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Abstract. Let K be an algebraically closed field of characteristic zero, complete
with respect to an ultrametric absolute value. In a previous paper, we had found
URSCM of 7 points for the whole set of unbounded analytic functions inside an open
disk. Here we show the existence of URSCM of 5 points for the same set of functions.
We notice a characterization of BI-URSCM of 4 points (and infinity) for meromorphic
functions in K and can find BI-URSCM for unbounded meromorphic functions with
9 points (and infinity). The method is based on the p-Adic Nevanlinna Second Main
Theorem on 3 Small Functions applied to unbounded analytic and meromorphic
functions inside an open disk and we show a more general result based upon the
hypothesis of a finite symmetric difference on sets of zeros, counting multiplicities.
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Introduction and theorems.

DEFINITIONS AND NOTATION. The concept of unique range sets counting
multiplicities for a family of meromorphic functions was first introduced by F. Gross
and C. C. Yang in the eighties [12]. Many papers were published on this topic and
on closely related topics involving uniqueness, on complex and p-adic meromorphic
functions [1], [3], [4], [5], [6], [7], [8], [10], [11], [13], [14], [16], [17].

We denote by K an algebraically closed field of characteristic zero, complete with
respect to an ultrametric absolute value. Let A(K) be the K-algebra of entire functions
in K and let M(K) be the field of meromorphic functions in K , i.e. the field of fractions
of A(K). Given a ∈ K and r > 0, we denote by d(a, r) the disk {x ∈ K| |x − a| ≤ r} and
by d(a, r−) the disk {x ∈ K| |x − a| < r}. In the same way, we denote by A(d(a, r−)) the
K-algebra of analytic functions in d(a, r−), i.e. the set of power series

∑∞
n=0 an(x − a)n

converging in d(a, r−) and by M(d(a, r−)) the field of meromorphic functions inside
d(a, r−), i.e. the field of fractions of A(d(a, r−)).

We will denote by Ab(d(a, R−)) the K-subalgebra of A(d(a, R−)) consisting of the
analytic functions f ∈ A(d(a, R−)) which are bounded in d(a, R−) and byMb(d(a, R−))
the field of fractions of Ab(d(a, R−)). Next, we will denote by Au(d(a, R−)) the
set A(d(a, R−)) \ Ab(d(a, R−)) and, similarly, we set Mu(d(a, R−)) = M(d(a, R−)) \
Mb(d(a, R−)). The Nevanlinna Theory applies to functions in Mu(d(a, R−)). This is
why we may look for problems of uniqueness in this set of functions.
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For a subset S of K and f ∈ M(d(a, R−)) we denote by E(f, S) the set in
(d(a, R−))× IN∗:

⋃
a∈S{(z, q) ∈ (d(a, R−))× IN∗| z a zero of order q of f (x) − a}.

Let F be a non-empty subset of M(d(a, R−)). A subset S of K is called a unique
range set counting multiplicities (an URSCM in brief) for F if for any non-constant
f, g ∈ F such that E(f, S) = E(g, S), we have f = g.

It is known that the algebra of complex entire functions admits URSCM of 7
points and that the field of complex meromorphic functions admits URSCM of 11
points [10].

For the field K , it is known that the USRCM for A(K) are the URSCM for
polynomials which actually are the sets which are preserved by no affine mapping but
the identity [3], [4]. So, there exist URSCM for A(K) having just 3 points.

In [5] we proved the existence of URSCM and URSIM for functions in
Au(d(a, R−)) and inMu(d(a, R−)): there exist URSCM of 7 points forAu(d(a, R−)). We
also found smaller URSCM for subsets of Au(d(a, R−)) consisting of functions with “a
small derivative” by using a method due to Frank and Reinders, also developed by H.
Fujimoto [11]. Here we shall use a more simple method based upon the p-adic Second
Main Theorem on Three Small Functions [15], [17] in order to show the existence of
URSCM of 5 points for Au(d(a, R−)), without assuming any additional hypotheses on
the functions.

