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Abstract

Using a recent computation of the rational minus part of SH(k) by Ananyevskiy,
Levine and Panin, a theorem of Cisinski and Déglise and a version of the Röndigs
and Østvær theorem, rational stable motivic homotopy theory over an infinite perfect
field of characteristic different from 2 is recovered in this paper from finite Milnor–Witt
correspondences in the sense of Calmès and Fasel.

1. Introduction

By the celebrated Serre finiteness theorem [Ser53] the positive stable homotopy groups of
the classical sphere spectrum with rational coefficients are zero. This implies that the stable
homotopy category of S1-spectra with rational coefficients SHQ is naturally equivalent to
the homotopy category of HQ-modules Ho(ModHQ), where HQ is the Eilenberg–Mac Lane
symmetric spectrum of Q. By the Robinson theorem [Rob87] the homotopy category of HA-
modules Ho(ModHA), where A is a ring with identity, is equivalent to the derived category
D(A) of A. Thus SHQ is naturally equivalent to the derived category of rational vector spaces
D(Q).

In the motivic world the role of a ring is played by a ‘preadditive category of correspondences’
A whose objects are the smooth algebraic varieties Sm/k over a field k. Using the category
theory terminology, A is a ring with several objects, whose objects are those of Sm/k. In turn,
the role of the classical derived category over a ring is played by the category DMA(k), which
is just an extension of the celebrated Voevodsky triangulated category [Voe00b] DM(k) to
general correspondences. Since motivic homotopy theory requires the Nisnevich topology and
contractability of the affine line A1, we require the relevant properties for A to satisfy (see § 2
for details).

The rational stable motivic homotopy theory SH(k)Q splits in two parts: SH+(k)Q
and SH−(k)Q. The plus part SH+(k)Q is equivalent to Voevodsky’s DM(k)Q (this follows
from a theorem of Cisinski and Déglise [CD12, Theorem 16.2.13]). Ananyevskiy, Levine and
Panin [ALP17] have computed SH−(k)Q as the category of Witt motives with rational
coefficients (see also Bachmann [Bac18]). Using these results, we show in Theorem 4.2 that the
rational motivic sphere spectrum S ⊗ Q is naturally equivalent to the ‘additive motivic sphere
spectrum’ SMW⊗Q associated with the additive category of finite Milnor–Witt correspondences
C̃or in the sense of Calmès and Fasel [CF14].

Next, we extend the Röndigs–Østvær theorem [RØ08a, Theorem 1] to the triangulated
category DMA(k) (see Theorem 5.3). This extension is of independent interest. For example,
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Reconstructing rational stable motivic homotopy theory

it is of great utility to compare various triangulated categories of motives in [Gar18]. The
generalized Röndigs–Østvær theorem can also be regarded as a motivic counterpart of the
Robinson theorem [Rob87].

Theorem 4.2 computing S⊗Q and the generalized Röndigs–Østvær’s theorem (Theorem 5.3)
together lead to the proof of the main result of the paper which is formulated as follows (see
Theorem 5.5).

Theorem (Reconstruction). If k is an infinite perfect field of characteristic not 2, then SH(k)Q
is equivalent to the triangulated category of Milnor–Witt motives with rational coefficients
DMMW(k)Q in the sense of [DF17]. The equivalence preserves the triangulated structure.

One of the approaches to constructing motivic homotopy theory, pioneered by Voevodsky,
is to use various correspondences on smooth algebraic varieties. This approach has many
computational advantages. Voevodsky [Voe00b] constructed the category of motives DM(k) by
using finite correspondences. Later he developed the theory of framed correspondences [Voe01].
One of the aims was to suggest another framework for Morel and Voevodsky’s stable motivic
homotopy theory SH(k). In [GP14b] the author and Panin use Voevodsky’s theory to develop
the theory of big framed motives which converts the classical Morel–Voevodsky stable motivic
homotopy theory into an equivalent local theory of framed bispectra.

One of the central objects of the theory of (big) framed motives in the sense of [GP14b]
is linear framed motives of algebraic varieties. These are explicitly constructed complexes of
Nisnevich sheaves with framed correspondences ZF (− × ∆•, X), where X ∈ Sm/k. As an
application of the reconstruction theorem we prove the following result comparing motivic
complexes with framed and Milnor–Witt correspondences respectively (see Theorem 6.1).

Theorem (Comparison). Given an infinite perfect field of characteristic not 2 and a k-smooth
scheme X, each morphism of complexes of Nisnevich sheaves

fn : ZF (−×∆•, X ×G∧nm )⊗Q → C̃or(−×∆•, X ×G∧nm )nis ⊗Q, n > 0,

is a quasi-isomorphism, where the left complex is the n-twisted linear framed motive of X with
rational coefficients in the sense of [GP14b].

Throughout the paper we denote by Sm/k the category of smooth separated schemes of
finite type over the base field k.

2. Additive categories of correspondences

In this section we set up a framework within which we shall work later.

Definition 2.1. We say that a preadditive category A is a category of correspondences if the
following conditions apply.

(i) Its objects are those of Sm/k. Its morphisms are also referred to as A-correspondences
or just correspondences.

