
1 Elements of Thermodynamics

This first chapter is devoted to a quick review of some key facts of thermodynamics.
We begin with the laws of thermodynamics, before turning to thermodynamic
potentials and the Maxwell relations. We conclude with a discussion of stability
criteria for thermodynamic systems.

1.1 The Laws of Thermodynamics

Let us begin with a brief recollection of the principles of thermodynamics. Our
starting point are the first two laws.

First Law: A thermodynamic system can perform work W at the expense of a
variation of internal energy ΔU and a heat exchange Q with the environment, and
the three quantities are related according to

ΔU = Q −W. (1.1)

Note that, while ΔU depends only on the initial and final states, the two other terms
depend on the specific transformation. Infinitesimally, this translates to

dU = δQ − δW, (1.2)

where dU is an exact differential, while δQ and δW are not. For most systems of
interest in the following chapters,

δW = P dV, (1.3)

where P is their pressure and V is their volume.

Second Law: For any cyclic transformation,∮
δQ
T
≤ 0, (1.4)

where T is the temperature of the external source. This is also known as Clausius
inequality. The inequality is saturated for reversible transformations, that is those
in which the system proceeds through equilibrium configurations.
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Figure 1.1 A schematic illustration of γ1 and γ2 in the PV plane. The transformation γ1 can be reversible, in which
case the system goes through equilibrium configurations (solid line), or irreversible (dashed line).

By considering a cycle comprising a transformation γ1(A, B) from a state A to a
state B and a reversible transformation γ2(B, A) from B to A as in Figure 1.1, one can
conclude that ∫

γ1 (A,B)

δQ
T
+

∫
γ2 (B,A)

δQrev

T
≤ 0. (1.5)

Since γ2 is reversible, one can also recast this relation in the form∫
γ1 (A,B)

δQ
T
≤

∫
γ2 (A,B)

δQrev

T
= ΔS(A, B), (1.6)

where we have also defined the entropy difference ΔS(A, B) between state A and state
B.

This result has a few noteworthy consequences. To begin with, choosing γ1 to be
reversible, one can conclude that ΔS(A, B) is independent of the choice of reversible
path between A and B. Moreover, if the system is isolated during γ1,

ΔS ≥ 0 (1.7)

because δQ = 0. Finally, if A and B are infinitesimally separated,

T dS ≥ δQ. (1.8)

We have defined the entropy up to an additive constant, which could be associated
to an arbitrary reference state. However, we can anticipate that in statistical physics
the additive constant is naturally fixed via Boltzmann’s formula, which we shall meet
in Eq. (2.16),

S = kB log Γ, (1.9)

where kB = 1.38 × 10−23 J/K is the Boltzmann constant. This expression links
the entropy of a given thermodynamic state to the number, Γ, of microscopic
configurations (microstates) that correspond to it. In this fashion, one is setting to
zero the entropy of the “ordered” thermodynamic states that correspond to a single
microstate.
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5 Thermodynamic Potentials

While we shall return to this issue in Chapter 2, one can argue that Boltzmann’s
formula follows from the requirement that S, like U or Q, be an extensive quantity.1

Indeed, a pair of independent sub-systems with Γ1 and Γ2 microstates build a system
with Γ = Γ1 Γ2 microstates. Letting S = f(Γ), and demanding that it be the sum of
two entropies S1 and S2 of the sub-systems, the function f should satisfy

f(Γ1Γ2) = f(Γ1) + f(Γ2), (1.10)

and one can show that Eq. (1.9), with a constant k, is the only continuous solution of
this functional equation.

Third Law: In the T→ 0 limit, thermodynamic systems approach orderly states,
and the entropy should have a nonsingular behavior, independent of pressure or
volume.

This limit can be well defined only if Nernst’s theorem,

lim
T→0

CV(T) = 0, (1.11)

holds, where

CV =

(
∂U
∂T

)
V

(1.12)

is the specific heat at constant volume. We shall see that quantum mechanics is
instrumental to this effect. A nonzero limit for CV would indeed imply, for a
reversible transformation performed at fixed volume, a logarithmically divergent

ΔS =
∫
γ(A,B)

CV(T)
dT
T

(1.13)

as the state A approaches T = 0.

