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Abstract
This paper is focused on the stability of real-time hybrid aeroelastic simulation systems for flexible wings. In a
hybrid aeroelastic simulation, a coupled aeroelastic system is ‘broken down’ into an aerodynamic simulation sub-
system and a structural vibration testing subsystem. The coupling between structural dynamics and aerodynamics
is achieved by real-time communication between the two subsystems. Real-time hybrid aeroelastic simulations can
address the limitations associated with conventional aeroelastic testing performed within a wind tunnel or with pure
computational aeroelastic simulation. However, as the coupling between structural dynamics and aerodynamics is
completed through the real-time actuation and sensor measurement, their delays may inherently impact the perfor-
mance of hybrid simulation system and subsequently alter the measured aeroelastic stability characteristics of the
flexible wings. This study aims to quantify the impact of actuation and sensor measurement delays on the measured
aeroelastic stability, e.g. the flutter boundary, of flexible wings during real-time hybrid simulations, especially when
different aerodynamic models are implemented.

Nomenclature
A, H aeroelastic system matrices
A1, B1, C1, D1 system matrices of aerodynamic subsystem
A2, B2, C2, D2 system matrices of structural dynamic subsystem
Āi influence matrices in rational function approximation (i = 0, 1, · · · , n + 2)
Ai, Bi approximation constants for Wagner’s function (i = 1, 2)
a location of midchord in front of elastic axis, nondimensionalised with respect to semichord b
b semichord length of aerofoil, m
b̄i coefficients for inflow states (i = 1, · · · , N)
c chord length of aerofoil, m
Da aerodynamic sensitivity with respect to aerodynamic states
Fi coefficient matrices of aerodynamic governing equation (i = 1, 2, 3, 4)
f1, f2 actuator forces, N
L,M aerodynamic lift and moment on aerofoil, N/m and N
Ma, Ca, Ka aerodynamic inertial, damping and stiffness matrices
Ms, Cs, Ks structural inertial, damping and stiffness matrices
N number of aerodynamic states
n number of aerodynamic lag terms
p roots of aeroelastic characteristic equation
Qi matrices in first-order equation of motion with delays (i = 1, · · · , 7)
q vector of aerofoil motion
R aerodynamic load vector
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R0 constant load vector
s Laplace variable
t time, s
U∞ freestream velocity, m/s
u1, x1, y1 control input, state and output of aerodynamic subsystem
u2, x2, y2 control input, state and output of structural dynamic subsystem
W̄, c̄ coefficient matrices of inflow differential equation
w̄ downwash, m/s
x state of aeroelastic system
Z variable for Z-transform

Greek symbol
α rigid-body pitching of aerofoil, rad
βi constants for rational function approximation (i = 1, · · · , n)
λ aerodynamic state vector
ξ rigid-body plunging of aerofoil, m
ρ air density, kg/m3

τa actuation delay, s
τs measurement delay, s
φw Wagner’s function

1.0 Introduction
Abundant studies in aeronautical engineering are focused on wing and aircraft configurations under
various flow and flight conditions. Among the studies, numerical simulations have been the most con-
venient approach to predict wing and aircraft responses. For example, beam-, plate- and shell-based
finite-element (FE) models have been developed to represent the aircraft structures, coupling with an
appropriate aerodynamic model, such as the simple potential flow-based formulations (e.g. Theodorsen
aerodynamics) or the sophisticated high-fidelity computational fluid dynamics (CFD) models (e.g.
NASA’s FUN3D). The accuracy of these numerical aeroelastic formulations generally relies on the
fidelity of structural and aerodynamic models and the coupling scheme between them. Even though
CFD techniques continue to mature, there are still disadvantages relevant to their solutions, such as
errors introduced by simplified boundary conditions [1] and costs in updating grids for dynamic prob-
lems [2]. On the other hand, modern FE formulations can model the structural inertial and rigidity
properties with satisfactory accuracy. However, accurately capturing the damping, especially the non-
linear damping of composite structures, remains challenging. Nonlinear structural damping is essential
to aeroelastic tailoring and control [3] and may also impact the post-flutter limit-cycle oscillations of an
aircraft [4]. Although modern FE schemes can usually achieve a great convergence with mesh refine-
ment, they cannot eliminate the modeling error introduced by structural dynamic formulations due to
their inherent assumptions from mechanics (e.g. kinematic assumption) and uncertainties from material
properties and manufacturing process [5, 6].

