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DENSITIES AND MEASURES OF LINEAR SETS 

BY 

B. G. A. KELLY 

1. Introduction. If 7n, Iœ denote the intervals [0, «), [0, oo) respectively, we 
propose to examine the properties of an upper and lower density 

(1) D*miJ; S] 4*lim sup w > < ^ J"> („ _> oo) 

(2) D,mix);S]^tlimmîm^r'In) ( „ -*co) 

of a set S belonging to the power set ^ ( / œ ) of 1^ where m*,m* denote the outer 
and inner (linear) Lebesgue measures. (The left sides of (1) and (2) will usually be 
abbreviated to D*(S) and D%(S).) With this rather specialized definition of upper 
and lower density, we shall nevertheless find it possible to reconcile the earlier 
work of Knopp [3] on densities of arbitrary subsets of a fixed interval / = [a, /?) 
with the more recent work of Buck [1], Hintzman [2], and Niven [4] on densities 
of (infinite) subsets of the set of positive integers Z+. In the space SP{I^) we can 
introduce the notion of a homogeneous set, which possesses properties corre­
sponding not only to those of Knopp's homogeneous sets on ^ ( [ a , /?)) but also 
to those of Niven's "uniformly distributed" sequences of nonnegative integers; 
and which, moreover, can be used to obtain their results. First, we state some of 
the more obvious general properties of D* and D* : 

Property (i). D*(S) is a finitely subadditive outer measure on ^ (/«,). 
Property (ii). D*(S)=l— D*(S() is the inner measure corresponding to D*(S). 
If Se^ ( [oc , j8)), then the correspondence SW|/?—a|-1(S—a) associates with 

each 5 e ^ ( [ a , /?)) a subset of the fixed interval Ix and so, without essential loss of 
generality, we shall consider densities of subsets of I±. 

Property (iii). If S e ^{lx) and if S=S+Z, then 

D*(S) = m*(S) = d7l(S), 

where dh(S) is the density of S in Il9 as defined by Knopp [3, p. 412]. 
Property (iv). If S e 0>(Z+) and we define 5 f = \Jkes [k-l, k), then 

D*(Sf) = lim sup - 2 1 = f**(S), 
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where JU*(S) is the upper density of S in ^ ( Z + ) , as defined by Hintzman [2, p. 
133]. If we introduce the class jfl of all measurable sets and the class 3) of all sets 
having a density, i.e., 

(3) Jt = {S e ^ ( 7 J | VZ e ^ ( / J , D*(X) = D*(X n S)+D*(X n Sc)} 

and 

(4) ® = { S e ^ ( 7 J | D*(S) = D*(S) = 7)(S), say}, 

then, on selecting X=Io:i in (3), we see that S e Ji^=>S e 2, or Ji <= ç% i n fac^ 
by a routine adaptation of Hintzman's proof of his Theorem 2, we have 

Property (v). JÏ^Q) and S e J o D * ( ^ ) = ^ ( 5 ) = 0 or 1. 
Property (vi). If S e ^ ( Z + ) and 5 f is defined as in (iv), then Property (v) is 

Hintzman's principal result. [2, Theorems 1 and 2.] 

2. Homogeneity. 

DEFINITION 1. S e SP(J^) is said to be upper homogeneous modulo k of upper 
density D*(k, S) if, and only if, 

(5) D*(/c, S) = ^ 2)*(S n 7(fc)) 

is independent of the particular choice of subinterval 7 of 4 , where I(k)=I+kZ. 
We define lower homogeneity modulo /: analogously by replacing "upper" by 
"lower" everywhere, 7)*(/t, S) by 7)*(£, S) and D*(S n /(£)) by / ^ ( S n /(£)), 
in (2.5). 

REMARK. If we select I=Ik in (5), then 

(6) D*(fc,S)= D*(S); 

whence D*(k, S) and T)^/:, S) are both independent of k and may be replaced 
by D*(S) and 7)*(S), respectively. 