1.2 Thermodynamic Potentials

We can now recall a number of facts concerning thermodynamic potentials, while
confining our attention to reversible transformations. The various thermodynamic
potentials are characterized by different groups of natural variables. While the
entropy remains constant in reversible transformations of isolated systems, the other
potentials that we recall here, the enthalpy and the Helmholtz, Gibbs, and Grand
potentials, remain constant when different groups of control variables are held fixed.

Let us begin from the internal energy U, for which the first and second laws imply
the differential form

dU = T dS − P dV + μ dN, (1.14)

where we have also introduced the chemical potential μ, a possibly less familiar
thermodynamic function that is not extensive like V, U, A, or G, but is intensive like

1 Extensive quantities grow proportionally to the size of the system, while intensive ones are independent
of it.
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T and P. As we shall see, it characterizes diffusive equilibria. This expression also
manifests the natural variables for U, which are S, V, and N, and the corresponding
derivatives,

T =
(
∂U
∂S

)
V,N

, P = −
(
∂U
∂V

)
S,N

, μ =

(
∂U
∂N

)
S,V

, (1.15)

therefore have a universal meaning. Moreover, demanding that mixed derivatives
coincide leads to the Maxwell relations(

∂T
∂V

)
S,N
= −

(
∂P
∂S

)
V,N

,
(
∂T
∂N

)
S,V
=

(
∂μ

∂S

)
V,N

,(
∂P
∂N

)
S,V
= −

(
∂μ

∂V

)
S,N

. (1.16)

The specific heat at constant volume CV, which we first introduced in Eq. (1.12), can
be related to U and S according to

CV =

(
∂ U
∂ T

)
V,N
= T

(
∂ S
∂ T

)
V,N

. (1.17)

Alternatively, one can invert Eq. (1.14) to regard the entropy as a thermodynamic
potential with natural variables U, V, and N, so that

dS =
dU
T
+

P
T

dV −
μ

T
dN, (1.18)

and therefore

1
T
=

(
∂S
∂U

)
V,N

,
P
T
=

(
∂S
∂V

)
U,N

,
μ

T
= −

(
∂S
∂N

)
U,V

. (1.19)

One can now define the enthalpy,

H = U + P V, (1.20)

and Eq. (1.14) implies that

dH = T dS + V dP + μ dN, (1.21)

so that

T =
(
∂H
∂S

)
P,N

, V =
(
∂H
∂P

)
S,N

, μ =

(
∂H
∂N

)
S,P

. (1.22)

The equality of mixed derivatives now implies the additional Maxwell relations(
∂T
∂P

)
S,N
=

(
∂V
∂S

)
P,N

,
(
∂T
∂N

)
S,P
=

(
∂μ

∂S

)
P,N

,(
∂V
∂N

)
S,P
=

(
∂μ

∂P

)
S,N

. (1.23)

One is also led to define the specific heat at constant pressure CP, according to

CP =

(
∂ H
∂ T

)
P,N
= T

(
∂ S
∂ T

)
P,N

. (1.24)
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7 Thermodynamic Potentials

The Helmholtz free energy is then defined as

A = U − T S, (1.25)

and Eq. (1.14) implies that

dA = − S dT − P dV + μ dN, (1.26)

so that

S = −
(
∂A
∂T

)
V,N

, P = −
(
∂A
∂V

)
T,N

, μ =

(
∂A
∂N

)
T,V

. (1.27)

The equality of mixed derivatives now implies the additional Maxwell relations(
∂S
∂V

)
T,N
=

(
∂P
∂T

)
V,N

,
(
∂S
∂N

)
T,V
= −

(
∂μ

∂T

)
V,N

,(
∂P
∂N

)
T,V
= −

(
∂μ

∂V

)
T,N

. (1.28)

The Gibbs free energy is defined as

G = A + P V, (1.29)

and therefore

dG = −S dT + V dP + μ dN, (1.30)

so that

S = −
(
∂G
∂T

)
P,N

, V =
(
∂G
∂P

)
T,N

, μ =

(
∂G
∂N

)
T,P

. (1.31)

The equality of mixed derivatives now implies one more set of Maxwell relations:(
∂S
∂P

)
T,N
= −

(
∂V
∂T

)
P,N

,
(
∂S
∂N

)
T,P
= −

(
∂μ

∂T

)
P,N

,(
∂V
∂N

)
T,P
=

(
∂μ

∂P

)
T,N

. (1.32)

There is something interesting here: insofar as G is an extensive function, it should
scale proportionally to the number N of particles, but it is naturally a function of N
and of the two intensive variables T and P. As a result

G(T, P, N) = N μ(T, P), (1.33)

so that G and the chemical potential μ are intimately related, and consequently

dμ = −s dT + v dP, (1.34)

with

s =
S
N

, v =
V
N

(1.35)

describing the specific entropy and the specific volume, or the entropy and volume
per particle.