Direct experimental measurement of wing and aircraft responses from wind-tunnel testing can
address several above issues inherent to numerical simulations and offer valuable insights in supporting
aircraft design. For example, with the structural component being tested, the uncertainties embedded in
material properties and possible manufacturing and assembling flaws can be revealed [5, 6], which is
one of the above challenges for numerical simulations. However, wind-tunnel experiments can become
inconvenient in some cases. For example, not all wind tunnels can accommodate the full-scaled spec-
imen of modern large transport aircraft (e.g. Boeing 747 and Airbus 380). Additionally, the energy
and power constraints of wind tunnels have limited the experimental study of full-size supersonic and
hypersonic vehicles. Even though experiments can be carried out with sub-scaled models in wind tun-
nels, the design and build of sub-scaled models need to satisfy complex similitude relationships, such
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as Mach, Reynolds, Strouhal, Froude and Euler numbers. Bushnell [7] discussed that among the scaling
parameters, Reynolds number shortfalls and discrepancies, caused by the model-scale factor modified by
various tunnel pressurisation and cryogenic mitigation approaches, constitute a major and long-standing
flight-to-wind tunnel scaling issue. Moreover, the aeroelastic deformations between full- and sub-scaled
models must be appropriately scaled for aeroelastic studies, where matching both Reynolds and Froude
numbers is difficult [8]. Wan and Cesnik [9] studied the geometrically nonlinear scaling of flexible vehi-
cles, where the matching of Froude and Reynolds numbers was achieved by properly scaling the air (gas)
density, yet the gas viscosity for the two models was not considered. Although scaling of gas viscosity
could be potentially achieved by compressing the air [8] or applying heavy gas in wind-tunnel testing
on sub-scaled models [10], several properties of heavy gas, including transition, separation and shock-
boundary layer interaction, differ from air [10], leading to a mismatch between wind-tunnel testing
and full-scale flight testing. In general, it is almost impossible to satisfy all the similitude relation-
ships between full- and sub-scaled models. Therefore, sub-scale models cannot reproduce the consistent
behaviour as the full-scaled models due to the mismatch in either structure or flow conditions. Bushnell
[7] also discussed other implementation issues regarding wind-tunnel testing with sub-scaled models,
including wind-tunnel wall effect, flow disturbance in wind-tunnels, model mounting influences, etc.
These effects must be corrected for the wind-tunnel testing results before they can be applied to study
free-flight vehicles [11–13].

To address the above issues of traditional numerical and experimental methods, it is imperative to
develop new dynamic experimental approaches. Functional and self-contained hardware and specimens
can be designed to capture real-world challenges in computational simulations. A promising approach
in this direction is hardware-in-the-loop (HIL). HIL has been successfully applied to aeronautical engi-
neering, including morphing wing optimisation [14], testing of aircraft powerplant fuel cell [15], altitude
control and navigation [16–18], flight safety of unmanned aerial vehicles [19, 20], just to name a few. HIL
can also be used to verify the developed software for aerospace systems [21, 22]. In the above research
studies, the data communication between software and hardware is often one-way and not always in
real-time, dwarfing HIL’s value in studying the behaviour of highly dynamic and coupled systems, such
as the aeroelastic characteristics of flexible wings.

