
3

Triangulated Categories

Contents
3.1 Triangulated Categories 73

The Axioms 73
Exact Functors 74
Cohomological Functors 75
Uniqueness of Exact Triangles 76
Triangulated and Thick Subcategories 76
Dévissage 77

3.2 Localisation of Triangulated Categories 77
Verdier Localisation 77
Localisation of Subcategories 80
Localisation and Adjoints 81

3.3 Frobenius Categories 83
Stable Categories of Frobenius Categories 83
Frobenius Pairs 88

3.4 Brown Representability 89
Homotopy (Co)limits 89
A Brown Representability Theorem 92
Compact Objects 96
Compact Generators 98

Notes 100

In this chapter we introduce triangulated categories. These provide the ap-
propriate framework for studying derived functors and derived categories. A
triangulated category is an additive category together with a suspension functor
and a distinguished class of triangles. Important examples are stable categories
of Frobenius categories. A basic tool is the localisation theory for triangulated
categories. Another useful result is Brown’s representability theorem for coho-
mological functors which requires the existence of generators satisfying certain
finiteness conditions.
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3.1 Triangulated Categories 73

3.1 Triangulated Categories

Triangulated categories are defined via a set of four axioms. Then we discuss
some of the basic properties of triangulated categories.

The Axioms
A suspended category is a pair (T, Σ) consisting of an additive category T and
an equivalence Σ : T ∼−→ T which we call a suspension or shift. A triangle in
(T, Σ) is a sequence (𝛼, 𝛽, 𝛾) of morphisms

𝑋 𝑌 𝑍 Σ𝑋𝛼 𝛽 𝛾

and a morphism between triangles (𝛼, 𝛽, 𝛾) and (𝛼′, 𝛽′, 𝛾′) is given by a triple
(𝜙1, 𝜙2, 𝜙3) of morphisms in T making the following diagram commutative.

𝑋 𝑌 𝑍 Σ𝑋

𝑋 ′ 𝑌 ′ 𝑍 ′ Σ𝑋 ′

𝛼

𝜙1

𝛽

𝜙2

𝛾

𝜙3 Σ𝜙1

𝛼′ 𝛽′ 𝛾′

A triangulated category is a triple (T, Σ,E) consisting of a suspended category
(T, Σ) and a class E of distinguished triangles in (T, Σ) (called exact triangles)
satisfying the following conditions.

(Tr1) A triangle isomorphic to an exact triangle is exact. For each object 𝑋 ,
the triangle 0 → 𝑋

id
−→ 𝑋 → Σ0 is exact. Each morphism 𝛼 fits into an

exact triangle (𝛼, 𝛽, 𝛾).
(Tr2) A triangle (𝛼, 𝛽, 𝛾) is exact if and only if (𝛽, 𝛾,−Σ𝛼) is exact.
(Tr3) Given two exact triangles (𝛼, 𝛽, 𝛾) and (𝛼′, 𝛽′, 𝛾′), each pair of mor-

phisms 𝜙1 and 𝜙2 satisfying 𝜙2𝛼 = 𝛼′𝜙1 can be completed to a morphism

𝑋 𝑌 𝑍 Σ𝑋

𝑋 ′ 𝑌 ′ 𝑍 ′ Σ𝑋 ′

𝛼

𝜙1

𝛽

𝜙2

𝛾

𝜙3 Σ𝜙1

𝛼′ 𝛽′ 𝛾′

of triangles.
(Tr4) Given exact triangles (𝛼1, 𝛼2, 𝛼3), (𝛽1, 𝛽2, 𝛽3), and (𝛾1, 𝛾2, 𝛾3) with

𝛾1 = 𝛽1𝛼1, there exists an exact triangle (𝛿1, 𝛿2, 𝛿3)making the following
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74 Triangulated Categories

diagram commutative.

𝑋 𝑌 𝑈 Σ𝑋

𝑋 𝑍 𝑉 Σ𝑋

𝑊 𝑊 Σ𝑌

Σ𝑌 Σ𝑈

𝛼1 𝛼2

𝛽1

𝛼3

𝛿1

𝛾1 𝛾2

𝛽2

𝛾3

𝛿2 Σ𝛼1

𝛽3 𝛿3

𝛽3

Σ𝛼2

The axiom (Tr4) is also known as the octahedral axiom, because the objects
and morphisms of the diagram can be arranged to produce the skeleton of an
octahedron, four of whose faces are exact triangles, so of the form

𝐶

𝐴 𝐵

+

corresponding to an exact triangle 𝐴→ 𝐵→ 𝐶 → Σ𝐴.
Given a triangulated category (T, Σ,E), we simplify the notation and identify

T = (T, Σ,E).

Exact Functors
An exact functor (or triangle functor) T → U between triangulated categories
is a pair (𝐹, 𝜂) consisting of an additive functor 𝐹 : T → U and a natural
isomorphism 𝜂 : 𝐹 ◦ ΣT

∼−→ ΣU ◦ 𝐹 such that for every exact triangle 𝑋 𝛼
−→

𝑌
𝛽
−→ 𝑍

𝛾
−→ ΣT𝑋 in T the triangle

𝐹𝑋 𝐹𝑌 𝐹𝑍 ΣU (𝐹𝑋)
𝐹𝛼 𝐹𝛽 𝜂𝑋◦𝐹𝛾

is exact in U. In the following we simplify the notation and identify 𝐹 = (𝐹, 𝜂).
An exact functor 𝐹 : T → U is called a triangle equivalence if 𝐹 is an equiv-

alence of categories. The terminology is justified by the following observation,
because then a quasi-inverse is again exact.

Lemma 3.1.1. Let (𝐹, 𝐺) be an adjoint pair of functors between triangulated
categories. Then 𝐹 is exact if and only if 𝐺 is exact. �
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3.1 Triangulated Categories 75

Cohomological Functors
Let T be a triangulated category. An additive functor 𝐹 : T → A into an
abelian category A is called cohomological if it sends each exact triangle
𝑋 → 𝑌 → 𝑍 → Σ𝑋 in T to an exact sequence 𝐹𝑋 → 𝐹𝑌 → 𝐹𝑍 in A.

Lemma 3.1.2. For each object 𝑋 in T, the representable functors

HomT (𝑋,−) : T −→ Ab and HomT (−, 𝑋) : Top −→ Ab

into the category Ab of abelian groups are cohomological functors.

Proof We show that HomT (𝑋,−) is cohomological. For HomT (−, 𝑋) the
proof is dual.

Fix an exact triangle 𝑈 𝛼
−→ 𝑉

𝛽
−→ 𝑊

𝛾
−→ Σ𝑈. We need to show the exactness

of the induced sequence

HomT (𝑋,𝑈) −→ HomT (𝑋,𝑉) −→ HomT (𝑋,𝑊).

To this end fix a morphism 𝜙 : 𝑋 → 𝑉 and consider the following diagram.

𝑋 𝑋 0 Σ𝑋

𝑈 𝑉 𝑊 Σ𝑈

id

𝜙

𝛼 𝛽 𝛾

If 𝜙 factors through 𝛼, then (Tr3) implies the existence of a morphism 0 → 𝑊

making the diagram commutative. Thus 𝛽 ◦ 𝜙 = 0. Now assume 𝛽 ◦ 𝜙 = 0.
Applying (Tr2) and (Tr3), we find a morphism 𝑋 → 𝑈 making the diagram
commutative. Thus 𝜙 factors through 𝛼. �

We discuss some consequences. For example, we see that in any exact triangle
𝑋

𝛼
−→ 𝑌

𝛽
−→ 𝑍

𝛾
−→ Σ𝑋 the morphism 𝛼 is a weak kernel of 𝛽. Also, the Yoneda

functor T → modT is a universal cohomological functor.

Proposition 3.1.3. The category modT is abelian and the Yoneda functor
T → modT is cohomological. Any cohomological functor T → A factors
uniquely (up to a unique isomorphism) through the Yoneda functor via an exact
functor modT → A.

Proof Every morphism in T admits a weak kernel by Lemma 3.1.2. Therefore
the category modT is abelian by Lemma 2.1.6. Moreover, Lemma 3.1.2 implies
that the Yoneda functor is cohomological. Given a cohomological functor
𝐹 : T → A, the functor modT → A takes Coker HomT (−, 𝜙) (given by a
morphism 𝜙 in T) to Coker 𝐹 (𝜙). This functor is exact and essentially unique;
see Lemma 2.1.8. �
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76 Triangulated Categories

Proposition 3.1.4. A functor Top → Ab is cohomological if and only if it is a
filtered colimit of representable functors.

