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INVERSE SHADOWING OF CIRCLE MAPS

JONG-JIN PARK AND KEONHEE LEE

We show that the concepts of shadowing and (7, 7,—) inverse shadowing of circle
homeomorphisms are equivalent.

1. INTRODUCTION

When simulating the behaviour of a dynamical system we often encounter the fol-
lowing problems.

1. Does the orbit displayed on the computer screen really correspond to some
true orbit?

2. Can every true orbit be recovered, at least with a given accuracy?

The first problem is in fact a question about the shadowing property of the system
while the second one corresponds to the property known as inverse shadowing. Shad-
owing, or the pseudo orbit tracing property, was first established for systems generated
by hyperbolic diffeomorphisms and later for those generated by hyperbolic homeomor-
phisms. It says that any d-pseudo orbit can be uniformly approximated by a true orbit
with a given accuracy if 6 > 0 is sufficiently small.

Recently inverse shadowing was established by Corless and Pilyugin {1] and also as
a part of the concept of bishadowing by Diamond, Kloeden, Kozyakin and Pokrovskii
[2]. Kloeden and Ombach [5] redefined this property using the concept of a §-method.
Generally speaking, a dynamical system is inverse shadowing with respect to a class of
methods if any true orbit can be uniformly approximated with given accuracy by a -
pseudo orbit generated by a method from the chosen class if 6 > 0 is sufficiently small. An
appropriate choice of the class of admissible pseudo orbits is crucial here (see [1, 3, 5, 7).

There are some results about how shadowing and inverse shadowing are related each
other (for more details, see [3, 5, 6, 7]).

It is well known that every shift homeomorphism is both expansive and shadowing,
but it is not T-inverse shadowing (see [5, Example 3]).
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On the other hand, we see that any pseudo Anosov homeomorphism on compact
surfaces is both expansive and 7,-inverse shadowing (persistent). However, in general,
it is not shadowing. In fact, every pseudo Anosov homeomorphism on compact surfaces
need not be topologically stable (see [4, 8]).

In this paper we show that the concepts of shadowing and (7., 7,—) inverse shad-
owing of circle homeomorphisms are equivalent.

2. INVERSE SHADOWING

Let X be a compact metric space with a metric d, and let Z(X) denote the space
of homeomorphisms on X with the Cy-metric dp. A homeomorphism f € Z(X) will be
identified with the dynamical system it generates by iteration.

A §-pseudo orbit of f € Z(X) is a sequence of points £ = {zx € X : k € Z} such
that d(f(zx), Zxk+1) < 6 for all k € Z. A 5-pseudo orbit £ = {z,} is said to be e-shadowed
by a point z € X (or an orbit {f*(z) : k € Z}) if d(f*(z),zx) < € for all k € Z. Say
that f € Z(X) is shadowing (or pseudo orbit tracing property) if given € > 0 there exists
& > 0 such that any é-pseudo orbit of f is e-shadowed by a point (or an orbit) in X.

Let X2 be the compact metric space of all two sided sequences £ = {z; : k € Z} in
X, endowed with the product topology. For a constant § > 0 and f € Z(X), let ®4()
denote the set of all §-pseudo orbits of f.

A mapping ¢ : X — ®,(8) C XZ satisfying ¢o(z) = z, z € X, is said to be a
§-method for f. For convenience, write ¢(z) for {@x(z)},.,- Say that ¢ is a continuous
d-method for f if ¢ is continuous. The set of all §-methods [respectively continuous
d-methods] for f will be denoted by To(f,8) (respectively T:(f,4)). Every g € Z(X)
with dy(f,g) < 6 induces a continuous §-method ¢, : X — XZ for f by defining ¢,(z)
= {g*(z) : k € Z}. Let Ta(f,6) denote the set of all continuous §-methods ¢, for f
which are induced by g € Z(X) with dy(f, g) < 8. Then we have

Tn(f,8) € Te(£,6) € To(£,6)

Note that a method in 7.(f, é) need not be generated by a single mapping.

DEFINITION: f € Z(X) is said to be T,-inverse shadowing, « = 0, ¢, h, if for any
€ > 0 there exists § > 0 such that for any f-orbit £ = {z;} and any é-method ¢ € T,(f,d)
there is y € X such that

d(zk, ox(y)) <,

for all k € Z.
Clearly we have the following relations among three notions of inverse shadowing.

To — inverse shadowing = 7. — inverse shadowing = 7, — inverse shadowing.
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In (8], Lewowicz introduced a notion of persistency for a homeomorphism f € Z(X);
and he showed that any pseudo Anosov homeomorphism on compact surfaces is persistent.
Note that 7,-inverse shadowing here is equivalent to persistency in [8, 12].