For our discussion of homogeneous sets it is convenient to introduce classes 
H*(k), H*(k)9 H\k), 77*(oo), and 77* (oo), where H*{k) and H*(k) are the classes 
of all subsets of 7TO which are respectively upper and lower homogeneous modulo 
k. Furthermore, H'(k)=H*(k), n77*(£), and 77*(oo)=ni<*00 H*(k)9 with 
H*(oo) defined analogously. Elements of 77*(GO) and H*(co) are referred to as 
being upper homogeneous and lower homogeneous, respectively. 

REMARK. Clearly 5 = 7 ^ is an element of H'(co) = f)™=1 H'(k), and so none of 
the classes H'(k), H*(k), H*(k), 77*(oo), and H^(cc) is trivially empty. A less 
obvious example with SeH'(co) is given by S=\J£=1 [nO,nd + oi), where 
0<oc<# and 6 is an irrational element of 7l5 (see Example 4 below). For the property 
of homogeneity itself, we introduce a variant on Definition 1 designed so that the 
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existence of the limit on the left side of (7) automatically excludes certain un­
interesting sets S with D(S)=0 [e.g. S=U£Li [n2k,n2k+l) e H*(oo) has upper 
density D*(S)=09 but cannot be "homogeneous" because all its elements lie in 
the interval [0, 1) modulo k]. 

DEFINITION 2. S e 0*(Im) is homogeneous modulo k o 

,~ ,. m(S n I(k) n In) \I\ _r 

(7) lim — — = -L— , for all subintervals I of Ik. 
n-« m(Snln) \Ik\ 

Let H(k) denote the class of all elements of ^(1^) which are homogeneous modulo 
k and put H(cx>)=^f\ksgil H(k). We shall refer to H(co) as the class of all homo­
geneous subsets of 7^. 

REMARK. Clearly, if D(S) exists (i.e. D*(S)=D*(S)) and if 2)(S)>0, then (7) 
may be written as follows : 

S s H(k)o D(S) = ^D(S n I(fc)), 

is independent of the choice of subinterval I of Ik. 
The following examples serve to distinguish the classes H(k), H'(k), and H(co). 

EXAMPLE 1. Let S be an extremal subset ofIl9 (i.e. by classical measure theory), 
35 <= h such that m*(S n I)=\I\ and m*{S n 7)=0, for all I c /1# Then i e 
#*(£) but £<£#(£). 

EXAMPLE 2. Let S=LC=o C/iAr, /ifc+1). Then D(S n 7(l)/|/|=Ar-\ for all sub-
intervals 7 of /i and so *S e H(l). On the other hand, note that 

^DfSnim-l1 fo r / = = [ ( U ) 

l / l ^ ' ^ l o for J = [ l , 2 ) , 

whence S $ H(k) and 7/(1) £ #(&). 

EXAMPLE 3. Let 5=(Jr*o [rk+ar9 rk+ar+l)9 where ar=residue of r modulo fc 
with 0^ar<A:. Then S e H(k). However S $ H(k2)9 because 

Z)(5n/(fe2))-|V|/|/| = 0, k-1 for / = [1,2), [0,1), 

respectively. Hence H(k) $ H(k2). 
We propose now to reconcile homogeneity in SP{J^) with that already defined 

in (a) ^(A) and (b) ^(Z+). 

Case (a). If I c Ix and if S e ^(1^), then Knopp [3] defined the density of S 
in I as dj(S)=m*(S O /)/ | / | . If further, dj(S) is a constant J independent of I 
for all I c 71? then 5 will be said to be Knopp-homogeneous. He showed [3] that S 
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is "Knopp-homogeneous" if, and only if, d=0 or 1. A complete characterization 
of Knopp-homogeneity in terms of upper homogeneity modulo 1 is provided by 

PROPOSITION 1. § e H*(l)oD*(£)=0, or loS is Knopp-homogeneous. 

Proof of Proposition 1 rests upon the fact that if D*(S)?*0 (i.e., m*(S)9*Q), then 

§ e j f f* ( l )o D*(S n i(i))ID*(S) = \I\ VJ <= il9 

om*(S n I)/m*(S) = |/ | v / <= ll9 

odj(S) = m*(S) is independent of/ for all J <= j l 9 

<=> S Knopp-homogeneous, 
<=>m*(S) = l and D*(§) = 1. 

