . . . ) in ©1°°Z2, ^(Gk_lSk) = Sk and

| (G ,_ 1 ) = (0)). Define

(4-1) dk{Gk_lt>k,lk{x))=Vk.

(Note that if x e Go, x = (xv x2,... ,xn,...), xn = 0,1 and the obvious choices
give «„(?„(*)) = (0,-. . ,0, xn + lxn+2,...\ n = 1,2,....)

In [9] it is shown how, by appropriate choice of Vk, non-cohomologous cycles
may be constructed (when the multiplicity factor m is finite). Moreover all
cocycles are obtained by this construction. Furthermore Golodets [11] shows in
some detail how to obtain irreducible representations for m = 1,2,..., oo.

With suitable modifications one may also handle other UHF algebras (regarded
as twisted group algebras as in [15]) by similar methods. Note however that the
product structure of Go is responsible for the especially simple features of this
example. To see that similar methods work in the non-product situation we
consider the following example.

EXAMPLE 4.3. Let G = Z X D where D denotes the 2"th roots of unity
(n = 0 ,1 ,2, . . . ) . Then we may define a two cocycle on G by

a((n, d), («', d')) = llnm'd, n, n' e Z, d, d' e D.

We let Go = Z, Gn = Go © Bn where Dn denotes the 2*th roots of unity for
k < n. Identify Go ( = T) with [0,2w) and Dn with the group generated by
{2w/2k\k = 1,2,...} with addition mod27r so that D , c T acts on T as a
subgroup. The cross-sections an are such that an(x) is the representative in
[0 , TT/2"'1) of x modulo •n2'("~v>. It is clear that condition (*) holds here also.

To construct non-trivial cocycles in this situation is reasonably straightforward
although the details are a little messy. We let for example

and let dn: Gn/Gn_1 X Ln -* T be given by

dn(Gn.lg,x) =
f(2"x) otherwise.
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Construct the cocycle as in the paragraph preceding Example 4.2. Now to see that
this cocycle is not trivial note that for gn = ff2"(" L) e Gn

n,

{ n ~ lh

and since either x or xgn belongs to the interval [0, TT2"("-1)] modulo w2"("~2> but
not both, this is just the «th Rademacher function Rn(x) = f(2"x). Now all the
other terms in the product formula for bn(x)~lbn(xg) are constant on the basic
intervals/, = [jir2-<-"-1\(j + \)ir2<"-^\,j = 0 ,1 ,2 , . . . , so

f bn(Xy1bn(xgn)dx = 0

for any such interval /y and hence JTbn(x) 1bn(xgn) dx is zero for all n.
On the other hand if we could find a Borel function b: T -» T such that

bn{xylbn(xg) = HxyMxg) for all n and g e Gn then \\b{-) - &(-gn)IL>(T) -» 0
as n -* oo.

So some subsequence 6(xgn ) -» b{x) a.e. and hence b(x)~1b(xgn ) -» 1 a.e.
This contradicts the conclusion of the preceding paragraph so the cocycle
constructed above is non-trivial.

The preceding two examples and that of [3] fit into the same framework. In the
next section therefore we will consider that situation in more detail.

5. Abelian groups with a multiplier

The two examples of the preceding section are special cases of a more general
class of group algebras which includes the irrational rotation algebra. If G is an
abelian group with a Borel multiplier a: G X G -» T (or 2-cocycle) then following
[2], [11] we let

6(gi> g2) = °(gi> gi)/a(g2' £i)> Si. 82 G G,
and note that a: G X G -» T is a bicharacter. Now the twisted group C*-algebra
[5], C*(G, a), is simple provided the homomorphism g -> a(-, g) from G to G is
injective [17] and is not type / whenever this map is not surjective [2], [11]. We
assume both of these conditions hold. Moreover we will restrict attention to the
case where G = HK where H and K are subgroups such that d\HXH = 1 and

It will be readily apparent from the succeeding calculations that C*(G, a) is
isomorphic to the cross-product C*-algebra K X fi C0(H) where the action of K on
H is given by 6 -» 0 • 6(-, k) = 0k, k e K, 0 e H. As is well known and noted in
[6] the CAR algebra is isomorphic to the cross-product of (B^Z2 with n f Z 2 for
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a certain multiplier a on ©^°Z2 © ©J°Z2 (= H ffi K in additive notation). It
follows then that one may for example investigate the extent to which the ideas of
[3] and of the preceding sections may be used to construct a-1-cocycles for such
groups. We have already noted in Examples 4.2, 4.3, that one may construct
non-cohomologous cocycles and we will now consider how to obtain factor
representations.