Proof One direction is clear, since filtered colimits in Ab are exact and repre-
sentable functors are cohomological. Now fix an additive functor 𝐹 : Top → Ab.
Let T/𝐹 denote the category consisting of pairs (𝑋, 𝑓 ) with 𝑋 ∈ T and
𝑓 ∈ 𝐹 (𝑋). A morphism (𝑋, 𝑓 ) → (𝑋 ′, 𝑓 ′) is given by a morphism 𝛼 : 𝑋 → 𝑋 ′

in T such that 𝐹 (𝛼) ( 𝑓 ′) = 𝑓 . We write Add(Top,Ab) for the category of addi-
tive functors Top → Ab. Then 𝐹 equals the colimit of the functor

T/𝐹 −→ Add(Top,Ab), (𝑋, 𝑓 ) ↦→ HomT (−, 𝑋)

(Lemma 11.1.8). It is easily checked that T/𝐹 is filtered when 𝐹 is cohomo-
logical. �

Uniqueness of Exact Triangles
Let T be a triangulated category. Given a morphism 𝛼 : 𝑋 → 𝑌 in T and two
exact triangles Δ = (𝛼, 𝛽, 𝛾) and Δ′ = (𝛼, 𝛽′, 𝛾′) which complete 𝛼, there
exists a comparison morphism (id𝑋, id𝑌 , 𝜙) between Δ and Δ′, by (Tr3). The
morphism 𝜙 is an isomorphism, by the following lemma, but it need not be
unique.

Lemma 3.1.5. Let (𝜙1, 𝜙2, 𝜙3) be a morphism between exact triangles. If two
of 𝜙1, 𝜙2, 𝜙3 are isomorphisms, then the third is also an isomorphism.

Proof Use Lemma 3.1.2 and apply the five lemma. �

The third object 𝑍 in an exact triangle 𝑋 𝛼
−→ 𝑌 → 𝑍 → Σ𝑋 is called the

cone of 𝛼 and is denoted by Cone𝛼, despite the fact that it is not unique. Later
on we will see specific constructions which justify this terminology.

Triangulated and Thick Subcategories
Let T be a triangulated category. A full subcategory S is a triangulated subcat-
egory if S is non-empty and the following conditions hold.

(TS1) Σ𝑛𝑋 ∈ S for all 𝑋 ∈ S and 𝑛 ∈ Z.
(TS2) Let 𝑋 → 𝑌 → 𝑍 → Σ𝑋 be an exact triangle in T. Then 𝑋,𝑌 ∈ S

implies 𝑍 ∈ S.

A triangulated subcategory S is thick if in addition the following condition
holds.
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3.2 Localisation of Triangulated Categories 77

(TS3) Every direct summand of an object in S belongs to S, that is, a decom-
position 𝑋 = 𝑋 ′ ⊕ 𝑋 ′′ for 𝑋 ∈ S implies 𝑋 ′ ∈ S.

Note that a triangulated subcategory S inherits a canonical triangulated
structure from T.

Example 3.1.6. The kernel of an exact functor T → U between triangulated
categories is a thick subcategory of T.

Example 3.1.7. An object 𝑋 in T is homologically finite if for every object
𝑌 in T we have HomT (𝑋,Σ𝑛𝑌 ) = 0 for almost all 𝑛 ∈ Z. The homologically
finite objects form a thick subcategory of T.

Dévissage
For a triangulated category T and a class of objects C ⊆ T let Thick(C) denote
the smallest thick subcategory of T that contains C.

Lemma 3.1.8. Let 𝐹 : T → U be an exact functor between triangulated cate-
gories and let C ⊆ T be a class of objects in T. If the induced map

HomT (𝑋,Σ
𝑛𝑌 ) → HomU (𝐹𝑋, Σ

𝑛𝐹𝑌 )

is bijective for all 𝑋,𝑌 ∈ C and 𝑛 ∈ Z, then 𝐹 restricted to Thick(C) is fully
faithful.

Proof Use Lemma 3.1.2 and apply the five lemma. �

3.2 Localisation of Triangulated Categories

We introduce the localisation of a triangulated category with respect to a
triangulated subcategory. Localising amounts to annihilating a class of objects,
and the triangulated structure is preserved.

Verdier Localisation
Let T be a triangulated category and fix a triangulated subcategory S. Set

𝑆(S) = {𝜎 ∈ MorT | Cone𝜎 ∈ S}.

Also, we set

S⊥ = {𝑌 ∈ T | HomT (𝑋,𝑌 ) = 0 for all 𝑋 ∈ S}
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78 Triangulated Categories

and
⊥S = {𝑋 ∈ T | HomT (𝑋,𝑌 ) = 0 for all 𝑌 ∈ S}.

Lemma 3.2.1. For a triangulated subcategory S ⊆ T the following holds.

(1) 𝑆(S) admits a calculus of left and right fractions.
(2) An object in T is 𝑆(S)-local if and only if it is in S⊥.

Proof Set 𝑆 = 𝑆(S).
(1) We check for 𝑆 the conditions (LF1)–(LF3) to admit a calculus of left

fractions. The proof that 𝑆 admits a calculus of right fractions is dual.
(LF1) The class 𝑆 contains the identity morphisms by (Tr1) and the composite

of two morphisms in 𝑆 by (Tr4).
(LF2) Fix a pair of morphisms 𝑋 ′ 𝜎

←− 𝑋
𝛼
−→ 𝑌 in T with 𝜎 ∈ 𝑆. Completing

the composite Σ−1 (Cone𝜎) → 𝑋 → 𝑌 to an exact triangle and applying (Tr3)
yields a commutative diagram

𝑋 𝑌

𝑋 ′ 𝑌 ′

𝜎 𝜏

with Cone𝜎 � Cone 𝜏. Thus 𝜏 ∈ 𝑆.
(LF3) Let 𝛼, 𝛽 : 𝑋 → 𝑌 be morphisms in T and suppose there is 𝜎 : 𝑋 ′ → 𝑋

in 𝑆 such that 𝛼𝜎 = 𝛽𝜎. Complete 𝜎 to an exact triangle 𝑋 ′ 𝜎
−→ 𝑋

𝜙
−→

Cone𝜎 → Σ𝑋 ′. Then𝛼−𝛽 factors through 𝜙 via a morphism𝜓 : Cone𝜎 → 𝑌 .
Now complete 𝜓 to an exact triangle Cone𝜎

𝜓
−→ 𝑌

𝜏
−→ 𝑌 ′ → Σ(Cone𝜎). Then

𝜏𝛼 = 𝜏𝛽 and 𝜏 ∈ 𝑆.
(2) Fix 𝑌 ∈ T and suppose that HomT (𝑋,𝑌 ) = 0 for all 𝑋 ∈ S. Then every

𝜎 ∈ 𝑆 induces a bijection HomT (𝜎,𝑌 ) because HomT (−, 𝑌 ) is cohomological.
Thus 𝑌 is 𝑆-local.

Now suppose that𝑌 is 𝑆-local. If 𝑋 belongs to S, then the morphism𝜎 : 𝑋 →
0 belongs to 𝑆 and therefore induces a bijection HomT (𝜎,𝑌 ). Thus 𝑌 belongs
to S⊥. �

The Verdier localisation ofT with respect to S is by definition the localisation

T/S = T [𝑆(S)−1]

together with the canonical functor T → T/S.

Proposition 3.2.2. Let T be a triangulated category and S a triangulated
subcategory. Then the following holds.
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3.2 Localisation of Triangulated Categories 79

(1) The category T/S carries a unique triangulated structure such that the
canonical functor 𝑄 : T → T/S is exact and annihilates S.

(2) If U is a triangulated category and 𝐹 : T → U is an exact functor that
annihilates S, then there exists a unique exact functor 𝐹̄ : T/S → U such
that 𝐹 = 𝐹̄ ◦𝑄.

Proof (1) We apply Lemma 3.2.1. Thus 𝑆(S) admits a calculus of left and
right fractions. The category T/S is additive by Lemma 2.2.1. The class 𝑆(S) is
invariant under the suspension Σ. Thus Σ induces an equivalence T/S ∼−→ T/S.
A triangle inT/S is by definition exact if it is isomorphic to the image under𝑄 of
an exact triangle in T. It is straightforward to check the conditions (Tr1)–(Tr4),
and the functor 𝑄 is exact by construction. Clearly, 𝑄 |S = 0.

(2) If 𝐹 : T → U is an exact functor and 𝐹 |S = 0, then 𝐹 inverts all
morphisms in 𝑆(S). Thus 𝐹 factors through 𝑄 : T → T/S via a unique functor
𝐹̄ : T/S → U. The functor 𝐹̄ is exact, because any exact triangle in T/S is up
to isomorphism the image under 𝑄 of an exact triangle in T. �

Remark 3.2.3. (1) The properties (1)–(2) in Proposition 3.2.2 provide a uni-
versal property that determines the canonical functor T → T/S up to a unique
isomorphism.

(2) The canonical functor𝑄 : T → T/S annihilates a morphism 𝛼 in T if and
only if 𝛼 factors through an object in S. In particular,𝑄𝑋 = 0 for an object 𝑋 in
T if and only if 𝑋 is a direct summand of an object in S. Thus Ker𝑄 = Thick(S).

(3) A cohomological functor 𝐻 : T → A factors through T → T/S via a
unique cohomological functor T/S→ A if and only if 𝐻 |S = 0.