Real-time hybrid simulation (RTHS) can be considered a type of HIL when the hardware (or spec-
imen) and software (or computational simulation) interact in real time. It is a novel, powerful and
cost-effective experimental technique for examining the behaviour of complex, full-scale structural sys-
tems under realistic loading conditions [23–25]. Studying aircraft system dynamics using an RTHS
platform is a new concept in aeronautical engineering. It couples computational and experimental com-
ponents together to understand the structural, aerodynamic, aeroelastic and control characteristics of an
aircraft wing member or the complete vehicle. Su and Song [26] proposed and investigated a RTHS
platform to study the aeroelastic characteristics of flexible wings and vehicles. In [26], the part that
was less understood or difficult to model (e.g. the nonlinear structural dynamics of a slender wing) was
considered the physical experiment component; the part that can be numerically simulated with rea-
sonable accuracy while inconvenient and expensive to capture in experiments (e.g. the aerodynamic
loads or rigid body motion of a complete aircraft) was considered as the numerical component. Data
communications of kinematic and load information were established by using actuators and sensors to
interface these two components in real time and capture the aeroelastic behaviour of the original system.
It is worth noting that the division of numerical and experimental components can be different for indi-
vidual aeroelastic systems. For example, the aerodynamics of a 2-D aerofoil with a small vibration in
incompressible and inviscid flow can be well captured by the Theodorsen aerodynamics. However, the
aerodynamic loads of a finite wing in turbulent flow may be computationally expensive to solve, even
numerically. While more details need to be addressed, as a proof of concept, the aeroelasticity of a 2-D
aerofoil was studied with the proposed RTHS platform. The parametric study showed that the proposed
RTHS platform could accurately capture the transient response of the aerofoil as long as the levels of
process and measurement noises and actuation delay were within a bounded range.

https://doi.org/10.1017/aer.2024.46 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.46


4 Su and Song

Figure 1. A 2-D rigid aerofoil section.

However, the actuation and sensor delays not only contribute to the errors in the measured transient
response of the RTHS system, but also bring unwanted dynamics into the coupled system to change the
RTHS system stability characteristics, for example, destabilising the RTHS system to cause experimen-
tal failure [27–29]. Although compensation algorithms have been developed to mitigate the influence
of actuator lags during real-time structural testing [29, 30], the actuator and sensor delays cannot be
completely eliminated. For the RTHS platform of aircraft systems, such inherent delays may alter the
stability characteristics obtained through the coupled RTHS system, such as the measured flutter bound-
ary. While the prior study [26] demonstrated the great potential of applying the proposed RTHS platform
to capture the transient response of flexible wings, the impact of actuation and sensor delays on the sta-
bility characteristics measured through RTHS has not been examined. In order to address this gap, this
study will advance the prior RTHS study on flexible wings [26] by quantifying these delays’ influence
on the flutter behaviour obtained via RTHS. Additionally, three potential flow-based aerodynamic for-
mulations, suitable for the cases studied here, are considered in this study as the numerical component to
understand how the RTHS system behaves with different aerodynamic models via comparative analysis.

2.0 Theoretical formulation
2.1 Aeroelastic equation of motion
As shown in Fig. 1, the aeroelastic equation of motion of a thin aerofoil section with plunging (ξ , positive
down, measured from the position where the spring is balanced by the aerofoil’s weight) and pitching
(α, positive nose up) degrees-of-freedom is given by

Msq̈(t) + Csq̇(t) + Ksq(t) = R(t) + R0 (1a)

λ̇(t) = F1q̈(t) + F2q̇(t) + F3q(t) + F4λ(t) , (1b)

where

q(t) = {ξ (t) α(t)}T

R(t) = {−L(t) M(t)}T . (2)

In Equation (2), L and M are the aerodynamic lift and moment applied on the aerofoil section, respec-
tively. Ms, Cs, Ks are the structural mass, damping, and stiffness matrices of the aerofoil-spring system,
respectively. R0 is a constant load considering the gravity force and non-zero pitching angle of the aero-
foil when the torsional spring is not stretched, independent from the degrees of freedom. Equation (1)
can be written in the state-space form, given by
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Figure 2. Sketch of the proposed RTHS platform.

Figure 3. RTHS with actuator and sensor function blocks.