Finally, the Grand Potential is defined as

Ω = A − μN, (1.36)
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and therefore

dΩ = −S dT − P dV − N dμ, (1.37)

so that

S = −
(
∂Ω

∂T

)
V,μ

, P = −
(
∂Ω

∂V

)
T,μ

, N = −
(
∂Ω

∂μ

)
T,V

. (1.38)

The equality of mixed derivatives now implies a final set of Maxwell relations(
∂S
∂V

)
T,μ
=

(
∂P
∂T

)
V,μ

,
(
∂S
∂μ

)
T,V
=

(
∂N
∂T

)
V,μ

,(
∂P
∂μ

)
T,V
=

(
∂N
∂V

)
T,μ

. (1.39)

Again, insofar as Ω is an extensive function, which should depend on V and on the
two intensive variables T and μ,

Ω(T, V, μ) = − P(T, μ) V, (1.40)

on account of Eq. (1.37).
Note that an additional step to build Ω + PV would apparently lead to a

thermodynamic potential depending only on the intensive variables (T, P, μ), which
can only vanish by consistency. In this fashion one can recover Eqs. (1.33) and (1.34).

1.3 Comparison between CP and CV

We can now explore some important consequences of thermodynamics, and to
begin with we would like to compare the two types of specific heats that we have
encountered in Eqs. (1.17) and (1.24). There is a nice trick to do this, which is used
at length in the classic text of Landau and Lifshitz. It rests on an important property of
Jacobians, which satisfy the chain rule like ordinary derivatives. Jacobians associated
to 2 × 2 matrices of the type

∂(A, B)
∂(C, D)

= det

��������
(
∂A
∂C

)
D

(
∂A
∂D

)
C(

∂B
∂C

)
D

(
∂B
∂D

)
C

�������� (1.41)

can be used to express CV as

CV = T
∂(S, V)
∂(T, V)

= T
∂(S, V)
∂(T, P)

∂(T, P)
∂(T, V)

= T
∂(S, V)
∂(T, P)

(
∂P
∂V

)
T

. (1.42)

Expanding the remaining determinant gives

CV = T
(
∂S
∂T

)
P
− T

(
∂S
∂P

)
T

(
∂P
∂V

)
T

(
∂V
∂T

)
P

, (1.43)

and the first term is CP, so that one can conclude that

CV = CP + T
[(
∂V
∂T

)
P

]2 (
∂P
∂V

)
T

, (1.44)
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9 Fluctuations

where we have used (
∂P
∂V

)
T

(
∂V
∂P

)
T
= 1 (1.45)

and a Maxwell relation in Eq. (1.32). We shall prove shortly that, in general,(
∂P
∂V

)
T
≤ 0, (1.46)

so that, under the same circumstances, CP ≥ CV, and for a stable equilibrium, as we
are about to see, the strong inequality CP > CV holds. In Chapter 6 we shall elaborate
on some subtleties that emerge in the presence of first-order phase transitions.

1.4 Fluctuations

We can now discuss three types of equilibrium conditions for a pair of subsystems,
and their important implications.

