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Dicke and Goldenberg (1967a) measured the solar oblateness to be c = (5 + 0.7) x 10"5 

and subsequently interpreted this measurement as evidence that the solar interior 
rotates with a period of 1?8. With this interpretation, they then showed that the ob­
served oblateness causes an 8% discrepancy in the Einstein prediction of the perihelion 
advance of Mercury. The stability analysis of Goldreich and Schubert (1967) seems 
to preclude such a fast rotation of the solar interior although magnetic field effects 
could alter their conclusions (Dicke, 1967). More recently Goldreich and Schubert 
(1968) and Fricke (1969) have calculated upper bounds to the solar oblateness essen­
tially by finding the steepest distribution of angular velocity that is consistent with 
secular stability at each point in the equatorial plane of the sun. Fricke's result of 
<rmax= 1.4 x 10~5 is based on a stronger stability criterion than that of Goldreich and 
Schubert who found ffmax=1.4x 10~4; Fricke, however, suggests that this may be in 
error and should actually be <rmax = 3.4 x 10~5. In their calculations of crmax the above 
authors assumed that the outer convective layers of the sun are rotating uniformly 
and that the angular velocity in the interior is a function of the radial distance from 
the center of the sun only. We note that while these assumptions are reasonable, 
neither of them is supported by the observed solar rotation. 

Detailed calculations based on uniformly rotating polytropic models led Anand 
and Fahlman (1968) to suggest that a modest differential rotation extending through­
out the entire sun may explain the observed oblateness without implying a significant 
change in the calculated perihelion advance of Mercury. We report here the results 
of some calculations based on applying the differential rotation law of Stoeckly (1965) 
to solar polytropes. 

The Stoeckly differential rotation formula is 

co = co0 exp(— cs2/R2), (1) 

where co0 is the central angular velocity, s is the cylindrical radial coordinate measured 
from the axis of rotation, R is the solar equatorial radius and the constant parameter 
c determines the amount of differential rotation. If the Rayleigh stability criterion, 
8/8s (cos2)^ 0, is to be everywhere satisfied then we must have c ^ 1. Rayleigh's criterion 
can be stabilized by a suitable gradient of mean molecular weight (Goldreich and 
Schubert, 1967) so that we may expect c> 1 in the evolved solar interior. 

In our calculations we have assumed that the Stoeckly law can be applied throughout 
the entire sun, including the convection zone. This assumption will limit the usefulness 
of our results because the Stoeckly law does not give the observed latitude variation 
in angular velocity on the solar surface. The equator of the sun is observed to be 
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rotating faster than the layers at higher latitudes whereas the Stoeckly law implies 
that the equator is rotating slower than the pole by a factor of e~c. We may however 
assume differential rotation throughout the convection zone since it appears that a 
modest differential rotation can be supported by an anisotropic convective viscosity 
(Cocke, 1967). If this theory is applicable we would generally require that the aniso-
tropy be a function of both radius and latitude in order to give the angular velocity 
both a radial latitude dependence. In view of the large differences in mixing length 
and convective viscosity the convection zone such a possibility can not be excluded. 

The perihelion advance of Mercury, Aw radians per orbital period, caused by the 
mass quadrupole moment of the rotationally distorted sun can be written (Anand 
and Fahlman, 1968) 

3(C-A) 
A(D=— 'D. (2) 

M 

Here C and A are the principal moments of inertia of the sun in the equatorial plane 
and along the rotation axes, M is the solar mass and D is a quantity which depends 
only on the elements of Mercury's orbit. If the outer layers of the sun are uniformly 
rotating then it can be shown that a is analytically related to (C—A) and hence to the 
perihelion advance. For non-uniform rotation, this is not the case and we must cal­
culate (C—A) independently of a to obtain Am. 

The models have been obtained by employing the technique devised by Stoeckly 
(1965) which gives accurate results for both fast uniform rotation and the restricted 
type of non-uniform rotation given by Equation (1). The Stoeckly scheme replaces 
the differential equations by difference equations which are then linearized and the 
solution is obtained by iteration. The actual dependent variable is the difference 
between two successive approximations to the physical variable. Critical uniformly 
rotating models were obtained (Naylor, 1968) for the polytropic indices 1.5, 2.0 and 
3.0. The results agree with those of James (1964) to better than 1%. 

In the present work we have required that the dimensionless equatorial angular 
velocity of the models be equivalent to the solar value (Allen, 1963). The first model 
in each series was static and provided a reference for the differentially rotating models 
which were obtained by increasing the parameter c from c = 0 in steps of 0.05. The 
double integration that is necessary to obtain the value of C—A was accomplished by 
using an eleven point Gauss-Legendre quadrature for the angular dimension and a 
repeated application (at 40-50 points) of Simpson's rule for the radial dimension. The 
final results should be accurate to a few percent or better. 

In Table I we give values of the oblateness, a and the perihelion advance, Aw, now 
measured in sec of arc per century, for various values of c and for three different 
polytropic indices,/?, which should bracket the solar structure. In general for the same 
value of c, polytropes with less mass concentration are more oblate and have higher 
quadrupole moments than those which are more centrally condensed. For the case 
«= 3, the maximum oblateness consistent with the Rayleigh stability criterion is 
3.54 x 10~5. Further calculations for this case show that we require c= 1.25 to obtain 
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TABLE I 
Oblateness and perihelion advance 

n = 2.5 « = 3.0 » = 3.25 

c ax 10-5 Aa> ax 10-5 Aw aX 10-5 Am 

0.85 3.11 0.23 2.92 0.10 2.84 0.06 
0.90 3.31 0.24 3.15 0.11 3.02 0.06 
0.95 3.50 0.26 3.31 0.11 3.33 0.07 
1.00 3.81 0.28 3.54 0.12 3.46 0.08 

a = 5 x 10"5. This value of c corresponds to the centre rotating 3.5 times faster than 
the equator. In all cases the perihelion advance of Mercury due to the rotational 
distortion is entirely negligible. 

Thus we have at least shown that it is possible for a stellar surface to be rotating 
slowly at the equator and still have a fairly large oblateness but a small mass quadru-
pole moment. These results are not directly applicable to the sun because of our use 
of the Stoeckly law as discussed earlier. Nevertheless, they do not contradict the 
results of Dicke and Goldenberg (1967b) who used a simple perturbation technique 
to show that the effect of differential rotation on the solar surface is unimportant. In 
their perturbation analysis it is assumed that the angular velocity function has approx­
imate spherical symmetry in the outer layers and can be represented as a two-term 
Legendre expansion. If the angular velocity law deviates from spherical symmetry so 
that the higher order terms in the Legendre expansion are not negligible, as is the case 
for the Stoeckly law, their analysis is no longer applicable. However, in view of the 
observed solar rotation law, it is difficult to see how the case discussed here can be 
relevant to the sun. We can only conclude that if the solar oblateness is to be explained 
by differential rotation then we must have a non-spherical rotation law but to find 
such a law that is also compatible with the observed solar rotation appears to be very 
difficult. 
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Discussion 

Dicke: The rotating model considered by Mr. Fahlman has a negligibly small gravitational quad­
rupole moment, and the oblateness is determined wholly by rotation at the surface. Two different 
models with the same surface rotation but different internal rotations will have the same oblateness if 
their quadrupole moments are negligibly small. Mr. Fahlman's models give more rapid rotation at 
the pole and are not applicable to the sun. For the observed rotation the corresponding oblateness is 
0.81 x 10~5. 
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