ẋ(t) = Ax(t) + H, (3)

where the state variable is

x(t) = {
qT(t) q̇T(t) λT(t)

}T
. (4)

The details of Equation (1)–(4) can be found in Su and Song [26].
The aerodynamic governing equation in Equation (1) is general and can represent several linear

unsteady aerodynamic formulations. Several aerodynamic formulations, including the finite-state inflow
theory [31–33], Wagner’s function [34], and rational functional approximation [35, 36], can be cast into
the same form of the aerodynamic governing equation [37]. However, the aerodynamic state λ and coef-
ficient matrices (F1, F2, F3, and F4) need to be defined differently in individual formulations as shown
in the Appendix. Also demonstrated in the Appendix, the aerodynamic loads of these linear unsteady
aerodynamic formulations are calculated using Theodorsen-like equations, given by

R(t) = Maq̈(t) + Caq̇(t) + Kaq(t) + Daλ(t) , (5)

with definitions of Ma, Ca, Ka, and Da can be found in the Appendix.

2.2 Real-Time hybrid simulation platform
The proposed real-time hybrid aeroelastic simulation platform [26] is illustrated in Fig. 2. The aerofoil
kinematic data are measured at each time step from the vibration experiment. The kinematic data are
fed to the unsteady aerodynamic simulation in the computer. The simulation calculates the aerodynamic
loads in real-time, based upon the kinematic input, which are transformed into the actuator forces (f1

and f2) to actuate the aerofoil motion. The aerofoil response is continuously measured and sent to the
computer for the simulation, which closes the loop of RTHS for the aeroelastic system.

The RTHS platform was simulated numerically by modeling aerodynamic and structural dynamic
subsystems individually, where the data communication between the two subsystems was enabled to
allow for the coupling (see Fig. 3). One can refer to Su and Song [26] for details of the subsystems.

2.3 RTHS system stability with actuator and sensor measurement delays
In the prior study [26], it is shown that RTHS can capture the transient response of flexible wings, but
the impact of actuation and sensor delays on the stability characteristics of the coupled RTHS system has
not been examined. In this study, the two coupled state-space subsystems shown in Fig. 3 are considered
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Figure 4. RTHS with actuator and sensor measurement delays.

to study the impact of actuator and sensor measurement delays (τa and τs, respectively) on the system
stability. Although the actuator and sensor dynamics may also impact the overall RTHS stability, the
current study assumes such an impact is less significant than the delays and does not consider these
dynamics. One can refer to Fig. 4 for the RTHS platform with both delays. The equation of motion of
the coupled aeroelastic system with the delays is given by

Msq̈(t) + Csq̇(t) + Ksq(t) = R(t − τa) + R0

λ̇(t − τa) = F1q̈(t − τa − τs) + F2q̇(t − τa − τs) + F3q(t − τa − τs) + F4λ(t − τa),
(6)

where the aerodynamic load is

R(t − τa) = Maq̈(t − τa − τs) + Caq̇(t − τa − τs) + Kaq(t − τa − τs) + Daλ(t − τa) . (7)

Equation (6) is then rewritten as

Q1ẋ(t) + Q2ẋ(t − τa) + Q3ẋ(t − τa − τs) = Q4x(t) + Q5x(t − τa) + Q6x(t − τa − τs) + Q7, (8)

where

Q1 =
⎡
⎢⎣

I 0 0
0 Ms 0
0 0 0

⎤
⎥⎦ , Q2 =

⎡
⎢⎣

0 0 0
0 0 0
0 0 I

⎤
⎥⎦ ,

Q3 =
⎡
⎢⎣

0 0 0
0 −Ma 0
0 −F1 0

⎤
⎥⎦ , Q4 =

⎡
⎢⎣

0 I 0
−Ks −Cs 0

0 0 0

⎤
⎥⎦ ,

Q5 =
⎡
⎢⎣

0 0 0
0 0 Da

0 0 F4

⎤
⎥⎦ , Q6 =

⎡
⎢⎣

0 0 0
Ka Ca 0
F3 F2 0

⎤
⎥⎦ , Q7 =

⎧⎪⎨
⎪⎩

0
R0

0

⎫⎪⎬
⎪⎭ .