(4) The canonical functor T → T/S preserves all coproducts in T if and only
if S is closed under coproducts; see Lemma 1.1.8.

The following provides a useful fact about the morphisms in T/S.

Lemma 3.2.4. Let S ⊆ T be a triangulated subcategory and 𝑋 ∈ T. Then the
canonical map

HomT (𝑋
′, 𝑋) −→ HomT/S(𝑋

′, 𝑋)

is a bijection for all 𝑋 ′ ∈ T if and only if 𝑋 ∈ S⊥. Analogously,

HomT (𝑋, 𝑋
′) −→ HomT/S(𝑋, 𝑋

′)

is a bijection for all 𝑋 ′ ∈ T if and only if 𝑋 ∈ ⊥S.

Proof This follows from Lemma 1.1.2 and Lemma 3.2.1. �
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80 Triangulated Categories

Localisation of Subcategories
We consider a Verdier localisation and its triangulated subcategories. The
following lemma provides a useful criterion.

Lemma 3.2.5. Let U,V ⊆ T be triangulated subcategories of a triangulated
category T. Suppose that one of the following conditions holds.

(1) Every morphism V � 𝑉 → 𝑈 ∈ U factors through an object in U ∩ V.
(2) Every morphism U � 𝑈 → 𝑉 ∈ V factors through an object in U ∩ V.

Then the induced functor U/(U ∩ V) → T/V is fully faithful.

We capture the situation in the following commutative diagram

U ∩ V U U/(U ∩ V)

V T T/V

and provide a criterion for the functor on the right to be fully faithful.

Proof Suppose (1) holds; the other case is dual. We claim that U is left cofinal
with respect to 𝑆(V). Then the inclusion U→ T induces a fully faithful functor
U/(U ∩ V) → T/V by Lemma 1.2.5, since 𝑆(U ∩ V) = 𝑆(V) ∩ U.

To prove the claim choose a morphism 𝑈 → 𝑌 in 𝑆(V) with 𝑈 ∈ U. This
yields an exact triangle𝑉 → 𝑈 → 𝑌 → Σ𝑉 . The first morphism factors through
an object 𝑋 ∈ U ∩ V. Applying the octahedral axiom yields a commutative
diagram

Σ−1𝑍 Σ−1𝑍

𝑉 𝑋 𝑌 ′ Σ𝑉

𝑉 𝑈 𝑌 Σ𝑉

𝑍 𝑍

with exact rows and columns. Then 𝑌 → 𝑍 is the desired morphism with
𝑍 ∈ U. �

Next we describe all triangulated subcategories of a Verdier localisation.

Proposition 3.2.6. Let V ⊆ U ⊆ T be triangulated subcategories of a trian-
gulated category T. Then U/V identifies with a triangulated subcategory of
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3.2 Localisation of Triangulated Categories 81

T/V, and every triangulated subcategory of T/V is of this form. Moreover, the
canonical functor T → T/V induces an isomorphism T/U ∼−→ (T/V)/(U/V).

We capture the situation in the following commutative diagram.

V U U/V

V T T/V

T/U (T/V)/(U/V)
∼

Proof The inclusion U → T induces a fully faithful functor U/V → T/V

by the above Lemma 3.2.5. It is easily checked that U/V yields a triangulated
subcategory of T/V. If W ⊆ T/V is a triangulated subcategory, set U :=
𝑄−1 (W). Then U/V ∼−→ W. The final assertion is clear, since the kernel of the
composite T → T/V→ (T/V)/(U/V) equals U. �

Localisation and Adjoints
Let T be a triangulated category and S ⊆ T a triangulated subcategory. Suppose
that the canonical functor 𝑄 : T → T/S admits a right adjoint 𝑄𝜌 : T/S → T.
Then 𝑄𝜌 is fully faithful and induces an equivalence

T/S ∼−−→ S⊥ with quasi-inverse S⊥ ↩→ T
𝑄
−−→ T/S.

This follows from Proposition 1.1.3 and Lemma 3.2.1. The unit of the adjunction
yields for 𝑋 in T an exact triangle

𝑋 ′ −→ 𝑋
𝜂
−−→ 𝑄𝜌𝑄(𝑋) −→ Σ𝑋 ′

with 𝑋 ′ a direct summand of an object in S since 𝑄(𝜂) is invertible.

Lemma 3.2.7. When S ⊆ T is thick and 𝑄 admits a right adjoint, then the
assignment 𝑋 ↦→ 𝑋 ′ provides a right adjoint of the inclusion S→ T.

Proof The map HomT (−, 𝑋
′) → HomT (−, 𝑋) is bijective when restricted to

S since 𝑄𝜌𝑄(𝑋) and Σ−1𝑄𝜌𝑄(𝑋) are in S⊥. �

The following proposition expresses the symmetry which arises from local-
ising a triangulated category with respect to a thick subcategory.

Proposition 3.2.8. Let S ⊆ T be a thick subcategory. Then the following are
equivalent.
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(1) The inclusion S→ T admits a right adjoint.
(2) For each 𝑋 ∈ T there exists an exact triangle 𝑋 ′ → 𝑋 → 𝑋 ′′ → Σ𝑋 ′ with

𝑋 ′ ∈ S and 𝑋 ′′ ∈ S⊥.
(3) The canonical functor T → T/S admits a right adjoint.
(4) The composite S⊥ ↩→ T � T/S is a triangle equivalence.

In that case the right adjoint T → S induces a triangle equivalence

T/(S⊥) ∼−−→ S and ⊥(S⊥) = S.

Proof (1) ⇒ (2): Suppose that the inclusion 𝐼 : S → T admits a right adjoint
𝐼𝜌 : T → S, and consider for 𝑋 in T the exact triangle

Σ−1𝑋 ′′ −→ 𝐼 𝐼𝜌 (𝑋) −→ 𝑋 −→ 𝑋 ′′

given by the counit of the adjunction. Then we have 𝐼 𝐼𝜌 (𝑋) ∈ S and 𝑋 ′′ ∈ S⊥.
(2) ⇒ (3): Suppose there is for 𝑋 in T an exact triangle 𝑋 ′ → 𝑋 → 𝑋 ′′ →

Σ𝑋 ′ with 𝑋 ′ ∈ S and 𝑋 ′′ ∈ S⊥. The assignment 𝑋 ↦→ 𝑋 ′′ provides a left adjoint
for the inclusion S⊥ → T, say 𝐹 : T → S⊥. The kernel of 𝐹 equals ⊥(S⊥) = S,
and 𝐹 induces an equivalence T/S ∼−→ S⊥. Composing this with the inclusion
S⊥ → T provides the desired right adjoint of T → T/S.

(3) ⇒ (4): Combine Proposition 1.1.3 and Lemma 3.2.1.
(4) ⇒ (1): A quasi-inverse of S⊥ ∼−→ T/S composed with the inclusion

S⊥ → T provides a right adjoint of T → T/S. Then the inclusion S → T

admits a right adjoint, by Lemma 3.2.7.
This completes the first part of the proof. We have already seen that a

right adjoint 𝐼𝜌 : T → S of the inclusion S → T arises from a localisation,
by Proposition 1.1.3, and its kernel equals S⊥. Thus 𝐼𝜌 induces a triangle
equivalence T/(S⊥) ∼−→ S. �

We capture the situation in the following diagram

S T T/S
𝐼

𝐼𝜌

𝑄

𝑄𝜌

which is a localisation sequence. The adjunctions yield for each object 𝑋 ∈ T

an exact triangle

𝐼 𝐼𝜌 (𝑋) −→ 𝑋 −→ 𝑄𝜌𝑄(𝑋) −→ Σ𝐼 𝐼𝜌 (𝑋).

The following proposition complements Proposition 3.2.8.

Proposition 3.2.9. Let (𝐹, 𝐺) be an adjoint pair of functors

T U
𝐹

𝐺
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between triangulated categories such that 𝐹 is exact and set S = Ker 𝐹. Then
𝐺 is fully faithful if and only if 𝐹 induces a triangle equivalence T/S ∼−→ U.

Proof Let 𝑆 = {𝜎 ∈ MorT | 𝐹𝜎 is invertible}. Then 𝐺 is fully faithful if and
only if 𝐹 induces an equivalence T [𝑆−1] ∼−→ U, by Proposition 1.1.3. It remains
to observe that T [𝑆−1] = T/S, since 𝑆 = 𝑆(S). Here we use that 𝐹 is exact. �

We note the symmetry for triangulated categories which differs from that for
abelian categories. For an abelian category A and a Serre subcategory C ⊆ A,
a right adjoint of A→ A/C implies the existence of a right adjoint of C ↩→ A

(Lemma 2.2.10), but the converse is not true without further assumptions. Also,
a right adjoint of A→ A/C need not be exact.

3.3 Frobenius Categories

Stable categories of Frobenius categories provide important examples of tri-
angulated categories. The exact structure of a Frobenius category induces a
canonical triangulated structure of the stable category. In particular, there are
canonical choices of exact triangles and morphisms between such triangles.
With these choices the formation of cones becomes functorial.

