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ABSTRACT 

A general nonlinear function G(X) describing the biasing of primordial 
Gaussian density fluctuations is considered. Arbitrary N-point correla-
tions of the biased field are calculated in the form of a series expansion 
in terms of the correlations of the Gaussian field. The observed scaling 
of the three point correlations in the galaxy distribution is satisfied, but 
the scaling coefficient Q has a nontrivial value Q = J2/J1, where is 
the k-th term in the Hermite expansion of G(X). The three point func-
tion is always accompanied by a cubic term Q ξι&ζζ, independent of the 
functional form of the biasing. Its absence in the cluster 3-point correla-
tions may be observable, in which case it rules out biasing as the major 
amplification mechanism of galaxy and cluster correlations. 

I. INTRODUCTION 

If galaxies formed by the nonlinear biasing of a Gaussian density fluctuation 
field, the correlation of galaxies is expected to exceed the correlations of the original 
fluctuations by a large factor (Kaiser 1984). Consider the density fluctuation field 
6(x) = \p[x) — (p)]/(p)> a Gaussian, with dispersion σ2 = ( |£ | 2 ) . To simplify the 
notation we will use the normalized random field y = 6/σ. The correlation function 
of the y field is w\2(r) = (r/i 2/2)? where |xi — X2I = **. If we "clip" the normalized y 
field at a level v, i.e. we set the value of the field to 1, if y > ν and to 0 otherwise, 
and associate galaxies with the regions above this level, the two point correlations 
become with a good approximation (Politzer and Wise 1984, Jensen and Szalay 
1986, hereafter PW and JS), 

1 + 6 2 = e " 2 " " . (1) 

On the other hand, if we do a soft clipping by using an exponential (Kaiser and 
Davis 1985), creating a luminosity density proportional to G(y) oc exp(i/y), the 
correlation function is the same. The PW result is only an approximation, obtained 
from the linear expansion of the exponent in the bivariate Gaussian distribution. 
The exact result for sharp clipping was obtained by JS, using a series expansion. 
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(3) 

Fry (1986) considered a power law biasing, G(y) = Α( ΐ + ΐ / ) α , as an example of 
generating non-Gaussian distribution. Another form of biasing, G{y) = exp(ay — 
ßy2/2) was used to include the modulating effects of a large scale background field 
on the density of galaxies, associated with the peaks of the overdensity filtered on 
galactic mass scales (Eq.(5.6) and (6.36), Bardeen et al. 1986, hereafter BBKS), 
with similar correlation functions. 

How specific are these results? Are they simply due to the nonlinearity of 
the clipping, or do they depend on the detailed shape of the threshold function? 
If so, what are the dominant features, and how free is one to choose a threshold 
function without seriously changing the final result? We adress these questions 
below, discuss a general formalism and calculate the various N-point correlation 
functions of the biased random field to arbitrary accuracy, using a method similar 
to the one used by JS. Such a treatment was also discussed from a different point 
of view by Taquu (1977). 

II. THRESHOLD FUNCTIONS 

We consider a general nonlinear threshold function G(y), describing how the 
local luminosity density of galaxies depends on the Gaussian fluctuations of the 
mass, representing the effect of biasing. G(y) should have non-negative values only. 
The 'clipping' would correspond to a step function, G(y) = A 0 ( y - i / ) . Hereafter we 
will denote the two point correlations of the galaxies with £12, while W\2 = (yiî/2) 
is the two point correlation of the mass. G(y) is normalized to unity : 

1 F°° 

(G) = -j= G(y)e-«*"dy = l. (2) 

One can expand the G(y) function in terms of Hermite polynomials defined by 
Hn(x) = e**/2 (__£)* e - * 2 / 2 , normalized to (Hm{x)Hn(x)) = 6 m n ml 

fc=o *· 

where 

Jk = —f= \ dye-y2/2G{y)Hk(y) = (G(y)Hk(y)). (4) 
ν2π J-oo 

After simple calculations, using the orthogonality of the Hermite polynomials, we 
obtain the two point correlation 

(G(X1)G(X2)) = 1 + £12 = £ J-±wk

l2 (5) 

k=0 ' 

where now (...) is an integral over the bivariate Gaussian distribution function 
/ ( X i , X 2 ) with the correlation W 1 2 . Therefore in the linear regime the leading 
term becomes 

£12 « JFYI2 (6) 
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In order to compare with previous results we calculate the J* coefficients for 
the case of sharp clipping: 

0{Χ) = ΑΘ{Χ-ν) ; J k = r— u H k ~ 1 ^ — - > „ * (7) 
V ; V ' uy/φ exp(i/ 2/2)erfc(i//v/2) V ' 

in agreement with the results obtained by JS. The value of A is determined by 
the normalization condition Eq.(2). Taking the exponential (soft) clipping instead, 
characterized by the threshold function 

G(X)=AevX ; Jk = u k (8) 

the coefficients become particularly simple. Since all moments in the two cases are 
asymptotically equal, any results using the soft instead of the sharp clipping should 
be very similar, as they indeed are. We retrieve the result of PW and JS 

<G(X X )G(X 2 )> = 1 + 6 2 = £ = (9) 
k=0 

One can easily generalize this result to more complicated cases, such as higher 
order correlation functions, or if we have more complicated constraints, density 
peaks (BBKS). In the general case we will consider a p-variate Gaussian, with a 
correlation matrix M. Each of the normal Gaussian variables X t- is distorted by a 
different nonlinear function Gi(X<), with the A:-th Hermite coefficients denoted by 
J%(k). We would like to calculate the expectation value (Gi(Xi)...Gp(Xp)). By 
choosing appropriate G{ functions, all moments of the G's can be expressed in this 
form. The joint probability distribution function is determined by the correlation 
matrix M, and can be expanded in terms of Hermite polynomials (Taquu 1977). 