(9)

In fact, Equation (8) reduces to Equation (3) if τa and τs are both zero, i.e.

A =(Q1 + Q2 + Q3)
−1

(Q4 + Q5 + Q6)

H =(Q1 + Q2 + Q3)
−1 Q7.

(10)

Nonetheless, with Q7 omitted for the stability study, the characteristic equation is

det
[
(pQ1 − Q4) +(pQ2 − Q5) e−pτa +(pQ3 − Q6) e−p(τa+τs)

] = 0. (11)
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Figure 5. Nominal aeroelastic root locus without delay, with Wagner’s function, U∞ from 0 (triangle)
to 40 m/s (square).

which can be numerically solved to find its roots p (eigenvalues) and the associated eigenvectors. Finally,
one needs to study the aeroelastic system’s stability with the change of freestream speed U∞ and delays
(τa and τs). This is done by tracking the real part of the aeroelastic root p = p(U∞, τa, τs). The occurrence
when the real part of a root turns from negative to positive indicates the onset of instability of the hybrid
aeroelastic simulation system.

3.0 Numerical studies
The numerical studies are carried out with a 2-D thin aerofoil (refer to Fig. 1), whose properties are
listed in Su and Song [26]. For simplicity, no structural damping is considered in this work.

The finite-state inflow theory (FSI), Wagner’s function (Wagner), and Roger’s rational function
approximation (RFA) are used to calculate the aerodynamic loads on the aerofoil in the real-time hybrid
simulation. There are six aerodynamic states (inflow states) involved in the finite-state inflow theory. The
Wagner’s function inherently has two aerodynamic states. Four lag terms are used for the RFA using
Roger’s method, resulting in eight aerodynamic states. The reduced frequency range considered for the
RFA is from 0 to 3.

3.1 Stability of nominal aeroelastic system
The aeroelastic stability characteristic of the aerofoil can be conveniently identified by solving the eigen-
value problem of the system matrix A in Equation (10). A sequence of A matrices can be formed in a
range of freestream speed U∞. The aerofoil’s flutter boundary is found when a root locus crosses the
imaginary axis, as shown in Fig. 5. Without comparing the aerodynamic modes, the root locus of the
aeroelastic modes obtained from the three models are similar to each other, and so is the flutter boundary,
which is found to be 35.6 (FSI), 35.7 (Wagner) and 35.9 (RFA) m/s, respectively.

Note that the aerodynamic modes will be removed from the comparisons in the following studies.

3.2 Equal actuation and sensor measurement delays
Due to the complexity of the study that involves both the actuation and sensor measurement delays, one
may assume the two delays are equal (i.e. τa = τs = τ ). The RTHS system’s stability is studied with the
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Figure 6. Individual frequency and damping of RTHS system roots with equal delays, aerodynamic
loads from Wagner’s function.

(a) (b)

Figure 7. Flutter speed and frequency of RTHS with equal delays.

change of freestream speed U∞ and delay τ . Figure 6 plots the frequency and damping of the RTHS
system’s roots vs. the freestream speed with selected delays (0, 0.5, 2, 5 and 15 ms, respectively), using
the Wagner’s function. As can be seen, when τ is small (e.g. 0.5 or 2 ms), the RTHS system does show
a trend of frequency coalescence, just like the nominal aeroelastic system with no delays. However,
this is not the case if τ is larger than 2 ms (e.g. 5 or 15 ms), where the frequency coalescence effect
is not apparent. While not all results are shown here, the RTHS systems with delays are reasonably
consistent when modeled using the three aerodynamic models. The consistency can be observed from
the flutter (instability) boundary predicted by the RTHS systems with delays shown in Fig. 7. In Fig. 7a,
the straight lines define a ±5% tolerance band about the flutter speed of the nominal aeroelastic system
with no delays, where the aerodynamic loads are calculated using the finite-state inflow theory as a
reference. With delays, the three aerodynamic formulations still agree well, with the Wagner’s function
being the most conservative. If both the actuation and sensor measurement delays are limited to less than
4.0 ms, the instability boundary of the RTHS system has a relative error of less than 5%, compared to
the nominal aeroelastic system. This is within an acceptable range. For example, Tang and Dowell [38]
measured the flutter boundary of a flexible wing with a 3 to 5% relative error compared to the theoretical
value. Obviously, the actuation and sensor measurement delays in RTHS can be tightened up if more
measurement accuracy is needed. Figure 8 exemplifies how the root loci of the aeroelastic modes change
with the delay, where the aerodynamic modes are no longer shown for the comparison. Essentially, the
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(a) (b)

