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A NOTE ON LOCALLY EXPANSIVE AND 
LOCALLY ACCRETIVE OPERATORS 

BY 

R I C A R D O T O R R E J O N 

ABSTRACT. Let X be a Banach space, D an open subset of X 
and Y a complete metric space. Assume that Y is metrically 
convex. For T:D-^Y closed, locally m-expansive and mapping 
open subsets of D onto open subsets of Y, is is shown that y e T(D) 
if and only if there exists x0eD such that d(Tx0, y ) < d{Tx, y) for all 
xedD. 

Let X be a Banach space, / the interval [0, +00) and M+(J) the class of all 
continuous functions m:J->J such that 

(1) m( r )>0 for each re J, and 
(2) r " m ( r ) d r = +oo. 
It is a well-known fact ([1, P. 62]) that if a local homeomorphism T of X into 

a Banach space Y is a local expansion, in the sense that for a fixed constant 
c > 0 each point x of X has a neighborhood Ux such that 

(*) c\\u-v\\<\\Tu-Tv\\ 

for each u and u in Ux, then T(X) = Y 
In [2], Kirk and Schôneberg have proved that a similar result can be 

obtained within the class of mappings whose graphs are closed subsets of 
X x Y. Their approach allowed them to carry out an exhaustive study of some 
discontinuous mappings defined only on the closure of an open subset of X. 

This note is a continuation of the Browder-Kirk-Schôneberg program; 
unlike the methods used in [1] or [2], ours relies heavily on the theory of 
differential inequalities. 

If D is a subset of X, then D and dD denote, respectively, the closure and 
boundary of D in X. Recall that a mapping T:D —> Y is said to be closed if for 
any sequence {xn : n e N } ç D with x n - ^ x e D and Txn —» y as n -* oo9 it follows 
that Tx = y. 

DEFINITION. A nonlinear operator T mapping a subset D of a Banach space 
X into a metric space Y is said to be locally m-expansive, m eM + ( J ) , if each 
point x e D has a neighborhood L/x such that 

(+) m(Max{||u||,|H|})||u-u||<d(Tii, Tu) 

for each u and u in Ux. 

Received by the editors December 14, 1981 and in revised form, April 19, 1982. 
AMS (MOS) subject classifications (1970): Primary 47H06; 47H15 
© 1983 Canadian Mathematical Society. 

228 

https://doi.org/10.4153/CMB-1983-036-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1983-036-5


LOCALLY EXPANSIVE OPERATORS 229 

Following Menger [3], a metric space Y is said to be metrically convex if for 
all x and y in Y with x^y there exists z in Y, distinct from x and y, such that 
d(x, y) = d(x, z) + d(z, y). 

Our main purpose in this note is to prove the following: 

THEOREM 1. Let X be a Banach space, D an open subset of X and Y a 
complete metric space. Assume that Y is metrically convex. Let T:D —> Y be a 
closed locally m-expansive mapping on D. If T maps open subsets of D into open 
subsets of Y, then for y eY the following are equivalent: 

(1) y e T ( D ) 
(2) There exists x0eD such that d(Tx0, y)<d(Tx, y) for all xedD. 

As a consequence of Theorem 1, we have the following: 

COROLLARY 1. Let X be a Banach space and Y a complete metric space. 
Assume that Y is metrically convex. Let T.X-+Y be a closed locally m-
expansive mapping. If T maps open subsets of X into open subsets of Y, then 
T(X) = Y. 

Proof of Theorem 1. We only need to prove that (2) —» (1). Following Kirk 
and Schônberg [2] we let À :[0, d(Tx0, y)]—> Y be an isometry such that 
A(0) = Txo and X(d(Tx0, y)) = y. The existence of A is assured by Menger's 
result [3]. Since T is assumed to be an open locally m-expansive mapping, we 
can conclude the existence of a positive number r, 0<T<d(Tx o , y), and a 
unique continuous map a : [0, r) —> D such that cr(0) = x0 and Tcr(t) = A(t) for 
each t, 0 < f < r . 

LEMMA 1. If L (a; T) = inf{m(||a(r)||):0<r<T} then 

L ( O - ; T ) > 0 . 

Proof of Lemma 1. For fixed t e [0, r) let s > 0 be such that condition (+) is 
satisfied for each cr(f + r), 0 < r < s . Then 

m(Max{||c7(f)|U|(7(r + r)||}) ||cr(t)-<r(f + r)||< d(À(t), À(f +r)) = r. 

Consequently, 

m(||o-(0||)r>+lk(0INi O < « T 

where D+v is the right-upper Dini derivative of the function v. Let 

S(t)= m(x) dx. 
•4o-(0)|| 

We can easily see that S is an increasing mapping whose range R(S) contains 
the interval /. If for each t e [0, r) we let 

2(f)-S(||o-(0||) and <P(t) = t, 
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then 

2(0) = *(0) 

and 

D + 0 ( O ^ l ^ D + 0 ( f ) 

for each t in [0, r). Therefore 

S(||cr(t)| |)<*(t)<T 0 < t < r 

and then 

Ho-WNS-V) 0<r<r. 
Thus 

{| |a(t) | | :0<r<T}^[0,S-1(T)]. 