Owe (b). If S = { x n | « G Z + } is a set of nonnegative integers then we may 
choose the natural ordering on S and regard it as a strictly increasing sequence of 
positive integers to be denoted in what follows by S=(xn). Following Niven [4], 
we let A(n;j, k) denote the number of terms xi of the sequence S which satisfy the 
conditions x{<n and JX^EEJ mod k; and A(ri) the number of elements of S which 
satisfy x{<n. He defined S to be uniformly distributed modulo k (k eZ+), when­
ever 

(8) limSnlM) = ± for j=U2,...,k. 
n-oo A(n) k 

A characterization of uniform distribution modulo k in terms of homogeneity 
modulo k is furnished by the following proposition. 

PROPOSITION 2. (i) Sf e H(k)oS uniformly distributed modulo k. 
(ii) Sf e H(co)oS is uniformly distributed (i.e., uniformly distributed modulo k 

for all k). 

Proof of Proposition 2 is simply a matter of examining the definitions; thus 

«t r r / I N 1- m(Sf ni(k) nln) \I\ t l r 

S e H(k) o hm — r^-2 - = — for all J c I 
*->• m(ST n in) | 4 | 

i(U[oc-l,oc) n / ( k ) nln) 
\<xeS / 

r(lJ [ a - 1 , a) HJ t t ) 

l i m - ^ ;—£• = ±± for all J c j f c , 
m l " • — * ~ » <"> » • ' fcl 

m ( U [ a - 1 , a) O [ j - 1 , j ) n IJ 
o lim W , ; - = 7 for ; = 1, 2 , . . . , k, 

n-*oo l 

m t ( U [ a ~ l , a ) n / n ) 

4(n) ~~ fc 

,. A(n;j,k) 1 « - f 

<=> hm —- = - for j = 1, 2, . . . , fc, 

as required. 
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Finally, we shall relate sequences of real numbers which are uniformly distri­
buted modulo 1 in the classical sense, to corresponding sequences of positive 
integers which are uniformly distributed in the sense of (ii), Proposition 2. 

THEOREM 1. Let (xn) be an infinite sequence of real numbers. 
(i) If (xjk) is uniformly distributed modulo 1 (in the classical sense) for each 

keZ+ then the sequence of positive integers ([xn]) is uniformly distributed. (Here 
"[x]" is defined to be the largest integer not exceeding x.) 

(ii) If ([kxn]) is uniformly distributed for each k, then (xn) is uniformly distrib­
uted modulo 1. 

Proof of Theorem 1. For " ( 0 " I follow Niven's idea [4, p. 55], noting that, if 
(xjk) is uniformly distributed modulo 1, then(xw) is uniformly distributed through­
out [0, k) when reduced modulo k. Hence 

A(n) 

2 Xj(k)[([xm])] . 
(9) l im*-1 = 7 for all J=[j,j+1) 

n->oo A(n) k 
j = 0, l , 2 , . . . , f c - l , 

and upon applying the definition of A(n;j, k), we find that the left side of (9) 
reduces to the left side of (8). Hence ([xn]) is uniformly distributed modulo k, in 
Niven's sense. Since (xjk) is uniformly distributed modulo 1 for all k, then 
([xn]) is uniformly distributed. 

For (ii), we observe that if (xn) is not uniformly distributed modulo 1 then 
there exists an interval / = [/r_1, (/+ l)r -1] of Ix where /, r eZ+ such that 

n 

(10) l i m ^ = C \I\ where 0 ^ C < 1. 
n-+oo n 

Then, on proceeding as in (i) and introducing Niven's notation, the condition (10) 
reduces to 

l i m ^(n i i L L ) = = Ç < l ) 

n-oo A(ri) r r 

where ^4(«)=card{xw | xm e ([rxm]) and rxm<ri). Hence ([rxm]) is not uniformly 
distributed modulo r, contrary to hypothesis. 

A consequence of Theorem 1 is an analogue of a result of H. Weyl on the uniform 
distribution of the fractional parts of nk6 (and is, in fact, deduced from it); see 
[4, p. 55] for the case A:=l. 

EXAMPLE 4. For O < a < 0 , where 6 is a fixed irrational element of Ix. 

S= Û [nkd9 nkd+a)eH(oo) 

and ( [«*#]) is therefore uniformly distributed (by Proposition 2). 
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