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1. Introduction. The aim of this note is to examine the basic ideas underlying
Minkowski's theorem on lattice points in a symmetrical convex body and related results of
Blichfeldt, and to indicate how these can be generalized. Theorems analogous to Minkowski's,
on the automorphisms of quadratic forms and other linear groups and on Fuchsian groups of
transformations in the complex plane, have been obtained by Siegel [6] and Tsuji [7],
Generalizations which include these are due to Chabauty [2] and Santalo [5].

The last two authors both consider groups of transformations of topological spaces.
Minkowski's method, however, is really a generalized " box-principle ", and seems to be more
a matter of measure theory than topology. In this note, therefore, a topology is not assumed
to exist in the space, so that the results are simpler and possibly more general (but see the
remarks in § 6). An earlier version of these results was included in the dissertation sub-
mitted by the author in 1950 in partial fulfilment of the requirements for the Degree of
Doctor of Philosophy at Princeton University.

2. Terminology. We suppose given a measure space {X, S, /x) (see [3]), consisting of a
set of elements X, a a-ring S of subsets of X called measurable sets, and a measure p defined
on all sets of S. To take the place of the lattice of number-theory, we assume that there is a
countable group G of permutations of X, each of which is measure-preserving. That is, if
E eS, and g e G, then gE e S and p(gE) = fx{E). We denote the identical permutation by e.

Definitions. 1. A set P e S is called a G-packing if Pr^gP = <f> for all g =£ e, g e G.
2. A set C e S is called a G-covering if GC = X. Here GG denotes the set of all points

gc with geG,ceC, so that GC = U{gC : g e G).
3. The determinant A (G) is defined to be the greatest lower bound of n(C), where C may

be any G-covering.
4. A set F e S is called a fundamental domain for G if F is both a G-covering and a

G-packing ; i.e., Fr^gF = <j> and GF = X.
Some of the results hold only in a weaker form if no measurable fundamental domain F

exists, and necessary and sufficient conditions for F to exist are obtained in the second paper
with this title, by S. S\vierczkowski. I t is worth mentioning here that there are some very
simple cases in which no F exists, even when G is without fixed points—for instance if X is
the real line and G is the group of all rational translations [3, p. 67-70].

3. The generalized Minkowski Theorem.
THEOREM 1. If C is a G-covering and P a G-packing, then /x(C) > p(P)-

Proof. If gv g2, are distinct elements of G then PngJ1g2P = <j>, so that g1Pr\g2P = <j>,
and the sets OngP are disjoint. Thus, if summations are taken over all elements g of G,
we have
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COROLLARY. If Flt F2 are fundamental domains, then n(Fj) = fj,(F2) = A(G).
From Theorem 1, it is possible to deduce two different generalizations of Minkowski's

theorem, but each one requires different extra assumptions about the space X.

First generalization. Suppose given a function d(x, y) defined for all pairs of points
x, y e X, and satisfying the conditions given below. In specifying one of these conditions,
we require the symbol S(a ; r) to denote the set of all points x such that d(a, x) < r. Here
a e X, and r is a positive real number.

Conditions :
(i) d(x,y) ~d[y,x)>0.

(ii) d(x, y) + d(y,z) ^ d(x,z).
(iii) d(gx, gy) - d(x, y) for all g e G.
(iv) S (a ; r) is measurable for each a, r.

THEOREM 2. Suppose that the measure of S(a ; r) is greater than A(G). Then there is an
element g e G, g # e, such that

d {a, ga) < 2r.

Proof. Since n(S(a ; r) ) is greater than the lower bound of the measure of all coverings,
we must have n(S(a ; r)) > /x(C) for some covering C. By Theorem 1, S(a ; r) cannot be
a packing. Thus, for some g •£ e, the sets S(a ; r) and gS(a ; r) have a common point x,
say. Hence d(a, x) < r and, by (iii), d(ga, x) = d(a, g~*x) < r.

From (ii) it follows that d(a, ga) <: d(a, x) +d(ga, x) < 2r.

Second generalization. Assume that the space X is itself a group, and that G is a sub-
group of X acting on it by left translation. (An example which springs to mind at once is the
case when X is a locally compact topological group and /J. is the left Haar measure. However
we do not necessarily require f* to be invariant under all left translations, but only under
those of G.)

THEOREM 3. If X is a group and G a subgroup acting by left translation, and if D is a subset
of X such tliat /x(-D) > A ((?), then there is a point g e GnDD'1 ivith g ¥= e.

Proof. Since, by Theorem 1, D is not a packing, there is a g # e such that D and gD
intersect; i.e., d = gd', where d, d' e D. Then g = dd'~x e DD'1.