The conclusion of the lemma is now an immediate consequence of the 
continuity and positivity of m on J. • 

LEMMA 2. If 0 < f, s < T, then 

WaiD-ais^Uairr^t-sl 

Proof of Lemma 2. Assume f < s. By compactness of {cr(r) : t < r < s}, we can 
choose feKLo such that 

f = f o < ' i < ' 2 < - —<tn = s 

and 

mCMaxiHo-COll, ||o-(ti+1)||}) ||a(li) - <r(ti+1)\\< fi+1 - * 

for i = 0 , 1 , . . . , n — 1. By Lemma 1. 

L(a, T) Ho-(ti) - or(ri+1)|| < ti+1 - tt 

for i = 0 , 1 , . . . , n — 1. Therefore 

| |o-(0- o-(s)|| ^ " i f ||or(l,) - <r(fi+1)|| 
i = 0 

n - 1 

= L(c r ;T) - 1 | t - s | . • 

Proof of Theorem 1 completed: By Lemma 2 and the assumption that T is 
closed on D we can conclude that 

lim o-(f) = JC e D 
t T T 
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exists, and 

TX = A(T). 

If JC e dD, by assumption (2), 

d(Tx,y)>d(Txo9y) = \d(Txo,y)-T\ + T 

= d(A(d(Iio,y)),A(T)) + T 

= d(y,Tx) + r 

>d(y,Tx). 

This contradiction shows that x is in the interior of D. Thus, by letting cr(r) = x, 
we have that a : [0, T] —> D is continuous and 

Tcr(s) = \(s) 0 < s < r 

Let M denote the set of all f in [0, d(Tx0, y)] for which there exists a unique 
continuous map a : [0, t] —> D such that 

Ta(s) = k(s) 0 < s < f . 

Then M is nonempty ([0, r ] ç M ) and since T is an open locally m-expansive 
mapping we also have that M is open in [0, d(Tx0, y)]. A conjunction of 
Lemmas 1 and 2 and the argument above will also prove that M is closed. 
Therefore there exists v:[0, d(Tx0, y ) ] - * D such that Ta(t) = \(t)9 0 < f < 
d(Tx0, y); hence y = A(d(Tx0, y)) = To-(d(Tx0, y)) and o-(d(Tx0, y))eD, com­
pleting the proof of Theorem 1. • 

We conclude this note with a domain invariance result for locally m-
expansive mappings of accretive type. It should be pointed out that this result 
is a corollary of Schôneberg's results [4]. 

Let D be a subset of a Banach space X and F the normalized duality 
mapping of X to 2X*. An operator T:D-+X is locally m-strongly accretive if 

(1) meC^Cf), the class of all positive continuous functions on J. 
(2) Each point xeD has a neighborhood Ux such that 

(**) m(Max{||w||,||i;||})||M-i;||2<(TM-TD, w) 

for each u and v in Ux and each w in F(u-v). 

THEOREM 2. Let D^X be open and T.D-+X be a continuous locally 
m-strongly accretive operator. Then T(D) is open. 

Proof. Let x0 e D and y0 = Tx0. Let r > 0 be such that(**) is satisfied on 
B(x0, r). Since 

inf{m(Max[||x||, ||x0||]) : ||JC - x0|| = r}>0 

and 

\\Tx - y0|| ^ m(Max[||x||, ||x0||]) II* " *oll 
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if ||x - x0|| = r, we conclude that the number 

o- = inf{ | |TX-y0 | | : | |x-x0 |Hr} 

is strictly positive. As in Schôneberg [4], we can prove that if 2 >0, 2(1 + r) < 8 
and 0 < c < 2, then the equation 

(***) Tx + ex = y + cx0 

has a solution xc e JB(X0, r) for each y e B(y0, 5 ) . 
Fix now y e B(y0, 2) and for each 0 < c < 5 let xc e B(x0, r) be the solution 

of (***) corresponding to y and c. Then 

L I k - *e|| < \c - c\ ||x0|| + ||cxc - cxc-|| 

for 0 < c , c<2 and L = irf{m(s):0<s<||xo | | + r}. Since ||xc||<||x0|Kr, we 
conclude 

(i) xc —> x as c -^ 0+, and 
(ii) Txc -> y as c -> 0+. 

By continuity of T, Tx = y. The theorem will be proved if we show that 
xeB(x 0 , r). In fact, 

l|Tx-y0|Hly-yoll 
< 2 ( l + r) 

= inf{||Tz-yo||: | |z-x0 | | = r}. 

This inequality shows that ||x —x0||<r, and the proof is completed. • 
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