Stable Categories of Frobenius Categories
An exact category A is a Frobenius category if there are enough projective and
enough injective objects, and if projective and injective objects coincide. Let P
denote the full subcategory of projective objects. The stable category StA is
by definition the additive quotient A/P. For objects 𝑋,𝑌 we set

HomA(𝑋,𝑌 ) = HomStA(𝑋,𝑌 ).

Let A be a Frobenius category and fix for each object 𝑋 an admissible
monomorphism 𝑋 → 𝐼𝑋 such that 𝐼𝑋 is an injective object. The cone of a
morphism 𝜙 : 𝑋 → 𝑌 is obtained by forming the following pushout diagram

0 𝑋 𝐼𝑋 Σ𝑋 0

0 𝑌 Cone 𝜙 Σ𝑋 0

𝜙

𝜙′ 𝜙′′

and we call (𝜙, 𝜙′, 𝜙′′) a cone sequence induced by 𝜙. Note that this diagram
depends on the choice of 𝑋 → 𝐼𝑋 , but it is unique up to an isomorphism when
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one passes to the stable category of A. In particular, a morphism in A has a
projective cone if and only if its image under A→ StA is invertible in StA.

Now let 𝜉 : 0 → 𝑋 → 𝑌 → 𝑍 → 0 be an admissible exact sequence in A.
We consider the induced commutative diagram

0 𝑋 𝑌 𝑍 0

0 𝑋 𝐼𝑋 Σ𝑋 0

𝛼 𝛽

𝛾

and call (𝛼, 𝛽, 𝛾) a standard triangle induced by 𝜉. Again, the triangle is unique
up to isomorphism in StA.

Let us compare cone sequences and standard triangles by taking them into
the stable category StA.

Lemma 3.3.1. In StA, a triangle (𝛼, 𝛽, 𝛾) is isomorphic to a cone sequence
induced by a morphism in A if and only if (𝛼, 𝛽, 𝛾) is isomorphic to a standard
triangle induced by an admissible exact sequence in A.

Proof Given a morphism 𝜙 : 𝑋 → 𝑌 in A, the pushout defining the cone
sequence (𝜙, 𝜙′, 𝜙′′) yields an admissible exact sequence 0 → 𝑋 → 𝑌 ⊕ 𝐼𝑋 →

Cone 𝜙→ 0. On the other hand, an admissible exact sequence 0 → 𝑋 → 𝑌 →

𝑍 → 0 yields the following pushout diagram

0 0

0 𝑋 𝐼𝑋 Σ𝑋 0

0 𝑌 Cone 𝜙 Σ𝑋 0

𝑍 𝑍

0 0

𝜙

𝜙′ 𝜙′′

and it is clear that Cone 𝜙→ 𝑍 is an isomorphism in StA. �

Proposition 3.3.2. Let A be a Frobenius category. Then the assignment 𝑋 ↦→
Σ𝑋 induces an equivalence StA ∼−→ StA, and the category StA together with
all triangles isomorphic to the image of a standard triangle inA is a triangulated
category.

A triangulated category that is triangle equivalent to the stable category
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of a Frobenius category is called algebraic. In fact, all specific triangulated
categories arising in this book are algebraic. Further descriptions are provided
in Proposition 9.1.5 and Proposition 9.1.15.

The proof of Proposition 3.3.2 requires some preparation. For each 𝑋 ∈ A

fix an exact sequence

𝜔𝑋 : 0 −→ 𝑋
𝑥
−−→ 𝐼𝑋

𝑥̄
−−→ Σ𝑋 −→ 0.

Lemma 3.3.3. Multiplication by 𝜔𝑋 induces a natural isomorphism

Hom(−, Σ𝑋) ∼−−→ Ext1 (−, 𝑋).

A standard triangle (𝛼, 𝛽, 𝛾) corresponding to an exact sequence 𝜉 : 0 → 𝑋
𝛼
−→

𝑌
𝛽
−→ 𝑍 → 0 in A induces an exact sequence of functors

Hom(−, 𝑋) Hom(−, 𝑌 ) Hom(−, 𝑍) Hom(−, Σ𝑋)(−,𝛼) (−,𝛽) (−,𝛾)

which is functorial in 𝑋 and 𝑍 . Moreover, we have 𝜔𝑋 · 𝛾 = 𝜉.

Proof The cokernel of Hom(−, 𝐼𝑋) → Hom(−, Σ𝑋) equals Hom(−, Σ𝑋)
which is therefore isomorphic to Ext1 (−, 𝑋). Thus for 𝑍 ∈ A the isomorphism

Hom(𝑍, Σ𝑋) ∼−−→ Ext1 (𝑍, 𝑋)

maps 𝜙 to 𝜔𝑋 · 𝜙. The identity 𝜔𝑋 · 𝛾 = 𝜉 follows from the definition of a
standard triangle, and then the exact sequence of functors is clear. �

Proof of Proposition 3.3.2 The first assertion is easily checked. For the ver-
ification of the axioms of a triangulated category we use Lemma 3.3.1 and
standard properties of exact categories.

(Tr1) The class of exact triangles is closed under isomorphisms by definition.
The standard triangle given by the exact sequence 0 → 0 → 𝑋

id
−→ 𝑋 → 0

equals 0 → 𝑋
id
−→ 𝑋 → 0. From the definition of a cone sequence (𝜙, 𝜙′, 𝜙′′)

it is clear that each morphism 𝜙 fits into an exact triangle.
(Tr2) Fix a standard triangle (𝛼, 𝛽, 𝛾) given by the following commutative

diagram with exact rows.

0 𝑋 𝑌 𝑍 0

0 𝑋 𝐼𝑋 Σ𝑋 0

𝛼

𝛼′

𝛽

𝛾

𝑥 𝑥̄
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Then consider the following diagram with exact rows.

0 𝑌 𝑍 ⊕ 𝐼𝑋 Σ𝑋 0

0 𝑌 𝐼𝑌 Σ𝑌 0

[
𝛽
𝛼′

]
[
𝛽′ 𝐼 𝛼

]
[
𝛾 −𝑥̄

]
−Σ𝛼

𝑦 𝑦̄

From the identity

(𝑦 − 𝐼𝛼𝛼′)𝛼 = 𝑦𝛼 − 𝐼𝛼𝑥 = 0

we obtain 𝛽′ : 𝑍 → 𝐼𝑌 satisfying 𝑦 − 𝐼𝛼𝛼′ = 𝛽′𝛽; so the left hand square
commutes. For the commutativity of the other square we compute

𝑦̄𝛽′𝛽 = 𝑦̄𝑦 − 𝑦̄𝐼𝛼𝛼′ = −Σ𝛼𝑥𝛼′ = −Σ𝛼𝛾𝛽.

Thus 𝑦̄𝛽′ = −Σ𝛼𝛾 since 𝛽 is an epimorphism. Now the diagram yields a
standard triangle which is isomorphic to (𝛽, 𝛾,−Σ𝛼).

(Tr3) Fix exact triangles (𝛼, 𝛽, 𝛾) and (𝛼′, 𝛽′, 𝛾′)with a pair of morphisms 𝜙1
and 𝜙2 satisfying 𝜙2𝛼 = 𝛼′𝜙1. We may assume them to be standard triangles
and that the equality 𝜙2𝛼 = 𝛼′𝜙1 holds in A, by adding to 𝛼 an injective
summand if necessary. This yields the following commutative diagram with
exact rows.

𝜉 : 0 𝑋 𝑌 𝑍 0

𝜉 ′ : 0 𝑋 ′ 𝑌 ′ 𝑍 ′ 0

𝛼

𝜙1

𝛽

𝜙2 𝜙3

𝛼′ 𝛽′

We need to show that Σ𝜙1𝛾 = 𝛾′𝜙3. Clearly, this follows from a commutative
diagram of the following form.

Hom(−, 𝑋) Hom(−, 𝑌 ) Hom(−, 𝑍) Hom(−, Σ𝑋)

Hom(−, 𝑋 ′) Hom(−, 𝑌 ′) Hom(−, 𝑍 ′) Hom(−, Σ𝑋 ′)

(−,𝜙1) (−,𝜙2) (−,𝜙3) (−,Σ𝜙1)

We obtain this from Lemma 3.3.3, since the horizontal sequence is functorial,
and using that 𝜙1𝜉 = 𝜉 ′𝜙3.

(Tr4) Fix exact triangles 𝛼 = (𝛼1, 𝛼2, 𝛼3), 𝛽 = (𝛽1, 𝛽2, 𝛽3), and 𝛾 =
(𝛾1, 𝛾2, 𝛾3) with 𝛾1 = 𝛽1𝛼1. We may assume them to be standard and that
the equality 𝛾1 = 𝛽1𝛼1 holds in A. Then we obtain in A a commutative dia-
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gram with exact rows.