Here ]Cfc(n)
 m e a n s summing over all k{ satisfying 0 < ki,...,kp < n, and k\ + 

... + kp = 2n, and is a sum over all pairs of φ j \ , which satisfy 1 < 

» i , i i î · · · in>in < P) where there are k\ indices 1, and k» indices p. 
Using the orthogonality of the Hermite-polynomials, one can then express the 

expectation value 

This expression can be used to derive any of the N-point correlation functions of 
the biased density field to arbitrary accuracy. Potential applications include much 
more complicated cases than the ones discussed here, such as cross correlation of 
different objects selected by different G{ functions. In the following, we will apply 
this to the special case of the three point correlations, and derive some general 
constraints. 

(11) 
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Q 

in agreement with BBKS, except here we also have the detailed amplitudes of the 
cubic terms, which are present in BBKS in a less obvious way. 

III. THREE POINT CORRELATIONS 

Using Eq.( l l ) to express the 3 point correlations, we expand to third order in 
tu, writing 

{GXG2GZ) = 1 + f i 2 + 6 3 + 6 l + ?123 = 1 + ·Λ2(Η>12 + U>23 + ™3ΐ) + 

J2 

-γ{">12 + W2S + wll) + ^ ? ^ 2 ( ^ 1 2 ^ 2 3 + ™23™31 + 1031*012) + 

^-{*>12 + U>lz + tiff J + ^ ^ 1 2 ^ 2 3 ^ 3 1 + ^ γ ^ [ ^ 1 2 ( ^ 2 3 + ™3ΐ) + · · -] 

(12) 
One can rearrange these terms in terms of the biased two point correlations 6y, 
using the leading terms in the expansion, and write the irreducible three point 
correlation function 

?123 = Q ( £ l 2 £ 2 3 + É23£31 + £ 3 l £ l 2 ) + Q 3 ^ ^ 

(13) 
where the terms Q and Γ are defined by Hermite coefficients of G(X) : 

Q = J2/J? ; T = JB/Jf (14) 

The observed irreducible galaxy three point correlation function can be ex-
pressed in terms of the 2 point correlations : 

(i23{obs) = 3 ( 6 2 6 3 + 6 3 6 1 + 6 1 6 2 ) (15) 

with Q close to 1 (Groth and Peebles 1977). £123 will thus satisfy the scaling relation 
to lowest order. The presence of the cubic term Q 3 6 6 6 1S unavoidable, but the 
mixed term may disappear if Τ = Q2. 

The threshold functions in Eq.(7) and (8) are rather unique, having Q = Τ = 1, 
so the mixed term in the three point correlation function disappears, providing the 
simplest possible 3 point correlation function, called the Kirkwood superposition 
(Peebles 1980) : 

(GxG^Gs) = (1 + €12) (1 + &s) ( l + 6 1 ) (16) 

Not all biasing functions have this simple form of course. For the approximation 
in BBKS describing the correlations of density peaks one can calculate the expansion 
coefficients as well, where G(X) is now the density of peaks as a function of the 
Gaussian height X. a and β were determined by the properties of the background 
field. 

G(X)=Aexp(aX-lßX2) ; Jx = 
2 1 + P (17) 
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IV. CONCLUSIONS 

Studying general functional forms of Gaussian biasing, we have calculated var-
ious higher order correlation functions of the biased density (luminosity) field. We 
find that these correlations are fully determined by the Hermite coefficients of the 
nonlinear threshold functions. In the leading order, the amplification of the two 
point correlations is given by the first coefficient, J\. 

For any threshold function the leading term in the 3 point function is Q(fif2 + 
. . . ) , with Q = J 2 / J 1 , always accompanied by a cubic term Q 3 £if2£3- Generally 
a mixed cubic term will also be present, but for the special case of sharp clipping 
this term disappears, and Q = 1. These arguments can easily be extended to 
higher order correlation functions, where a similar scaling has been established 
(Fry and Peebles 1978). If the coefficients Q,T and higher are determined, one 
could reconstruct the dominant shape of the biasing threshold function G(X). 

Observations can potentially restrict the cubic terms in the 3-point function, 
and therefore provide strong constraints on mechanisms for biasing. However, the 
cubic terms may only show up in triangles close to equilateral. Clusters of galax-
ies may be more suitable to look for these effects than galaxies, since they may 
have preserved the 'initial conditions' more on scales below the correlation length 
than galaxies. Such work is currently in progress (Bonometto, Lucchin and Mat-
tarrese 1987, Hollosi, Toth and Szalay 1987). Even though the detailed structure 
of the galaxy 3-point correlation function may be erased by subsequent evolution, 
the power in the correlation function is still largely due to biasing. A paper by 
Bonometto, Lucchin and Mattarrese (1987) suggests that even for galaxies there 
may be traces of such an effect. 

If Q = 1, but there is no cubic term in the 3-point function, we can conclude 
that Gaussian biasing cannot be responsible for a major amplification of the cor-
relations. No such strong conclusion is possible if the underlying fluctuations were 
already non-Gaussian, but for sharp clipping the cubic term is present in £123, as 
discussed by Mattarrese, Lucchin and Bonometto (1986). 
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