By the same method, we will also show the existence of BI-URSCM for
Mu(d(a, r−)) of the form ({a1, . . . , a9}, {∞}). A set of the form (S, {∞}) with S ⊂ K (or
(S, {b}) with b ∈ K) is called a BI-URSCM for a subsetF ofM(d(a, R−)) if, given f, g ∈
F such that E(f, S) = E(g, S) and E(f, {∞}) = E(g, {∞}) (or E(f, {b}) = E(g, {b})), we
have f = g. Currently, when S is finite, the cardinal of S is called the number of points
of the BI-URSCM. As a consequence of [8, Theorem 2], BI-URSCM are easily seen
to have at least 4 points. In [4] we showed the existence of BI-URSM of 5 points
for M(K). In [13] T.T.H. An and H.H. Khoai showed the existence of BI-URSCM
for M(K) having only 4 points and showed the role of Condition (2) in Theorem 1
below. As a corollary of [9, Theorem 3.7], BI-URSCM of 4 points for M(K) of the
form (S, {∞}) may be characterized in the following way (which was not mentioned
in [9]).

PROPOSITION. Let S = {a1, a2, a3, a4} ⊂ K with ai �= aj ∀i �= j and let T(x) = ∏4
j=1(x − aj).

Then (S, {∞}) is a BI-URSCM forM(K) if and only if T ′ admits 3 distinct zeros c1, c2, c3

satisfying the two following conditions:
(i) T(ci) �= T(cj) ∀i �= j;

(ii) the equality
T(c1)
T(c2)

= T(c2)
T(c3)

= T(c3)
T(c1)

is not true.

REMARK. If (ii) is violated in the Proposition, then T(c1)
T(c2) is a number λ such that

λ2 + λ + 1 = 0.

Here we shall show the existence of BI-URSCM for Mu(d(a, R−)) having 9 points.

NOTATION. Throughout the paper, we shall denote by P a polynomial of the form
P(x) = xn − αxm + 1 with m, n relatively prime such that 2 ≤ m ≤ n − 1 and such that
αn �= nn

mm(n−m)n−m . We shall denote by S(n, m, α) its set of zeros.
We denote by � the symmetric difference on subsets of a set.

REMARK. Since αn �= nn

mm(n−m)n−m , P has n distinct zeros.
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THEOREM 1. Let f, g ∈ Au(d(a, R−)) be two different non-constant functions
satisfying �=�=(E(f, S(n, m, α))�E(g, S(n, m, α))) < ∞. Then 2m − n ≤ 2.

COROLLARY 1.1. Suppose that 2m > n + 2. Then S(n, m, α) is an URSCM for
Au(d(a, R−)).

REMARK. In particular, Corollary 1.1 holds with n ≥ 5 and m = n − 1.

THEOREM 2. Let f, g ∈ Au(d(a, R−)) be two different non-constant functions
satisfying �=�=(E(f, S(n, m, α))�E(g, S(n, m, α))) < ∞ and �=�=(E(f, {∞})�E(g, {∞})) <

∞. Then 2m − n ≤ 3.

COROLLARY 2.1. Suppose m ≤ n − 2 and 2m > n + 3. Then S(n, m, α) is a BI-
URSCM for Mu(d(a, R−)).

The proofs. Let log be the real logarithm function of base p > 1. Let R ∈]0,+∞[
and let f ∈ M(d(0, R−)) such that 0 is neither a zero nor a pole of f . Let r ∈]ρ, R[.

We denote by Z(r, f ) and Z(r, f ) the counting functions of zeros of f in d(0, R) \ {0},
(counting multiplicities or not) i.e. if (an) is the finite or infinite sequence of zeros of f
in d(0, R−) \ {0}, with respective multiplicity order sn, we put

Z(r, f ) =
∑

|an|≤r

sn(log r − log |an|) and Z(r, f ) =
∑

|an|≤r

(log r − log |an|).