Figure 8. Root loci of RTHS system modes with finite-state inflow theory or Wagner’s function (colours
are used to distinguish the root loci with different delays).

(a) (b)

Figure 9. Flutter speed and frequency of RTHS with unsteady aerodynamics from finite-state inflow
theory.

root loci shown in Fig. 8b with the zero delays are identical to those of the two aeroelastic modes shown
in Fig. 5, since they are both the solution of the nominal aeroelastic system using the same aerodynamic
formulation.

From Fig. 7b, one can see the jump of the flutter frequency of the RTHS system associated with the
finite-state inflow theory, which indicates a discontinuity of mode shape with the change of delay. This
phenomenon is further exemplified in Fig. 8a by the shift of locus between 0.5 and 0.6 ms. On the other
hand, the model with Wagner’s function (as well as RFA, but not shown) does not show the locus shift
(see Fig. 8b).

3.3 Individual actuation and sensor measurement delays
In this case, the actuation and sensor measurement delays are considered independent from each other,
both varying from 0 to 15 ms. Figure 9 provides the surface plot of flutter boundary and flutter fre-
quencies of the RTHS system, using the FSI only. A flat plateau of the flutter boundary surface can be
observed when the actuation and sensor measurement delays are less than 4 ms. In contrast, the flutter
boundary decreases linearly with the increase in delay. Figure 10 plots the contour of the flutter bound-
ary surfaces from the three aerodynamic models, where the values are ratios of the flutter speeds of
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Figure 10. Contour of flutter speed surface plots (blue dash-dot: finite-state inflow theory; red solid:
Wagner’s function; black dash: RFA).

(a) (b)

Figure 11. Comparison of flutter speed of RTHS with different aerodynamic models.

the three RTHS cases compared to the nominal aeroelastic system with the finite-state inflow theory.
From the plot, one can see the sensitivity of the flutter boundary versus the individual delays. Again,
when the delays are less than 4 ms, the flutter boundary is insensitive to the delays. When the delays are
above it, the sensitivity to both delays becomes a constant value. One can also observe that the flutter
boundary has a very similar sensitivity to the individual delays. Figure 10 clearly shows the required
actuation and sensor measurement delays to meet the accuracy of the stability boundary of the RTHS
system. Finally, Fig. 11 compares the flutter boundary predicted by the different aerodynamic models in
the studied ranges of the actuation and sensor measurement delays where the maximum relative error
among the different models is less than 2.5%.

3.4 Consistency verification
The mode shape of the RTHS aeroelastic system may change with the delays. It is important to under-
stand how the delays may impact the unstable mode, especially around the flutter boundary. Let the
flutter mode of the nominal aeroelastic system be x̄0, the similarity between the flutter mode with delays

https://doi.org/10.1017/aer.2024.46 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.46


The Aeronautical Journal 11

(a) (b)

Figure 12. MAC number of flutter modes of RTHS system.

(a) (b)

Figure 13. Simulation of RTHS system with actuation and sensor measurement delays.

and x̄0 can be evaluated by

MAC(τa, τs) = 〈x̄(τa, τs) , x̄0〉 · 〈x̄0, x̄(τa, τs)〉
〈x̄(τa, τs) , x̄(τa, τs)〉 · 〈x̄0, x̄0〉 , (12)

where x̄(τa, τs) are the flutter mode with actuation and sensor measurement delays. Operator 〈·, ·〉 is the
inner product of two vectors, which is not commutative for the complex mode shapes. Figure 12 provides
a surface plot and its contour of the MAC number of the flutter modes, using the Wagner’s function for
aerodynamic modeling. Note that only the structural mode components (i.e. pitching, plunging and their
rates) are involved in the comparison. One may keep the MAC number above 0.99 if both delays are less
than 2.3 ms, as shown by the shaded region in Fig. 12b.