1. Thermal Equilibrium
Let us consider two subsystems S1 and S2 of a given isolated system S of fixed
volumes, in thermal contact with each other and weakly interacting, so that for the
entropy one can conclude that S � S1+S2. If the energy of subsystem S1 undergoes
a variation dU1, the energy of subsystem S2 thus undergoes the opposite variation
dU2 = −dU1. Consequently, the total entropy change is

dS =
(
∂S1

∂U

)
V

dU1 +

(
∂S2

∂U

)
V

dU2 =

(
1
T1
− 1

T2

)
dU1. (1.47)

We know from the second law of thermodynamics that for an isolated system
dS ≥ 0, and therefore if dU1 > 0 one can conclude that T1 < T2, and vice versa.
In other words, heat flows from warmer bodies to colder ones. If the two systems
are in thermal equilibrium, S does not vary and the two temperatures T1 and T2

coincide. This fact is often referred to as the zeroth law of Thermodynamics.
2. Mechanical Equilibrium

Let us again consider two subsystems S1 and S2, in thermal equilibrium and thus
at the same temperature T, but in mechanical contact with each other via a moving
partition and again weakly interacting, so that S � S1+S2. Hence, if the volume of
subsystem S1 undergoes a variation dV1, the volume of subsystem S2 undergoes
the opposite variation dV2 = −dV1. The total entropy change is thus

dS =
(
∂S1

∂V

)
T

dV1 +

(
∂S2

∂V

)
T

dV2 =
1
T

(P1 − P2) dV1. (1.48)

We know from the second law of thermodynamics that for an isolated system
dS ≥ 0, and therefore if dV1 > 0 one can conclude that P1 > P2, and vice versa.
In other words, we have recovered another well-known fact: the partition moves
toward the region with lower pressure. In equilibrium, the two pressures P1 and
P2 coincide.
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10 Elements of Thermodynamics

3. Diffusive Equilibrium
Consider now two systems in equilibrium that can exchange particles, and
consider variations dN1 and dN2, in the same spirit of what we did above, for
a pair of systems in thermal and mechanical equilibrium, and thus at the same
temperature T and at the same pressure P. This leads to

dS =
(
−μ1 + μ2

) dN1

T
, (1.49)

so that demanding that dS ≥ 0 one can deduce that μ1 ≥ μ2 if dN1 < 0, and
vice versa. In other words, the particles tend to move into the system with lower
chemical potential, and in equilibrium the two chemical potentials μ1 and μ2

coincide.

1.5 Stability

We can now turn to fluctuations, and to this end let us consider a subsystem 1 of a
large system 2, which should be in thermal and mechanical equilibrium within it,
thus having the same temperature T0 and the same pressure P0 as the larger system,
according the first and second equilibrium conditions given in Section 1.4. Our task
is to compute the variation of the internal energy U, which depends naturally on the
thermodynamic variables that are not fixed a priori, S and V. Keeping terms up to
second order while leaving implicit, for brevity, the variables that are kept fixed, the
result is

dU1 = T0 dS1 − P0 dV1 (1.50)

+
1
2

[
∂2U1

∂S2 dS2
1 + 2

∂2U1

∂S ∂V
dS1 dV1 +

∂2U1

∂V2 dV2
1

]
.

Since T0 and P0 are fixed, this expression can be recast in the more suggestive form

dG =
1
2

[
∂2U1

∂S2 dS2
1 + 2

∂2U1

∂S ∂V
dS1 dV1 +

∂2U1

∂V2 dV2
1

]
, (1.51)

so that a stable equilibrium demands that

∂2U1

∂S2 dS2
1 + 2

∂2U1

∂S ∂V
dS1 dV1 +

∂2U1

∂V2 dV2
1 > 0. (1.52)

This condition translates into the following inequalities for the first coefficient and
the discriminant:

∂2U1

∂S2 > 0,

∂2U1

∂S2
∂2U1

∂V2 −
(
∂2U1

∂S ∂V

)2

> 0, (1.53)

and taking into account that(
∂2U1

∂S2

)
V
=

(
∂T
∂S

)
V
=

T
CV

, (1.54)
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the first condition that one can extract from the inequality is

CV > 0. (1.55)

One can then recast the second inequality of Eqs. (1.53) in the form

∂(T, P)
∂(S, V)

≡
(
∂T
∂S

)
V

(
∂P
∂V

)
S
−

(
∂T
∂V

)
S

(
∂P
∂S

)
V
< 0, (1.56)

and having identified this expression with a Jacobian, one can apply the chain rule to
turn it into

∂(T,P)
∂(T,V)

∂(S,V)
∂(T,V)

≡

(
∂P
∂V

)
T(

∂S
∂T

)
V

=
T

CV

(
∂P
∂V

)
T
< 0. (1.57)

The second condition that follows from stability is therefore(
∂P
∂V

)
T
< 0. (1.58)

This was also the missing information required to conclude that CP >CV in
Section 1.3.