0 𝑋 𝑌 𝑈 0

0 𝑋 𝑍 𝑉 0

𝛼1

𝛽1

𝛼2

𝛿1

𝛾1 𝛾2

From this we obtain a standard triangle (𝛿1, 𝛿2, 𝛿3) making the following dia-
gram commutative.

𝑋 𝑌 𝑈 Σ𝑋

𝑋 𝑍 𝑉 Σ𝑋

𝑊 𝑊

Σ𝑌 Σ𝑈

𝛼1 𝛼2

𝛽1

𝛼3

𝛿1

𝛾1 𝛾2

𝛽2

𝛾3

𝛿2

𝛽3 𝛿3

Σ𝛼2

It remains to check the identity 𝛽3𝛿2 = Σ𝛼1𝛾3 in Hom(𝑉, Σ𝑌 ). This follows
from the following commutative diagram

Hom(𝑉, Σ𝑋) Hom(𝑉, Σ𝑌 ) Hom(𝑊, Σ𝑌 )

Ext1 (𝑉, 𝑋) Ext1 (𝑉,𝑌 ) Ext1 (𝑊,𝑌 )

�

(𝑉,Σ𝛼1)

� �

(𝛿2 ,Σ𝑌 )

and the description of the third morphism in a standard triangle given in
Lemma 3.3.1, since the maps in the bottom row send the extensions corre-
sponding to 𝛽 and 𝛾 to the same extension

0 𝑌 𝑈 ⊕ 𝑍 𝑉 0.

[ 𝛼2
𝛽1

] [
−𝛿1 𝛾2

]
�

Example 3.3.4. For a ring Λ the following conditions are equivalent (Theo-
rem 13.2.13).

(1) Projective and injective Λ-modules coincide.
(2) The category ModΛ of Λ-modules is a Frobenius category.
(3) The ring Λ is right artinian and modΛ is a Frobenius category.
(4) The ring Λ is right noetherian and the module ΛΛ is injective.

A ring satisfying these equivalent conditions is called quasi-Frobenius. This
notion is symmetric, so Λ is quasi-Frobenius if and only if Λop is quasi-
Frobenius. A ring Λ is called right self-injective if the module ΛΛ is injective,
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andΛ is self-injective if it is both right and left self-injective. Thus for noetherian
rings the concepts ‘quasi-Frobenius’ and ‘self-injective’ coincide. For example,
the group algebra 𝑘𝐺 of a finite group 𝐺 over a field 𝑘 is quasi-Frobenius and
self-injective.

We write StModΛ = St(ModΛ) when Λ is quasi-Frobenius.

Frobenius Pairs
A Frobenius pair (A,A0) is a Frobenius categoryA together with a full additive
subcategory A0 ⊆ A such that A0 contains all projective objects of A and the
two out of three property holds: for an admissible exact sequence in A with two
terms in A0, the third term is also in A0.

We observe that for a fixed Frobenius categoryA the Frobenius pairs (A,A0)

correspond bijectively to triangulated subcategories of StA. The assignment
sends A0 to its stable category StA0, where A0 is viewed as a Frobenius
category having the same projective and injective objects as A.

Let (A,A0) be a Frobenius pair and set

𝑆 = {𝜙 ∈ MorA | Cone 𝜙 ∈ A0}.

The derived category D(A,A0) of (A,A0) is obtained by formally inverting
all morphisms in 𝑆. Thus one defines

D(A,A0) = A[𝑆−1] .

For a morphism 𝜙 in A we write 𝜙 for the corresponding morphism in StA.

Proposition 3.3.5. For a Frobenius pair (A,A0) the following holds.

(1) The class 𝑆 = {𝜙 | 𝜙 ∈ 𝑆} ⊆ Mor StA admits a calculus of left and
right fractions, and the canonical functor A → D(A,A0) induces an
equivalence

(StA) [𝑆−1] = StA/StA0
∼−−→ D(A,A0).

(2) The assignment 𝑋 ↦→ Σ𝑋 induces an equivalence D(A,A0)
∼−→ D(A,A0),

and the category D(A,A0) together with all triangles isomorphic to the
localisation of a cone sequence (𝜙, 𝜙′, 𝜙′′) in A is a triangulated category.

Proof The stable category StA is the localisation of A with respect to the
class of morphisms 𝜙 inA such that Cone 𝜙 is projective, by Lemma 2.2.2. Thus
(StA) [𝑆−1] identifies with A[𝑆−1]. Next observe that StA0 is a triangulated
subcategory of StA. It follows from Lemma 3.2.1 that 𝑆 admits a calculus
of left and right fractions, and the localisation (StA) [𝑆−1] equals the Verdier
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localisation StA/StA0. Now the triangulated structure of D(A,A0) is induced
by that of StA, using Proposition 3.2.2 and Proposition 3.3.2. �

The class 𝑆 ⊆ MorA admits a calculus of left fractions if and only if
A0 = A. For instance, (LF3) fails for a pair 𝛼, 𝛽 : 𝑋 → 𝑌 where 𝛼 = 0 and 𝛽 is
an epimorphism with projective 𝑋 and 𝑌 ∈ A \A0.

The construction of the derived category D(A,A0) yields the following
universal property.

Corollary 3.3.6. Let (A,A0) be a Frobenius pair. If T is a triangulated cat-
egory and 𝐹 : StA → T is an exact functor such that 𝐹 |A0 = 0, then there
exists a unique exact functor 𝐹̄ : D(A,A0) → T making the following diagram
commutative:

A D(A,A0)

StA T

𝐹̄

𝐹

Proof Combine Proposition 3.2.2 and Proposition 3.3.5. �

3.4 Brown Representability

In this section we study triangulated categories that admit arbitrary coproducts.
An important aspect in this context is the representability of cohomological
functors. We discuss two versions of Brown’s representability theorem. In each
case the category needs to be generated by objects satisfying certain finiteness
conditions. The most natural condition is ‘compactness’, which means that the
functor Hom(𝑋,−) preserves all coproducts. The construction of representing
objects is fairly explicit and involves homotopy colimits.

Homotopy (Co)limits
Let T be a triangulated category and suppose that countable coproducts exist
in T. Let

𝑋0 𝑋1 𝑋2 · · ·
𝜙0 𝜙1 𝜙2

be a sequence of morphisms in T. A homotopy colimit of this sequence is by
definition an object 𝑋 that occurs in an exact triangle

Σ−1𝑋
∐

𝑛≥0 𝑋𝑛
∐

𝑛≥0 𝑋𝑛 𝑋.
id−𝜙 𝜇
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Here, the 𝑛th component of the morphism id−𝜙 is the composite

𝑋𝑛 𝑋𝑛 ⊕ 𝑋𝑛+1
∐

𝑛≥0 𝑋𝑛.

[ id
−𝜙𝑛

]
inc

We write hocolim𝑛 𝑋𝑛 for 𝑋; this comes with canonical morphisms

𝜇𝑖 : 𝑋𝑖 −→ hocolim
𝑛

𝑋𝑛 (𝑖 ≥ 0).

Note that a homotopy colimit is unique up to a non-unique isomorphism. In
some cases the obstruction for uniqueness is controlled by phantom morphisms;
see Lemma 5.2.5.

Lemma 3.4.1. Let (𝛼𝑛 : 𝑋𝑛 → 𝑌 )𝑛≥0 be a sequence of morphisms in T such
that 𝛼𝑛 = 𝛼𝑛+1𝜙𝑛 for all 𝑛. Then there exists a (usually non-unique) morphism
𝛼̄ : hocolim𝑛 𝑋𝑛 → 𝑌 such that 𝛼𝑛 = 𝛼̄𝜇𝑛 for all 𝑛.

Proof The 𝛼𝑛 yield a morphism 𝛼 :
∐

𝑛≥0 𝑋𝑛 → 𝑌 satisfying 𝛼(id−𝜙) = 0.
Thus 𝛼 factors through Cone(id−𝜙) = hocolim𝑛 𝑋𝑛. �

The dual construction requires the existence of countable products in T and
yields the homotopy limit of a sequence

· · · 𝑋2 𝑋1 𝑋0
𝜙2 𝜙1 𝜙0

which is by definition an object 𝑋 occurring in an exact triangle

𝑋
∏

𝑛≥0 𝑋𝑛
∏

𝑛≥0 𝑋𝑛 Σ𝑋.
id−𝜙

Again, this is unique up to a non-unique isomorphism and we write holim𝑛 𝑋𝑛.
Remark 3.4.2. Given sequences 𝑋0 → 𝑋1 → 𝑋2 → · · · and𝑌0 → 𝑌1 → 𝑌2 →

· · · of morphisms in T, we have

(hocolim
𝑛

𝑋𝑛) ⊕ (hocolim
𝑛

𝑌𝑛) � hocolim
𝑛

(𝑋𝑛 ⊕ 𝑌𝑛).