Assume (by choosing a cohomologous cocycle if necessary) that o\HxH =
° I *rx K = 1 a n d a(8< g *) = 1 f°r a u 8 e G = HK. Consider the right regular
a-representation of G on L2(G):

(5.1) g-f(g')=f(g'g)/°(g',g).
Now define

(5.2) f(0,g)=( 6{h) f}kl*\dh, feL2(G).

As in pp. 62-64 of [7] the map/ -» / takes L2(G) to a certain space of functions
on H X G which satisfy
(5.3) f{6,gh) = 0{h)o{g,h)f{6,g), h^H,g^G.

By defining <#>: H X K -> C by <>(0, A:) = f(6, k), 6 ^ H, k e K for/defined by
(5.2), it is not difficult to verify that the composite map f -* 4> takes L2(G) to
L2(H X K) where H and K are equipped with Haar measure. Finally the right
regular a-representation acts by

(5.4) Rhk4>(0, *i) = ek(h)a(k, h)<j>{0k, kxk)

for h G H, k, k1 e K and <> e L 2 ( ^ X AT). This defines a a-1-cocycle v: K X H
-» T by u(M,«) = 6k(h)a(k, h). For the special case of the C4« algebra it is
not difficult to show that v is exactly the a-1-cocycle constructed by Theorem 1.1
for /I the Haar measure on H. Note that v has the pleasant property of being
universally defined no matter what measure is chosen on H.

Now if Tk denotes right translation by k e K than (5.4) is just Rhk<i>(0, kx) =
v(hk, 0)Tk(<t>)(6, kx). The cocycle (hk, 0) -» v(hk, 0)Tk on G X H arises via the
construction of example (4.2) for the case of the CAR algebra by choosing in
equation (4.1) Vn = Ts^

Two results which are more or less immediate from combining the preceding
remarks with the analysis of Sections 3 and 4 of [6] are that any other A>quasi-in-
variant ergodic measure, v say, on H gives a a-representation on L2{H X K, v) by

(5.5) Rhk(p) + (8, kj = S(k, 0)v{hk, 6)Tk<i>{e, k,),

where <$> e L2(H X K, v) and S is the Radon-Nikodyn factor for v. In the case of
the CAR algebra, by choosing v to be an appropriate product measure on
nj°Z 2 = H and using the product measure calculations in Section 3 of [6] (cf also
[13]), one finds that the corresponding CAR representation is one of the type IIIX

infinite tensor product factors of Powers [16] (Haar measure of course gives rise
to the hyperfinite II1 factor).
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The main object of this section is to note that we may exploit the fact that v
gives a 1-cocycle independent of the measure on H to give a construction of other
factor representations for these examples. Notice that if a: K X H -> T is a Borel
1-cocycle then by setting

(5.6) Rhk(v, a)<j,(ri, kj = 8(k, 6)a{k, 6)v(hk, 0)7^(0, kj

one has the following fact.

PROPOSITION 5.1. / / v is a G-quasi-invariant ergodic measure on H and hk -»
Rhk(v, a) is the o-representation (5.6) then R(v, a) is a factor o-representation.

PROOF. For each hk e G let Lhk be the unitary operator on L2(H X K, v):

(5.7) Lhk4,(0, k,) = e^\h-l)o(k, h-l)^>(e, k-%).

(If v = Haar measure, then hk -> Lhk is the left regular a-representation.) It is
easy to check that Lhk is in the commutant of R(v, a) for each hk e G. Any
unitary operator 5 in the centre of the von Neumann algebra generated by
R(v, a) is necessarily a multiplication operator: S<j>(0, k) = (s(0)<j>)(0, k) for
some Borel function s on H taking its values in the unitary operators on L2(K).
Moreover s satisfies Tks{e)Tk

x = s(6k), k&K,(v a.e. 6), from (5.6) while from
(5.7) by putting h equal to the identity one has Tk-is(0)Tk = s(6), k e K, {v a.e.
8). These two conditions force 5 to be a constant convolution operator on L2{K).
Putting k equal to the identity in (5.7) one immediately deduces that s must
commute with the action of the continuous functions on K on L2(K) since the
functions kx -» 0*r'(/i')"*// = 0(h'yl6(h'-1, k^1) form a dense set of characters of
Kfor each 6 ash' ranges over H. Thus Sis a multiple of the identity.

Of course (5.6) is not the most general construction possible in this setting for
one still has the freedom to vary the representation (or cocycle) k -* Tk on K.
However before making an excursion in that direction we feel it would be more
fruitful to decide whether one may deduce from properties of cocycles such as
that in (5.6), invariants for the corresponding factor algebras. We intend to
pursue this and related questions elsewhere.
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