We can easily see that two concepts of shadowing and 7g-inverse shadowing of circle
homeomorphisms are not equivalent. In fact, let f be a homeomorphism on the unit
circle S, with coordinate z € [0,1), given by f(z) = z + (1/27)sin(2rz). Then it is
shadowing, but it is not Tp-inverse shadowing.

THEOREM. For any f € Z(S'), the following statements are equivalent:

(A) f is shadowing (pseudo orbit tracing property);
(B) f is T.-inverse shadowing;
(C) f is Th-inverse shadowing (persistent).

To prove our theorem, some further notations and known results are required.

Consider the circle S with coordinate z € [0, 1), and we denote by d the metric on
S! induced by the usual distance on the real line. It is easy to show that f € Z(S!) is
Ta-inverse shadowing [respectively shadowing] if and only if f* is T,-inverse shadowing
[respectively shadowing] for some k € Z — {0}, where a = ¢, h. Due to these facts, when
studying the theory of shadowing and inverse shadowing, attention can be restricted to
those homeomorphisms on S* which preserve orientation.

Let w : R — S? be the covering projection defined by the relations

n(z) € [0,1), 7(z) = z(mod 1)

with respect to the considered coordinates on S!. Let f € Z(S*) and F : R — R the lift
of f such that F(0) € [0,1). It is well known that for any z € R the limit

.. FMz)
ﬂ(f) - kl—u>nco - k

(mod 1)

exists and does not depend on z. This quantity is called the rotation number of f and
measures the average amount that a point in S? is rotated by f. The main property of
the rotation number is that f has a periodic point if and only if p(f) is rational (see
[9, 10]).

For any two points a,b € S, we denote by (a,b) the open arc of S! corresponding
to the set (a,b) C [0,1) if @ < b, and to the set (a,1) U[0,b) C [0,1) if b < a. Similar
notation is applied for closed arcs.

For f € Z(S') we denote by Fix(f) the set of fixed points of f. Recently
Plamenevskaya [11] gave necessary and sufficient conditions for which f € Z(S') is
shadowing.

LEMMA. ([11).) f € Z(S") is shadowing if and only if f satisfy the following two
conditions: )
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(1) Fix(f) is nowhere dense and contains at least two points;
(2) for any a,b € Fix(f), either Fix(f) N (a,b) = @ or the function F(t) —t
changes sign on (a,b), where F is the lift of f with F(0) € [0,1).
Now we prove our theorem using the above lemma. Obviously, the implication
(B) = (C) holds. We prove here that (4) = (B) and that (C) = (4).
PROOF OF (A)=>(B): Suppose f € Z(S*) is shadowing, and let € > 0 be arbitrary.
By applying the above lemma, we can choose fixed points a;,by,...,asn,ban of f such
that
(1) 0Lar<bh €a<b< - <an<by<l
(2) the length of any segment [b;,a), ..., [ban, a1] is less than ¢;
(3) F(t)—t#0on (ab,), 1 <n<2N;
(4) i F(t)—t > 0on (an,b,) then F(t) —t < 0 on (an+1, bny1) and vice versa,
where 1 < n £ 2N, asy41 = a1 and byyyy = by.
For convenience we assume that if n is odd then F(t) —t > 0 on (an,bs), and that if n
is even then F(t) —t < 0 on (an, b,). For each 1 < n < 2N, we take points a},, ¥, € [0,1)
such that
(1) an <aj <, <b, and d([b},0,4]) <&
() F((bh ania]) NV, 0] =0 if m # n, where a5y ) = 0.
Let I, = [a},,b}] and I, = [b], a;,,,] for each 1 < n < 2N. Choose a > 0 satisfying

d(f(z),z) > a and d(f’ (z),z) > a

2N
for z € |J In. Let B > 0 be such that

n=1

(1) B <min{e,(a/2)} and d(f(I),1},) > Bif m # n;

(2) Np(f(IL)) Cint(1}) if n is odd, and Na(f~*(I.)) C int(I}) if n is even.
Let L > 0 be an integer with 2/8 < L < (2/8)+1. Foreachi=1,...,L, we taker; > 0
such that

(1) 0<rp<---<ny<rp=4p;

(2) if d(z,y) < r: then max{d(f(2), f®)), d(f (@), F @) } < rics.
Select r > 0 satisfying Lt < r.. Let § > 0 be such that if d(z,y) < § then
d(f*(z), f¥(y)) <rforall ~-L < k< L.