Let us compute the functor HomT (−, hocolim𝑛 𝑋𝑛). To this end observe that
a sequence

𝐴0 𝐴1 𝐴2 · · ·
𝜙0 𝜙1 𝜙2

of maps between abelian groups induces an exact sequence

0
∐

𝑛≥0 𝐴𝑛
∐

𝑛≥0 𝐴𝑛 colim𝑛 𝐴𝑛 0id−𝜙

because it identifies with the colimit of the exact sequences

0
∐𝑛−1

𝑖=0 𝐴𝑖
∐𝑛

𝑖=0 𝐴𝑖 𝐴𝑛 0.id−𝜙
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Lemma 3.4.3. Let 𝐶 be an object in T such that HomT (𝐶,−) preserves all
coproducts. Then any sequence 𝑋0 → 𝑋1 → 𝑋2 → · · · in T induces an
isomorphism

colim
𝑛

HomT (𝐶, 𝑋𝑛)
∼−−→ HomT (𝐶, hocolim

𝑛
𝑋𝑛).

Proof The above observation gives an exact sequence

0
∐

𝑛 HomT (𝐶, 𝑋𝑛)
∐

𝑛 HomT (𝐶, 𝑋𝑛) colim𝑛 HomT (𝐶, 𝑋𝑛) 0.

Now apply HomT (𝐶,−) to the defining triangle for hocolim𝑛 𝑋𝑛. Comparing
both sequences yields the assertion, since∐

𝑛

HomT (𝐶, 𝑋𝑛) � HomT (𝐶,
∐
𝑛

𝑋𝑛). �

Example 3.4.4. Let 𝜙 : 𝑋 → 𝑋 be an idempotent morphism in T. Consider
the following sequences:

𝑋 𝑋 𝑋 · · ·

𝑋 𝑋 𝑋 · · ·

𝜙 𝜙 𝜙

id−𝜙 id−𝜙 id−𝜙

Write 𝑋 ′ for a homotopy colimit of the first sequence and 𝑋 ′′ for a homotopy col-
imit of the second sequence. Then we have 𝑋 � 𝑋 ′ ⊕ 𝑋 ′′ with 𝑋 ′ = Ker(id−𝜙)
and 𝑋 ′′ = Ker 𝜙. In particular, a triangulated category with countable coprod-
ucts is idempotent complete.

Proof The object 𝑋 ′ ⊕ 𝑋 ′′ is isomorphic to the homotopy colimit of the
sequence

𝑋 ⊕ 𝑋 𝑋 ⊕ 𝑋 𝑋 ⊕ 𝑋 · · ·

[
𝜙 0
0 1−𝜙

] [
𝜙 0
0 1−𝜙

] [
𝜙 0
0 1−𝜙

]

by Remark 3.4.2. Now consider the following commutative diagram

𝑋 ⊕ 𝑋 𝑋 ⊕ 𝑋 𝑋 ⊕ 𝑋 · · ·

𝑋 ⊕ 𝑋 𝑋 ⊕ 𝑋 𝑋 ⊕ 𝑋 · · ·

𝛼

[
𝜙 0
0 1−𝜙

]
𝛼

[
𝜙 0
0 1−𝜙

]
𝛼

[
𝜙 0
0 1−𝜙

]
[
1 0
0 0

] [
1 0
0 0

] [
1 0
0 0

]

with 𝛼 given by
[ 𝜙 1−𝜙

1−𝜙 𝜙

]
. Observe that 𝛼 is an isomorphism, since 𝛼2 = id.

The homotopy colimit of the bottom row is 𝑋 , again using Remark 3.4.2, and
therefore 𝑋 � 𝑋 ′ ⊕ 𝑋 ′′. �
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92 Triangulated Categories

A Brown Representability Theorem
Let T be a triangulated category with arbitrary coproducts. A triangulated
subcategory S ⊆ T is called localising if it is closed under all coproducts.
Given a class X ⊆ T of objects we denote by Loc(X) the smallest localising
subcategory of T that contains X.

A set S of objects in T is called perfectly generating if Loc(S) = T and the
following holds

(PG) Given a countable family of morphisms 𝑋𝑖 → 𝑌𝑖 in T such that the
map HomT (𝑆, 𝑋𝑖) → HomT (𝑆,𝑌𝑖) is surjective for all 𝑖 and 𝑆 ∈ S, the
induced map

HomT

(
𝑆,

∐
𝑖

𝑋𝑖

)
−→ HomT

(
𝑆,

∐
𝑖

𝑌𝑖

)
is surjective.

The condition Loc(S) = T can be reformulated, saying that HomT (Σ𝑛𝑆, 𝑋) = 0
for all 𝑆 ∈ S and 𝑛 ∈ Z implies 𝑋 = 0; see Corollary 3.4.8. The triangulated
category T is called perfectly generated if T admits a perfectly generating set.

We have the following Brown representability theorem for a perfectly gener-
ated triangulated category.

Theorem 3.4.5 (Brown). Let T be a perfectly generated triangulated category.
Then a functor 𝐹 : Top → Ab is cohomological and sends all coproducts in T

to products if and only if 𝐹 � HomT (−, 𝑋) for some object 𝑋 in T.

The proof employs the category modT of finitely presented functors on T.
The following lemma explains the basic facts which are needed; it is independent
of the triangulated structure of T. In particular, the crucial condition (PG) is
explained.

Lemma 3.4.6. Let T be an additive category with arbitrary coproducts and
weak kernels. Let S0 be a set of objects inT, and denote by S the full subcategory
of all coproducts of objects in S.

(1) The category modT is abelian and has arbitrary coproducts. Moreover,
the Yoneda functor T → modT preserves all coproducts.

(2) The category S has weak kernels and mod S is an abelian category.
(3) The assignment 𝐹 ↦→ 𝐹 |S induces an exact functor modT → mod S.
(4) The functor T → mod S sending 𝑋 to HomT (−, 𝑋) |S preserves countable

coproducts if and only if condition (PG) holds.
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3.4 Brown Representability 93

Proof First observe that for every 𝑋 in T, there exists an approximation
𝑋 ′ → 𝑋 such that 𝑋 ′ ∈ S and HomT (𝑇, 𝑋

′) → HomT (𝑇, 𝑋) is surjective
for all 𝑇 ∈ S. Take 𝑋 ′ =

∐
𝑆∈S0

∐
𝛼∈HomT (𝑆,𝑋) 𝑆 and the canonical morphism

𝑋 ′ → 𝑋 .
(1) The category modT is abelian since every morphism in T has a weak

kernel; see Lemma 2.1.6.
Let (𝐹𝑖)𝑖∈𝐼 be a family of functors in modT with presentations

HomT (−, 𝑋𝑖) −→ HomT (−, 𝑌𝑖) −→ 𝐹𝑖 −→ 0.

Then the coproduct
∐

𝑖 𝐹 is given by the presentation

HomT

(
−,

∐
𝑖

𝑋𝑖

)
−→ HomT

(
−,

∐
𝑖

𝑌𝑖

)
−→

∐
𝑖

𝐹𝑖 −→ 0.

To see this we need to check that

Hom
( ∐

𝑖

𝐹𝑖 , 𝐺
)
�

∏
𝑖

Hom(𝐹𝑖 , 𝐺)

for each 𝐺 ∈ modT. This reduces to the case that 𝐺 = HomT (−, 𝑍) is repre-
sentable, and then it follows from Yoneda’s lemma. In particular, the coproduct
is not computed pointwise in Ab.

(2) To prove that mod S is abelian, it is sufficient to show that every morphism
in S has a weak kernel. In order to obtain a weak kernel of a morphism 𝑌 → 𝑍

in S, take the composite of a weak kernel 𝑋 → 𝑌 in T and an approximation
𝑋 ′ → 𝑋 .

(3) It follows from Proposition 2.2.20 that restriction to S yields a functor
modT → mod S. Clearly, restriction is exact.

(4) We denote by 𝑖 : S → T the inclusion and write 𝑖∗ : modT → mod S
for the restriction functor. Then 𝑖∗ induces an equivalence (modT)/(Ker 𝑖∗) ∼−→

mod S; see again Proposition 2.2.20.
Thus the functor T → mod S preserves countable coproducts if and only if

𝑖∗ preserves countable coproducts, and this happens if and only if if Ker 𝑖∗ is
closed under countable coproducts; see Remark 2.2.7.