1.6 Specific Heat and Compressibility

One can now deduce an important relation between the isothermal and isentropic
compressibilities, defined as

κT = −
1
V

(
∂V
∂P

)
T

, κS = −
1
V

(
∂V
∂P

)
S

, (1.59)

and the specific heats. Indeed, the identity

∂(S, P)
∂(T, P)

∂(T, V)
∂(S, V)

=
∂(T, V)
∂(T, P)

∂(S, P)
∂(S, V)

, (1.60)

which is implied by the chain rule of Jacobians, translates into the relation(
∂S
∂T

)
P(

∂S
∂T

)
V

=

(
∂V
∂P

)
T(

∂V
∂P

)
S

, (1.61)

which is equivalent to

CP

CV
=
κT

κS
. (1.62)

Note that, as a result of Eqs. (1.44) and (1.46), this implies that for stable systems
the isothermal compressibility is normally larger than the isentropic compressibility.

Another interesting relation links the isothermal compressibility to the chemical
potential. Let us note that, at a fixed temperature (omitting for brevity the corre-
sponding subscript in the next equation),(

∂P
∂V

)
N
=
∂(P, N)
∂(P, V)

∂(P, V)
∂(V, N)

= −
(
∂N
∂V

)
P

(
∂P
∂N

)
V

. (1.63)
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12 Elements of Thermodynamics

Now using (
∂N
∂V

)
P,T
= n (1.64)

and the last Maxwell relation in (1.28), one is led to(
∂P
∂V

)
N,T
= n

(
∂μ

∂V

)
N,T

, (1.65)

or equivalently to

−V
(
∂P
∂V

)
N,T
= n2

(
∂μ

∂n

)
N,T

, (1.66)

since μ, an intensive function, depends on V via the combination n = N
V . Therefore,

the isothermal compressibility and the chemical potential are related to one another
according to

1
κT
= n2

(
∂μ

∂n

)
N

. (1.67)

The stability condition κT > 0 thus guarantees that the chemical grows with the
density n. Hence, adding a new particle becomes more costly as the gas becomes
denser. The effect is naturally less significant for systems with larger κT, which are
more easily compressible.

1.7 The Ideal Monatomic Gas

This system plays a central role in thermodynamics and statistical physics and will
recur in the following chapters. It provides results of universal value for monatomic
gases at high temperatures and small densities. The equation of state for the ideal gas
is, as is well known,

P V = N kB T, (1.68)

while the specific heat at constant volume is

CV =
3
2

N kB, (1.69)

and Eq. (1.44) then implies that

CP =
5
2

N kB. (1.70)

The internal energy for this system is simply

U =
3
2

N kB T, (1.71)

and is independent of V at a given temperature. Consequently

dS =
3
2

N kB
dT
T
+

P
T

dV (1.72)
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can be integrated to obtain

S =
3
2

N kB log

(
T
T0

)
+ N kB log

(
v

Nv0

)
, (1.73)

where the dependence on the specific volume v makes S properly extensive, a point
that we shall elaborate upon in Chapter 2. The two reference values T0 and v0 make
the arguments of the logarithms properly dimensionless, while also introducing an
additive constant in S, which is so far arbitrary. In Chapter 2 we shall connect them to
microscopic properties of the gas. Moreover, as we shall see in Chapter 8, polyatomic
molecules behave in a similar fashion at room temperatures and small densities, but
have different values of their specific heats.

Bibliographical Notes

More details on various aspects of thermodynamics can be found in many books
listed in the bibliography, for instance in [16, 36] or in [54].

Problems

1.1 Show that

dS =
CV

T
dT +

(
∂P
∂T

)
V

dV,

dU = CV dT +
[
T
(
∂P
∂T

)
V
− P

]
dV.

1.2 Compute the efficiency of an ideal Carnot cycle (Figure 1.2) performed by a
perfect gas, which is defined, as is well known, by pair of isothermal curves
and a pair of adiabatic ones.

1.3 Compute the efficiency of an ideal Joule cycle (Figure 1.2) performed by a
perfect gas, which is defined by a pair of adiabatic curves, together with a pair
of isobaric ones. Express it as a function of the constant γ = CP

CV
and of the

ratio of the two pressures, P2, and P1, of the isobaric transformations.