Minkowski's theorem follows particularly simply from Theorem 3. Let X be Euclidean
space of n dimensions, regarded as a group under vector addition ; let G be a lattice, so that
A (G) is the determinant of G in the usual sense, and let K be a convex body, symmetrical in
the origin, with volume exceeding 2"zl (G). Take D in Theorem 1 to be the set \K. Then
K = D -D must contain a lattice point other than the origin.

4. Applications of Theorem 2. We now indicate three different situations in which
Theorem 2 can be applied to give known results. The first of these is Minkowski's theorem,
but the other two are of more recent origin. We refer the reader to the original papers for
the calculations and precise numerical statements of results.

I. Let X be the Euclidean space of n dimensions, G the group of translations of a lattice,
and let d (x, y) be the Minkowski distance-function of a convex body K with volume exceeding
2nA (G). Let the point a be the origin. Applying Theorem 2 with r — \, we get
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Minkowski's theorem.
II. Let X be the interior | z | < 1 of the unit circle in the complex plane and let ffbea

discrete group of transformations of the type

az+b
w = = e*B.

bz+d
Such a group is called a Fuchsian group. Define the metric by the differential expression

ds =2\dz\l(l- | 2 | 2 ) ,

and the measure (in polar coordinates) by 4rdrd8l(l -r2)2. We are then led to the results of
Tsuji [7]. This situation is in fact a particular case (n = 2, B — 0) of III below, considered
by Siegel. However, in the general case the results are less precise because the measure of
the " spheres " cannot be computed exactly.

III. Let B be an n x n matrix which is either symmetric or skew-symmetric. Let X be
the space of all positive definite symmetric A such that A'BA = B. Let F be the group of
all non-singular T such that T'BT = B. Then F acts as a group of transformations of X by
means of the congruent mapping A—^-T'AT. Let (?bea discrete subgroup of F, and define
d (x, y) to be the geodesic distance between x and y, calculated from the differential form

ds2 = tr{(dA)A-1(dA)A-1}.

Theorem 2 then implies a result due to Siegel [6, p. 714, Theorem 2]. The measure of the set
S(a ; r) is not easy to estimate in this case, but Siegel, by an elegant argument, obtains an
inequality (loc. cit., Theorem 1) which relates it to the measure of the sphere in Euclidean
space with the same radius.

5. The theorems of Blichfeldt and Santalo. The results of this section are generaliz-
ations of theorems of Blichfeldt [1]. Similar generalizations are due to Santalo [5], but
Santalo assumes that X admits a transitive group of permutations each of which commutes
with G. Without this assumption, the results have to be stated differently, but appear to be
essentially the same in the special case which he considers. We state two separate results,
the first holding in general, the second and stronger holding only when a fundamental domain
F is known to exist.

THEOREM 4. Letf(x) be a non-negative integrable junction and let C and P be a G-covering

and a G-pacMng respectively, with JJ.(P) < oo. Then there are points a,beX such that

geO
f/(z)^(z),

J

!f(x)d,i(x).
J

Proof. Since the two proofs are similar, we only prove (i). Since GC = X and / is non-
negative, we have

lf(x)dp(x)^ 2 f /(z)<K"c)=S f /(0*
J geO J gC g<G JC

f
C geO

The result follows.
On taking/(x) to be the characteristic function of a set D we obtain the following corollary.
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COROLLARY. / / fj.(D) > nA (0), lohere n is an integer, then there is a point a e X such
that ga e D for at least n + 1 distinct elements g of G.

If a fundamental domain F exists for G, the following exact formula is valid for all
integrable f(x). The interchanges of summation and integration are valid if f(x) is non-
negative, and hence the result is true for any integrable f(x), since such a function is the
difference of two non-negative integrable functions. We have

2 f ftx)dp(x) = f 2f(gx)dp{x).
geClJgF JF

From this we deduce

THEOREM 5. If a fundamental domain exists, if A(G) < oo, and if f(x) is integrable, then
there are points a, b e X such that

S /(fl») < h(z)drfx)*zA(O) S f(9b).
geO J gcO
S
geO

6. Comparison with previous results. Though we do not use topological terms, some
of our assumptions are almost topological in character. Thus the first generalization of
Minkowski's theorem, Theorem 2, requires the function d(x, y), which is almost a metric —
only the condition that d(x, y) is zero if and only if x = y is missing. Even without this
assumption the spheres S (a ; r) can be taken as a base for a topology, though this topology
will not, in general, satisfy a separation axiom.

The conditions in which Theorem 3 holds very nearly imply a topology too, since it is
known that a measurable group admits a topological structure which is closely associated
with the measure [3, p. 275, Theorem H].

It does seem, however, that the avoidance of topological assumptions, if it does not
result in very much greater generality, certainly does result in improved simplicity and
economy of statement.
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