As a verification of the stability analysis formulation and results of RTHS systems, a time-domain
simulation of the RTHS with both actuation and sensor measurement delays is carried out. The RTHS
system can be referred to in Fig. 4. The aerofoil is placed in a freestream of 34 m/s, with zero ini-
tial plunging and pitching displacements. For simplicity, the actuation and sensor measurement delays
are considered equal. From Fig. 13, when the delay is 3.5 ms, the aeroelastic response of the aerofoil
converges, while the response diverges if the delay is 4.5 ms. Therefore, the RTHS system turns to be
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unstable when the delay increases from 3.5 ms to 4.5 ms. This behaviour agrees well with the flutter
boundary predicted and plotted in Fig. 7, where the flutter boundary is about 34 m/s with a delay of
around 4 ms. Figure 13 also indicates that the RTHS system with a delay less than 4 ms can maintain
a similar stability property as the nominal aeroelastic system. If one wants to measure more accurate
transient responses using the RTHS system, the delays must be further reduced.

4.0 Conclusion
The stability of RTHS systems for the aeroelasticity of flexible wings was studied in this paper. In
the proposed RTHS platform, the aerodynamic loads on the flexible wings (represented by a typical
2-D aerofoil) were predicted by three well-known 2-D unsteady aerodynamic formulations. Actuation
and sensor measurement are essential in RTHS systems, and the delays developed in their operations
inherently impact the measured stability characteristics of the aeroelastic system. In this study, actua-
tion and sensor measurement delays were modeled in the RTHS platform, where the aeroelastic roots
of the RTHS system were solved and evaluated for stability. By the parametric study performed in
this paper, it has been found that the delays can alter the stability characteristics of the RTHS system,
changing the measured aeroelastic stability boundary and unstable modes with different delay amounts.
However, the RTHS platform can still accurately capture the nominal system’s stability characteris-
tics when both delays were small (e.g. less than 4.0 ms). This finding will guide the implementation
of aeroelastic RTHS platforms by providing important specifications on the future delay compensation
design. Moreover, a consistent RTHS system’s stability boundary was obtained when different aero-
dynamic models were applied as the numerical component, providing cross-verification among these
models. Finally, the RTHS system’s stability boundary with delays was also verified using time-domain
simulations. In conclusion, the results obtained in this study have quantified the influence of actuation
and sensor measurement delays on RTHS system stability and offer important guidance on the future
implementation of the proposed RTHS platform.
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Appendix
The aerodynamic subsystem can be represented by the unified Equation (1b) when the three aforemen-
tioned aerodynamic formulations are applied individually. However, the definition and physical meaning
the aerodynamic states λ are different in different aerodynamic formulations. In the finite-state inflow
theory, the weighted summation of the aerodynamic states accounts for the additional induced velocity
due to the wake, i.e.

λ0 = 1

2

N∑
i=1

b̄iλi = 1

2
b̄λ, (13)

where N is the number of inflow (aerodynamic) states defined on the aerofoil, and b̄i are coefficients
that can be obtained by the least-square method [32]. With the Wagner’s function, the two aerodynamic
states of the aerofoil are

λ1(t) = A1B1

U∞
b

∫ t

0

w̄ 3
4 c(σ )e−B1

U∞
b (t−σ)dσ

λ2(t) = A2B2

U∞
b

∫ t

0

w̄ 3
4 c(σ )e−B2

U∞
b (t−σ)dσ ,

(14)

where w̄ 3
4 c is the downwash at three quarters from the leading edge. A1, A2, B1 and B2 are constants to

approximate the Wagner’s function. The summation of these two states is the integral of convolution,
given by

λ1 + λ2 = −
∫ t

0

w̄ 3
4 c(σ )

dφw(t − σ)

dσ
dσ , (15)

where φw is the Wagner’s function. With the RFA, the aerodynamic states are lagged terms from the
aerofoil kinematics, given by

λi(s) = s

s +(
U∞

b

)
βi

q(s) , (i = 1, 2, · · · , n) , (16)

where s is the Laplace variable. n is the number of lag terms. βi are pre-determined positive real numbers.
If one follows the Roger’s method, the number of aerodynamic states is N = 2n.