In the same way, we denote by N(r, f ) and by N(r, f ) the counting functions of
poles of f : considering the sequence (bn) of poles of f in d(0, r) \ {0}, with respective
multiplicity order tn, we put

N(r, f ) =
∑

|bn|≤r

tn(log r − log |bn|) and N(r, f ) =
∑

|bn|≤r

(log r − log |bn|).

For a function f having no zero and no pole at 0, the Nevanlinna function T(r, f )
is defined by T(r, f ) = max(Z(r, f ) + log |f (0)|, N(r, f )).

In order to prove the Theorems, we must recall the Nevanlinna Second Main
Theorem on 3 small functions showed in M(K) in [15] which actually also holds in
M(d(0, R−)) [17].

THEOREM A. Let f, u1, u2, u3 ∈ M(d(0, R−)) have no zero and no pole at 0 and let
S(r) = maxj=1,2,3(T(r, uj)). Then T(r, f ) ≤ ∑3

j=1 Z(r, f − uj) + S(r), r ∈ ]ρ, R[.

By Replacing f by 1
f and taking u3 = 0, we obtain Corollary A1 [17]:

COROLLARY A.1. Let f ∈ M(d(0, R−)) and u1, u2,∈ Mb(d(0, R−)) have no zero
and no pole at 0 and let S(r) = maxj=1,2(T(r, uj)).

Then T(r, f ) ≤
2∑

j=1

Z(r, f − uj) + N(r, f ) + O(1), r ∈]ρ, R[.

We shall also use the following Lemma B which is classical [2], [3].
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LEMMA B. Let f, g ∈ A(d(0, R−)).
(1) Then T(r, fg) = T(r, f ) + T(r, g).
(2) Let P ∈ K [x]. Then T(r, P ◦ f ) = deg(P)T(r, f ) + O(1).

Proof of Theorems 1 and 2. Without loss of generality we may obviously
assume that a = 0. By hypothesies, in both Theorems 1 and 2 �=�=(E(f, S(n, m, α))
�E(g, S(n, m, α))) and �=�=(E(f, {∞})�E(g, {∞})) are finite (whereas E(f, {∞}) =
E(g, {∞}) = ∅ in Theorem 1). Since all zeros of P are of order 1, we see that P ◦ f
and P ◦ g have the same zeros and the same poles, counting multiplicities, except
maybe finitely many. Consequently, the function u(x) = P◦f

P◦g which obviously lies in
M(d(0, R−)), has finitely many zeros and finitely many poles in d(0, R−). Hence,
u ∈ Mb(d(0, R−)).

Without loss of generality we may obviously assume that 0 is neither a zero nor a
pole for all functions we have to consider in Theorems 1 and 2.

On the other hand, we notice that

T(r, P ◦ f ) = nT(r, f ) + O(1),

T(r, P ◦ g) = nT(r, g) + O(1)

But since u belongs to Mb(d(0, R−)), T(r, u) is bounded, hence T(r, P ◦ f ) =
T(r, P ◦ g) + O(1) and therefore

T(r, f ) = T(r, g) + O(1). (1)

Now, let F(x) = f n − αf m, let G(x) = u(x) − (gn − αgm) and let w(x) = 1 − u(x). Thus,
we have F(x) = u(x)(gn − αgm) + u(x) − 1.

Suppose that u is not identically 1. By Corollary A.1 we have

T(r, F) ≤ Z(r, F) + Z(r, F − w) + N(r, f ) + O(1). (2)

But

Z(r, F) = Z(r, f m( f n−m − α)) = Z(r, f ) + Z(r, f n−m − α)

≤ (n − m + 1)T(r, f ) + O(1). (3)

Similarly:

Z(r, F − w) = Z(r, u(x)(gn − αgm)) = Z(r, g)

+ Z(r, gn−m − α) + Z(r, u) =≤ (n − m + 1)T(r, g) + O(1),

hence by (1), we have

Z(r, F − w) ≤ (n − m + 1)T(r, f ) + O(1). (4)