V

P

P1

P2

V

P

Figure 1.2 Reversible (Left) Carnot and (Right) Joule cycles.
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V1V2 V

P

V1V2 V

P

V3

Figure 1.3 Reversible (Left) Otto and (Right) Diesel cycles.

1.4 Compute the efficiency of an ideal Otto cycle (Figure 1.3) performed by a
perfect gas, which is defined by a pair of adiabatic curves and a pair of
isochoric ones. Express it as a function of γ = CP

CV
and the compression rate

r = V1
V2

.

1.5 Compute the efficiency of an ideal Diesel cycle (Figure 1.3) performed by a
perfect gas, which is defined by a pair of adiabatic curves, together with an
isobaric and an isochoric one. Express it as a function of the constant γ = CP

CV

and the compression rates r = V1
V2

and α = V3
V2

.

1.6 Prove that two adiabatic curves in the (P, V) plane cannot intersect for any
given substance.

1.7 Compute the variation of the Gibbs free energy along a reversible isothermal
compression of a perfect gas of N particles, if the initial and final pressures are
related by P2 = σP1.

1.8 Consider a system whose chemical potential takes the form

μ = kBT log P + g(T),

where g(T) is a known function.

1. Derive the corresponding equation of state.
2. Compute the internal energy.

1.9 A system is described by the grand potential

Ω = −αVT
5
2 e

μ
kBT ,

where α is a constant parameter.

1. Derive the corresponding equation of state
2. Obtain the chemical potential and the Helmholtz free energy.

1.10 Consider a system of N particles that, at a temperature T0, performs work
according to

L = NkBT0 log
V
V0

during an isothermal expansion from a volume V to a volume V0, and whose
entropy is
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15 Problems

S = NkB
V0

V

(
T
T0

)α
.

1. Find the equation of state of the system.
2. Find the corresponding Helmholtz free energy.
3. Find the work performed by the system during an isothermal expansion at

any given temperature T.

1.11 Consider a system that satisfies the relation PV=NkBT0 at a given temperature
T0 and whose entropy is given by

S = 4NkB

(
T
T0

)3

log
(P0

P

)
.

What is the equation of state for this system? Compute CP and CV explicitly,
and verify that they are consistent with Eq. (1.44).

1.12 Consider two ideal monatomic gases with the same number of particles, N,
initially at temperatures T1 and T2 and in mechanical equilibrium in nearby
vessels separated by a moving insulating partition. What is the entropy change
of the system when it reaches equilibrium after the partition is removed?

1.13 Consider two ideal monatomic gases containing the same number of particles,
N, and held at the same temperature T but initially in different volumes V1

and V2 in nearby vessels. Compute the total entropy variation of the system
when it reaches equilibrium after the partition between the two nearby vessels
is removed. How can one interpret the result?

1.14 N molecules of an ideal gas contained in an isolated vessel are compressed
adiabatically from a volume 2V to a volume V. A valve is then opened, so
that the system returns to occupy the volume 2V. Given the initial and final
temperatures Ti and Tf, compute the total entropy variation of the system and
the work performed by the gas. How can one interpret the result?

1.15 Consider a system of N particles for which

P =
NkBT

V
+ f(T)

N2

V2 .

Compute the heat exchange Q and the work performed at constant T when the
volume changes reversibly from V1 to V2.

1.16 Consider a system whose equation of state is

V = V0 e
T

T0
− P

P0 .

1. Compute CP − CV for the system.
2. Show that in this case CV is only a function of T.

1.17 The efficiency of a refrigerator is defined as the ratio

ξ =
�����Q2

W

�����
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16 Elements of Thermodynamics

between the heat absorbed and the work needed to do it. Compute the efficiency
of the Carnot cycle of Figure 1.2 working in reverse as a refrigerator between
two temperatures T1 and T2 > T1.

1.18 Repeat the preceding analysis for a refrigerator undergoing in a similar fashion
the Joule cycle of Figure 1.2.

1.19 Repeat the preceding analysis for a refrigerator undergoing in a similar fashion
the Otto cycle of Figure 1.3.

1.20 Repeat the preceding analysis for a refrigerator undergoing in a similar fashion
the Diesel cycle of Figure 1.3.
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