Since the physical meanings of the aerodynamic states are different, the corresponding coefficient
matrices also vary. For the finite-state inflow theory, the coefficient matrices in Equation (1b) are

F1 = W̄−1c̄
{

1 b

(
1

2
− a

)}

F2 = W̄−1c̄
{
0 U∞

}
F3 = 0N×2

F4 = W̄−1
(

−U∞
b

IN×N

)
,

(17)

where the coefficients W̄ and c̄ are both defined in Peters et al. [32]. For the Wagner’s function, the
coefficient matrices are
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F1 =
[

0 0

0 0

]

F2 =

⎡
⎢⎢⎣

A1B1

U∞
b

A1B1U∞

(
1

2
− a

)

A2B2

U∞
b

A2B2U∞

(
1

2
− a

)
⎤
⎥⎥⎦

F3 =
⎡
⎢⎣0 A1B1

U2
∞

b

0 A2B2

U2
∞

b

⎤
⎥⎦

F4 =
⎡
⎢⎣−B1

U∞
b

0

0 −B2

U∞
b

⎤
⎥⎦ .

(18)

With the RFA, the matrices take the form of

F1 = 02n×2

F2 = [
I2×2, · · · , I2×2

]T

F3 = 02n×2

F4 = −U∞
b

⎡
⎢⎢⎣

β1I2×2

. . .

βnI2×2

⎤
⎥⎥⎦ .

(19)

The aerodynamic load is the output of the aerodynamic subsystem, as shown in Equation (5). For the
finite-state inflow theory, the aerodynamic output matrices are

Ma = πρb2

⎡
⎢⎣

−1 ba

ba −b2

(
1

8
+ a2

)
⎤
⎥⎦

Ca = 2πρbU∞

⎡
⎢⎣

−1 −b(1 − a)

b

(
1

2
+ a

)
b2

(
1

2
− a

)
a

⎤
⎥⎦

Ka = 2πρbU2
∞

⎡
⎢⎣

0 −1

0 b

(
1

2
+ a

)
⎤
⎥⎦

Da = −πρbU∞

⎧⎪⎨
⎪⎩

−1

b

(
1

2
+ a

)
⎫⎪⎬
⎪⎭ b̄.

(20)
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For the formulation with the Wagner’s function, the aerodynamic output matrices are

Ma = πρb2

⎡
⎢⎣

−1 ba

ba −b2

(
1

8
+ a2

)
⎤
⎥⎦

Ca = πρbU∞

⎡
⎢⎢⎣

−2φw(0) −b − 2b

(
1

2
− a

)
φw(0)

2b

(
1

2
+ a

)
φw(0) −b2

(
1

2
− a

)
+ 2b2

(
1

4
− a2

)
φw(0)

⎤
⎥⎥⎦

Ka = 2πρbU2
∞

⎡
⎢⎣

0 −φw(0)

0 b

(
1

2
+ a

)
φw(0)

⎤
⎥⎦

Da = 2πρbU∞

⎡
⎢⎣

−1 −1

b

(
1

2
+ a

)
b
(

1
2
+ a

)
⎤
⎥⎦ (21)

With the RFA, the aerodynamic output matrices are

Ma = 1

2
ρU2

∞Ā2

(
b

U∞

)2

Ca = 1

2
ρU2

∞Ā1

(
b

U∞

)

Ka = 1

2
ρU2

∞Ā0

Da = 1

2
ρU2

∞
[
Ā3 · · · Ān+2

]
,

(22)

where Āi (i = 0, 1, · · · , n + 2) are the fitted aerodynamic influence matrices using the least-square
method.
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