Now observe that Ker 𝑖∗ being closed under countable coproducts is a refor-
mulation of the condition (PG). �

Proof of Theorem 3.4.5 Fix a perfectly generating set S0 and denote by 𝑆 the
coproduct of all suspensions of objects in S0. It is easily checked that {𝑆} is
perfectly generating. Taking coproducts and suspensions does not affect the
condition (PG). Also, Loc(𝑆) = Loc(S0) because a triangulated subcategory
closed under countable coproducts is closed under direct summands; see Ex-
ample 3.4.4.
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94 Triangulated Categories

We construct inductively a sequence

𝑋0 𝑋1 𝑋2 · · ·
𝜙0 𝜙1 𝜙2

of morphisms in T and elements 𝜋𝑖 in 𝐹𝑋𝑖 as follows. Set 𝑋0 = 0 and 𝜋0 = 0.
Let 𝑋1 = 𝑆 [𝐹𝑆 ] be the coproduct of copies of 𝑆 indexed by the elements in 𝐹𝑆,
and let 𝜋1 be the element corresponding to id𝐹𝑆 in 𝐹𝑋1 � (𝐹𝑆)𝐹𝑆 . Suppose
we have already constructed 𝜙𝑖−1 and 𝜋𝑖 for some 𝑖 > 0. Let

𝐾𝑖 = {𝛼 ∈ HomT (𝑆, 𝑋𝑖) | (𝐹𝛼)𝜋𝑖 = 0}

and complete the canonical morphism 𝜒𝑖 : 𝑆 [𝐾𝑖 ] → 𝑋𝑖 to an exact triangle

𝑆 [𝐾𝑖 ] 𝑋𝑖 𝑋𝑖+1 Σ𝑆 [𝐾𝑖 ] .
𝜒𝑖 𝜙𝑖

Now choose an element 𝜋𝑖+1 in 𝐹𝑋𝑖+1 such that (𝐹𝜙𝑖)𝜋𝑖+1 = 𝜋𝑖 . This is possible
since (𝐹𝜒𝑖)𝜋𝑖 = 0 and 𝐹 is cohomological.

Let S denotes the full subcategory of all coproducts of copies of 𝑆 in T.
We identify each 𝜋𝑖 via Yoneda’s lemma with a morphism HomT (−, 𝑋𝑖) → 𝐹

and obtain in mod S the following commutative diagram with split exact rows,
where 𝜓𝑖 = HomT (−, 𝜙𝑖) |S.

0 Ker 𝜋𝑖 |S HomT (−, 𝑋𝑖) |S 𝐹 |S 0

0 Ker 𝜋𝑖+1 |S HomT (−, 𝑋𝑖+1) |S 𝐹 |S 0

0 𝜓𝑖

𝜋𝑖

𝜋𝑖+1

We wish to compute the colimit of the sequence (𝜓𝑖)𝑖≥0. Taking coproducts
yields the following commutative diagram with exact rows

0
∐

𝑖≥0 Ker 𝜋𝑖 |S
∐

𝑖≥0 HomT (−, 𝑋𝑖) |S
∐

𝑖≥0 𝐹 |S 0

0
∐

𝑖≥0 Ker 𝜋𝑖 |S
∐

𝑖≥0 HomT (−, 𝑋𝑖) |S
∐

𝑖≥0 𝐹 |S 0

id−0 id−𝜓 id− id

and then the snake lemma yields the following exact sequence.

0
∐

𝑖≥0 HomT (−, 𝑋𝑖) |S
∐

𝑖≥0 HomT (−, 𝑋𝑖) |S 𝐹 |S 0.id−𝜓

(3.4.7)
Next consider the exact triangle

Σ−1𝑋
∐

𝑖≥0 𝑋𝑖
∐

𝑖≥0 𝑋𝑖 𝑋
id−𝜙

and observe that
(𝜋𝑖) ∈

∏
𝑖≥0

𝐹𝑋𝑖 � 𝐹
( ∐
𝑖≥0

𝑋𝑖

)
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3.4 Brown Representability 95

induces a morphism

𝜋 : HomT (−, 𝑋) −→ 𝐹

by Yoneda’s lemma. We have an isomorphism∐
𝑖≥0

HomT (−, 𝑋𝑖) |S � HomT

(
−,

∐
𝑖≥0

𝑋𝑖

)���
S

because of the reformulation of condition (PG) in Lemma 3.4.6, and we obtain
in mod S the following exact sequence:∐

𝑖≥0
HomT (−, 𝑋𝑖) |S

id−𝜓
−−−−→

∐
𝑖≥0

HomT (−, 𝑋𝑖) |S −→ HomT (−, 𝑋) |S

−→
∐
𝑖≥0

HomT (−, Σ𝑋𝑖) |S
id−Σ𝜓
−−−−−→

∐
𝑖≥0

HomT (−, Σ𝑋𝑖) |S.

A comparison with the exact sequence (3.4.7) shows that

𝜋 |S : HomT (−, 𝑋) |S −→ 𝐹 |S

is an isomorphism since id−Σ𝜓 is a monomorphism. Here one uses that Σ𝑆 �
𝑆.

Finally, observe that the objects 𝑌 in T such that 𝜋𝑌 is an isomorphism form
a localising subcategory of T. We conclude that 𝜋 is an isomorphism, since
Loc(S0) = T. �

We collect several consequences of the Brown representability theorem. For
instance, the following provides a useful reformulation of the definition of a
perfectly generating set.

Corollary 3.4.8. Let T be a triangulated category with arbitrary coproducts
and let S0 be a set of objects satisfying (PG). Then Loc(S0) = T if and only if
HomT (Σ𝑛𝑆, 𝑋) = 0 for all 𝑆 ∈ S0 and 𝑛 ∈ Z implies 𝑋 = 0 for each 𝑋 ∈ T.

Proof Suppose that Loc(S0) = T holds. Let 𝑋 ∈ T satisfy HomT (Σ𝑛𝑆, 𝑋) = 0
for all 𝑆 ∈ S0 and 𝑛 ∈ Z. The objects𝑈 ∈ T satisfying HomT (Σ𝑛𝑈, 𝑋) = 0 for
all 𝑛 ∈ Z form a localising subcategory of T containing S0. Thus 𝑋 = 0.

For the other implication fix an object 𝑋 ∈ T. The above proof yields for
𝐹 = HomT (−, 𝑋) an object 𝑋 ′ ∈ Loc(S0) and a morphism 𝜋 : 𝑋 ′ → 𝑋 which
restricts to an isomorphism

HomT (−, 𝑋
′) |S

∼−−→ HomT (−, 𝑋) |S.

The condition on S0 implies Cone 𝜋 = 0. Thus 𝑋 ′ � 𝑋 , so Loc(S0) = T. �
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96 Triangulated Categories

Corollary 3.4.9. Let S be a perfectly generating set for T. Then every object
in T can be written as a homotopy colimit of a sequence

𝑋0 𝑋1 𝑋2 · · ·
𝜙0 𝜙1 𝜙2

of morphisms in T such that 𝑋0 = 0 and the cone of each 𝜙𝑖 is a coproduct of
suspensions of objects in S.

Proof Let 𝑋 ∈ T and consider the functor 𝐹 = HomT (−, 𝑋). Then the con-
struction of the representing object in the above proof yields 𝑋 as a homotopy
colimit of a sequence having the desired properties. �

Corollary 3.4.10. A perfectly generated triangulated category has arbitrary
products.

Proof Given a family of objects 𝑋𝑖 , the product
∏

𝑖 𝑋𝑖 is the object represent-
ing the functor

∏
𝑖 Hom(−, 𝑋𝑖). �

Corollary 3.4.11. Let T be a perfectly generated triangulated category. Then
an exact functor T → U between triangulated categories preserves all coprod-
ucts if and only if it has a right adjoint.

Proof Let 𝐹 : T → U be an exact functor. If 𝐹 preserves all coproducts, then
one defines the right adjoint 𝐺 by sending an object 𝑋 in U to the object in T

representing HomU (𝐹−, 𝑋). Thus

HomU (𝐹−, 𝑋) � HomT (−, 𝐺𝑋).

Conversely, given a right adjoint of 𝐹, it is automatic that 𝐹 preserves all
coproducts. �

Remark 3.4.12. There is the dual concept of a perfectly cogenerating set for a
triangulated category. The dual Brown representability theorem for a perfectly
cogenerated triangulated category T characterises the representable functors
HomT (𝑋,−) as the cohomological and product preserving functors T → Ab.

Compact Objects
Let T be a triangulated category. An object 𝑋 in T is called compact (or small)
if for any morphism 𝜙 : 𝑋 →

∐
𝑖∈𝐼 𝑌𝑖 in T there is a finite set 𝐽 ⊆ 𝐼 such that

𝜙 factors through
∐

𝑖∈𝐽 𝑌𝑖 . It is easily checked that 𝑋 is compact if and only if
the canonical map ∐

𝑖∈𝐼

HomT (𝑋,𝑌𝑖) −→ HomT

(
𝑋,

∐
𝑖∈𝐼

𝑌𝑖

)
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is bijective for all coproducts
∐

𝑖∈𝐼 𝑌𝑖 in T. It follows that the compact objects
form a thick subcategory of T.

We wish to describe all compact objects of a triangulated category. To this
end we make the following definition.

For classesU andV of objects in a triangulated category T we denote byU∗V
the class of objects 𝑋 ∈ T that fit into an exact triangle 𝑈 → 𝑋 → 𝑉 → Σ𝑈
such that𝑈 ∈ U and 𝑉 ∈ V. The octahedral axiom implies that the operation ∗
is associative. For a class X the objects of X ∗X ∗ · · · ∗X (𝑛 factors) are called
extensions of length 𝑛 of objects in X.