On the other hand, obviously

N(r, F) = N(r, f ) ≤ T(r, f ). (5)

Now, by Lemma B we have T(r, F) = nT(r, f ) + O(1) hence by (1), (2), (3), (4) we
obtain

nT(r, f ) ≤ 2(n − m + 1)T(r, f ) + N(r, f ) + O(1). (6)
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Thus, in the hypotheses of Theorem 1, we have nT(r, f ) ≤ 2(n − m + 1)T(r, f ) +
O(1). And since T(r, f ) is unbounded when r tends to R, we see that 2m − n ≤ 2. Now,
in the hypotheses of Theorem 2, by (5) and (6) we obtain 2m − n ≤ 3.

We can now assume that u is identically 1, hence f n − αf m = gn − αgm. Putting
h = f

g , we obtain gn−m(hn − 1) = α(hm − 1). Since m, n are relatively prime, we notice
that (hn − 1) and (hm − 1) may not be both identically zero, hence we have

gn−m = α
hm − 1
hn − 1

. (7)

Let ξk, 1 ≤ k ≤ n be the n-th roots of 1 with ξ1 = 1 and let ζj, 1 ≤ j ≤ m be the m-th
roots of 1 with ζ1 = 1. Since m < n there exists k ∈ [2, n] such that ξk �= ζj ∀j = 1, . . . , m
and therefore, each zero of h − ξk is a pole of gn−m, a contradiction to the hypothesis of
Theorem 1. Thus, in the hypothesis of Theorem 1, u is not identically 1 which completes
the proof.

Assume now the hypothesis of Theorem 2. Since Mb(d(0, r−)) is a field, by (7)
h does not belong to Mb(d(0, r−)) because if it belonged to Mb(d(0, r−)) then g
should also lie in Mb(d(0, r−)). Thus, since n − m ≥ 2, for every j = 2, . . . , m we
have Z(r, h − ξj) ≤ 1

2 Z(r, h − ξj) and for every k = 2, . . . , n we have Z(r, h − ζk) ≤
1
2 Z(r, h − ξj).

Since m, n are relatively prime, we notice that ξk �= ζj ∀k = 2, . . . , n j = 2, . . . , m.
Consequently, each zero of h − ξk is a pole of gn−m (and hence is a zero of order at least
n − m of h − ξk). And similarly, each zero of h − ζj is zero of gn−m (and hence is a zero
of order at least n − m of h − ζj). Consequently,

Z(r, h − ξk) ≤ 1
n − m

Z(r, h − ξk), ∀k = 2, . . . , n (8)

and

Z(r, h − ζj) ≤ 1
n − m

Z(r, h − ζj), ∀j = 2, . . . , m. (9)

Now, since h ∈ Mu(d(0, r−)), we may apply to h the classical p-adic Second
Main Theorem in Mu(d(0, r−)). We have (n + m − 3)T(r, h) ≤ ∑n

j=2 Z(r, h − ξj)+∑m
k=2 Z(r, h − ζk) + N(r, h) + O(1) and therefore, by (8) and (9), we obtain

(n + m − 3)T(r, h) ≤ 1
2 (

∑n
j=2 Z(r, h − ξj) + ∑m

k=2 Z(r, h − ζk)) + N(r, h) + O(1) ≤
( m−1+n−1

2 + 1) T(r, h) + O(1). Thus we check that m + n ≤ 6. In fact, we can easily
see that m + n ≤ 6 is incompatible with 2m − n ≥ 4, consequently, the hypotheses of
Theorem 2 led to 2m − n ≤ 3 in all cases. This completes the proof of Theorem 2.

REMARK. In [4], we neglected the fact that when m, n are not relatively prime, hm − 1
and hn − 1 may have common zeros different from 1. This is why Theorem 4 in [4] is
not correct: when P(x) = x6 − αx4 + 1, any function f satisfy P ◦ f = P ◦ (−f ).
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