Let ¢ be any continuous §-method for f, and let ¢, be the k-th coordinate function

of ¢ for k € Z. Then we can easily check that

(a) d(f*(p). ex(p)) <€

for all p € S! and all |k] < L. Let z € S'. To show that f is Tc-inverse shadowing, we
have to find kg € Z and y, € S? satisfying

*) d( (@), oelw)) < ¢
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for all k¥ € Z.

First we suppose that {f*(z) : k € Z} NI, # 0 for some 1 < n < 2N. Assume that
f*(z) € I, for some ko € Z and that n is odd. In this case, we put yo = f*¢(z). By our
constructions, we have

(b) FH(f*(2), x(vo) € I, and f7*(f*(2)), o-k(w0) € I_,

if k > L. Since (a) holds for |k| < L, (b) implies that () holds for all k¥ € Z.

Next we suppose that {f*(z) : k € Z} C I, for some 1 < n < 2N. Assume that
n is odd and that 0 < b, < by < @ny1 < apy; < 1. Let y € I C [0,1). Then we have
or(y) € I', for all k > 0. Let )

U= {yelI,:p(y) > ay,, for some k < 0},
V={yel,: p(y) <b, for some k < 0}.

Then U and V are nonempty open sets, and Y NV = 0. In fact, if pi(y) > al,, for
some k < 0 then we can see that ¢,(y) > a;,,, for all s < k; and if ¢k (y) < b, for some
k < 0 then we have that ¢,(y) < b), for all s € k. This means that ¥ NV = . For any
y € U C I, we have pi(y) > a},,, for some k < 0. Since g is continuous, there exists
a neighbourhood W of y in I, such that pi(2) > aj,, for all z € W. This implies that
W C U. Since UU VY # I, we can find a point yy € I,/(¢ U V). For the point yy, we
have

d(f*(z), pelwo)) <€

for all k € Z; and so completes the proof of (4) = (B). 0
PROOF OF (C)=(A): Suppose f € Z(S*) is T-inverse shadowing.
First we show that f has periodic points. To obtain a contradiction, we assume that
f does not have periodic points. Then Fix(f) = 0, and we can choose € > 0 such that
d(f(z),z) > 3¢ for z € S. Let 0 < a < € be a number given for this € > 0 by definition
of Ty-inverse shadowing. For any z € S', we can choose distinct two integers ¢,j € Z
satisfying

‘ , a
d(fi(z), f(2)) < 3
Assume that i < j, and let z, = fi(z) and n = j —i. Then we have d(z., f*(z.)) < a/2.
We may assume that d(z., f*(z.)) > a/2for 0 < k < n. Choose § >0, a/2 < 6 < a,
satisfying
{f(z),- ., 7Y@} N (20— 6,20+ 8) = 0.
Let h: S' = S! be a homeomorphism such that

_Jz ifzé¢(z.—4,z.+9),
h(z) = { z, if z= f*(z.), ’
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Put g = ho f. Then we have
g™ (z.) =z. and dy(f,9) < a.

By assumption, there exists y. € S! such that

d(f*(z.), 0" (w.)) <€

for all k € Z. Choose o,y € [0,1) C R satisfying n(zo) = z, and 7(yy) = y.. Let F
and G be the lifts of f and g, respectively, satisfying F(0), G(0) € [0,1). For each k € Z,
choose yx € R such that

m(yx) = gk(y:) and yx < yr1 < yr+ L.

Since Fix(f) =0, F(t)—t# 0 for t € [0,1) and F(0) € [0, 1), we have that 0 < F(t) —¢
< 1 for all t € R. Using the above facts, we can show that

le(xo) - ykl <e

for all k € Z. Then we have

u(f) = lim —Fkl(:") = tim /% i ()

k—>00 = k->c0 k

= u(g),

and so u(f) is rational. Moreover 7i-inverse shadowing of f implies that f has at least
two periodic points.

Next we show that if (a,b) N Fix(f) # 0 for a,b € Fix(f) with a < b, then the
function F(t) —t changes sign on (a, b). To see this, suppose F(t)—t > 0 for all ¢t € (a,b),
and let c € (a,b) NFix(f). Choose & > 0 such that ¢ < 1/2min{d(a,c),d(c,b)}. For any
§ > 0, there exists g5 € Z(S) such that

do(f,g5) <6 and Gs(t) -t >0

for t € (a,b), where Gj is the lift of g5 with Gs(0) € [0,1). However, then no f-orbit
in (a,b) can e-shadows the gs-orbit through ¢, and this contradiction shows that the
function F(t) — ¢t changes sign on (a,b). Application of Lemma completes the proof of
(C) = (A). 0
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