Let C ⊆ T be a class of objects and suppose that C is closed under all
suspensions. We write

∐
C for the class of all coproducts of objects in C.

Proposition 3.4.13. Let 𝑋 ∈ T be an object that is a direct summand of an
extension of objects in

∐
C. If 𝑋 and all objects in C are compact, then 𝑋 is a

direct summand of an extension of objects in C.

Proof Let 𝑋 → 𝑌 be a split monomorphism such that 𝑌 is an extension of
objects in

∐
C. Then the assertion follows from the lemma below by choosing

𝑌 ′ = 0. More precisely, complete the morphism 𝑋 ′ → 𝑋 in this lemma to
an exact triangle 𝑋 ′ → 𝑋 → 𝑋 ′′ → Σ𝑋 ′. The choice for 𝑌 ′ implies that the
morphism 𝑋 → 𝑌 factors through 𝑋 → 𝑋 ′′. In particular, 𝑋 → 𝑋 ′′ is a split
monomorphism, so 𝑋 is a direct summand of an extension of objects in C. �

Lemma 3.4.14. Let 𝑋 and all objects in C be compact. Also, let 𝑌 ′ → 𝑌 be
a morphism such that its cone is an extension of objects in

∐
C. Then each

morphism 𝑋 → 𝑌 fits into a commutative square

𝑋 ′ 𝑋

𝑌 ′ 𝑌

such that the cone of 𝑋 ′ → 𝑋 is an extension of objects in C.

Proof Complete 𝜓 : 𝑌 ′ → 𝑌 to an exact triangle 𝑌 ′ → 𝑌 → 𝑌 ′′ → Σ𝑌 ′. We
use induction on the length 𝑙 of 𝑌 ′′. If 𝑙 = 1, then 𝑌 ′′ ∈

∐
C and the composite

𝑋 → 𝑌 → 𝑌 ′′ factors through a summand 𝑋 ′′ of 𝑌 ′′ that lies in C since 𝑋 is
compact. We complete 𝑋 → 𝑋 ′′ to an exact triangle 𝑋 ′ → 𝑋 → 𝑋 ′′ → Σ𝑋 ′

and 𝑋 ′ → 𝑋 factors through 𝑌 ′ → 𝑌 by construction. Now let 𝑙 > 1 and write
𝑌 ′′ as an extension 𝑌 ′′0 → 𝑌 ′′ → 𝑌 ′′1 → Σ𝑌 ′′0 of objects having smaller length
than 𝑙. Using the octahedral axiom we obtain the following morphism of exact
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98 Triangulated Categories

triangles

𝑌 ′ 𝑌0 𝑌 ′′0 Σ𝑌 ′

𝑌 ′ 𝑌 𝑌 ′′ Σ𝑌 ′

𝜓0

𝜓1

𝜓

where 𝜓 admits a factorisation 𝜓 = 𝜓1𝜓0 with Cone𝜓𝑖 = 𝑌 ′′𝑖 . By induction we
have a pair of commutative squares

𝑋 ′ 𝑋0 𝑋

𝑌 ′ 𝑌0 𝑌

𝜙0 𝜙1

𝜓0 𝜓1

such that the cone of each 𝜙𝑖 is an extension of objects in C. Then the same
holds for the cone of 𝜙1𝜙0 by the octahedral axiom. �

Compact Generators
Let T be a triangulated category that admits arbitrary coproducts. A set C of
compact objects is called compactly generating if T has no proper localising
subcategory containing C. In this case T is called compactly generated.

Proposition 3.4.15. Let T be a compactly generated triangulated category and
C a generating set of compact objects. Then C is a perfectly generating set for
T and the full subcategory of compact objects equals Thick(C).

Proof The first assertion follows easily from the fact that for any family of
maps 𝜙𝑖 : 𝐴𝑖 → 𝐵𝑖 between abelian groups we have∏

𝑖

𝜙𝑖 is an epimorphism ⇐⇒ each 𝜙𝑖 is an epimorphism

⇐⇒
∐
𝑖

𝜙𝑖 is an epimorphism.

Clearly, the compact objects form a thick subcategory of T. It follows from
Corollary 3.4.9 that each object 𝑋 ∈ T can be written as the homotopy colimit
hocolim 𝑋𝑛 of objects that are extensions of coproducts of suspension of objects
in C. If 𝑋 is compact, then Lemma 3.4.3 implies that id𝑋 factors through the
canonical morphism 𝑋𝑛 → 𝑋 for some 𝑛. We conclude from Proposition 3.4.13
that 𝑋 belongs to Thick(C). �

The following Brown representability theorem is an immediate consequence
of Theorem 3.4.5. In fact, all corollaries of Theorem 3.4.5 apply to compactly
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generated triangulated categories as well. In particular, the definition of ‘com-
pactly generated’ may be reformulated: a set C of compact objects generates if
Hom(Σ𝑛𝐶, 𝑋) = 0 for all 𝐶 ∈ C and 𝑛 ∈ Z implies 𝑋 = 0; see Corollary 3.4.8.

Theorem 3.4.16 (Brown). Let T be a compactly generated triangulated cate-
gory. Then a functor 𝐹 : Top → Ab is cohomological and sends all coproducts
in T to products if and only if 𝐹 � HomT (−, 𝑋) for some object 𝑋 in T. �

There is also a version of Brown representability for functors preserving
products, keeping in mind that arbitrary products exist in a compactly generated
triangulated category, by Corollary 3.4.10.

Theorem 3.4.17. Let T be a compactly generated triangulated category. Then
a functor 𝐹 : T → Ab is cohomological and preserves all products in T if and
only if 𝐹 � HomT (𝑋,−) for some object 𝑋 in T.

Proof Let C be a set of compact generators for T. We claim that Top is also
perfectly generated. Then the assertion follows from Theorem 3.4.5. For 𝐶 ∈ C

let 𝐶∗ denote the object in T that represents HomZ (HomT (𝐶,−),Q/Z). Then
it is straightforward to check that {𝐶∗ | 𝐶 ∈ C} perfectly generates Top, using
the equivalent description from Corollary 3.4.8. �

We end our discussion of compact objects with a lemma that addresses the
question when a right adjoint functor preserves coproducts.

Lemma 3.4.18. Let 𝐹 : T → U be an exact functor between triangulated
categories that admit arbitrary coproducts, and suppose there exists a right
adjoint 𝐺. If 𝐺 preserves all coproducts, then 𝐹 preserves compactness. The
converse holds when T is compactly generated.

Proof Fix objects 𝑋 ∈ T and
∐

𝑖∈𝐼 𝑌𝑖 ∈ U, and suppose that 𝑋 is compact.
We consider the following commutative diagram.∐

𝑖 HomU (𝐹𝑋,𝑌𝑖) HomU (𝐹𝑋,
∐

𝑖 𝑌𝑖)

∐
𝑖 HomT (𝑋, 𝐺𝑌𝑖) HomT (𝑋,

∐
𝑖 𝐺𝑌𝑖) HomT (𝑋, 𝐺 (

∐
𝑖 𝑌𝑖))

𝛼

� �

∼ 𝛽

Suppose that𝐺 preserves coproducts. Then 𝛽 is an isomorphism, and therefore
𝛼 is an isomorphism. Thus 𝐹𝑋 is compact. The converse requires that the
compact objects of T are generating. �

An application of Brown representability provides a description of the local-
isation with respect to a localising subcategory generated by compact objects.
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Example 3.4.19. Let T be a triangulated category that admits arbitrary co-
products. Then a localising subcategory S ⊆ T generated by a set of compact
objects in T fits into a localisation sequence

S T T/S

because the inclusion S → T admits a right adjoint; see Corollary 3.4.11 and
Proposition 3.2.8. In fact, the right adjoint T → S preserves all coproducts by
Lemma 3.4.18. Applying Brown representability once more (assuming that T
is perfectly generated) we obtain the following recollement.

S T T/S

Notes

Triangulated categories and derived categories were introduced simultaneously
in 1963 by Verdier in his thesis, and most of the basic properties can be found
in his work [199]. For a modern exposition we refer to Neeman’s book [150].
A similar notion of a ‘stable category’ was defined by Puppe, but without the
octahedral axiom [164]. There is no example known of a ‘pre-triangulated
category’ (so all axioms except (Tr4) are required), which is not triangulated.

The study of Frobenius categories and their stable categories was initiated
by Heller [108]; for Frobenius pairs see [181]. The terminology reflects the
properties of modules for quasi-Frobenius and self-injective rings [40, 73].

In algebraic topology the Brown representability theorem for cohomology
theories is due to Brown [42]. An analogue for compactly generated triangulated
categories was established by Keller [121] and Neeman [148]. The method of
describing the compact objects in such categories as the direct summands of
extensions of compact generators goes back to Ravenel [167]. More general
representability theorems for cohomological functors are due to Franke [74]
and Neeman [150]; for the dual version see [149]. The formulation in terms of
perfect generators, which is presented here, uses categories of finitely presented
functors and is taken from [127].
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