(ii) There is a functor ρ : Sm/k → A which is the identity map on objects. The image ρ(f)
of a morphism of smooth schemes f : X → Y will be referred to as the graph of f and denoted
by Γf . We have, in particular, that Γgf = Γg ◦ Γf and Γid = id. Thus we have a functor

A : (Sm/k)op × Sm/k → Ab, (X,Y ) 7→ A(X,Y ),

such that A(1X , g) = Γg ◦ − and A(h, 1Y ) = − ◦ Γh.
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(iii) For every elementary Nisnevich square

U ′ //

��

X ′

��
U // X

the sequence of Nisnevich sheaves

0 → A(−, U ′)nis → A(−, U)nis ⊕A(−, X ′)nis → A(−, X)nis → 0

is exact. Moreover, we require A(−,∅)nis = 0 (corresponding to the ‘degenerate distinguished
square’, ∅, with only one entry in the lower right-hand corner).

(iv) For every A-presheaf F (i.e. an additive contravariant functor from A to Abelian groups
Ab) the associated Nisnevich sheaf Fnis has a unique structure of an A-presheaf for which the
canonical morphism F → Fnis is a morphism of A-presheaves.

(v) There is an action of Sm/k on A in the following sense. Given U ∈ Sm/k, there is a
homomorphism

αU : A(X,Y ) → A(X × U, Y × U),

functorial in X and Y , such that for any morphism f : U → V in Sm/k the following square of
abelian groups is commutative:

A(X × V, Y × V )
A(1X×f,1Y×V ) // A(X × U, Y × V )

A(X,Y )

αV

OO

αU // A(X × U, Y × U)

A(1X×U ,1Y ×f)

OO

We require αU (idX) = idX×U for all U,Z ∈ Sm/k. By the functoriality of αU in X we mean that
the following square of Abelian groups is commutative for any Y ∈ Sm/k and any morphism
f : X ′ → X in A:

A(X × U, Y × U)
A(f×1U ,1Y×U ) // A(X ′ × U, Y × U)

A(X,Y )

αU

OO

A(f,1Y ) // A(X ′, Y )

αU

OO

By the functoriality of αU in Y we mean that the following square of additive functors is
commutative for any X ∈ Sm/k and any morphism g : Y → Y ′ in A:

A(X × U, Y × U)
A(1X×U ,g×1U ) // A(X × U, Y ′ × U)

A(X,Y )

αU

OO

A(1X ,g) // A(X,Y ′)

αU

OO

In other words, we have a functor

� : A× Sm/k → A

sending (X,U) ∈ Sm/k×Sm/k to X×U ∈ Sm/k and such that 1X � f = Γ1X×f , (u+ v)� f =
u� f + v � f for all f ∈ Mor(Sm/k) and u, v ∈ Mor(A).
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Remark 2.2. It follows from Definition 2.1(iii) that the canonical morphism

A(−, X)nis ⊕A(−, Y )nis → A(−, X t Y )nis

is an isomorphism of Nisnevich sheaves.

Observe that for any category of correspondences A, an A-presheaf F and U ∈ Sm/k the
presheaf

Hom(U,F) := F(−× U)

is an A-presheaf. Moreover, it is functorial in U .
For instance,A can be given by the naive preadditive category of correspondencesAnaive, with

Anaive(X,Y ) being the free abelian group generated by HomSm/k(X,Y ). Non-trivial examples
are given by finite correspondences Cor in the sense of Voevodsky [Voe00b], finite Milnor–

Witt correspondences C̃or in the sense of Calmès and Fasel [CF14] or K⊕0 in the sense of
Walker [Wal96]. Given a ring R (not necessarily commutative) which is flat as a Z-algebra
and a category of correspondences A, we can form an additive category of correspondences AR
with coefficients in R. By definition, AR(X,Y ) := A(X,Y )⊗R for all X,Y ∈ Sm/k.

Definition 2.3. We say that a category of correspondences A is a V -category of correspondences
(‘V ’ for Voevodsky) if for any A1-invariant A-presheaf of abelian groups F the associated
Nisnevich sheaf Fnis is A1-invariant. Recall that a Nisnevich sheaf F of abelian groups is
strictly A1-invariant if for any X ∈ Sm/k the canonical morphism

H∗nis(X,F) → H∗nis(X × A1,F)

is an isomorphism. A V -category of correspondences A is a strict V -category of correspondences
if for any A1-invariant A-presheaf of abelian groups F the associated Nisnevich sheaf Fnis is
strictly A1-invariant.

Observe that any (strict) V -category of correspondences is a (strict) V -ringoid in the sense
of [GP14a]. For example, Cor and K⊕0 are V -categories of correspondences, which are strict

whenever the base field k is perfect (see [Voe00a, Wal96]). The category C̃or is a V -category of
correspondences, which is strict if k is infinite and perfect with char k 6= 2 (see [DF17, Kol17]).
Observe that if A is a V -category of correspondences then so is AR with R commutative flat as
a Z-algebra. Moreover, if R is a ring of fractions of Z like, for example, Z[1/p] or Q, then AR is
a strict V -category of correspondences whenever A is.

Let A be a category of correspondences. Let Sh(Sm/k) (respectively, Sh(A)) denote the
category of Nisnevich sheaves on Sm/k (respectively, Nisnevich A-sheaves). Similar to [GP12,
Corollary 6.4], Sh(A) is a Grothendieck category such that {A(−, X)nis}X∈Sm/k is a family
of generators of Sh(A). Denote by D(Sh(Sm/k)) and D(Sh(A)) the corresponding derived
categories of unbounded complexes. Note that D(Sh(Sm/k)) = D(Sh(Anaive)).

The category M of motivic spaces consists of contravariant functors from Sm/k to pointed
simplicial sets. We refer the reader to [Jar00, MV99] for the definition of motivic weak
equivalences between motivic spaces.

Lemma 2.4. Given any field k, let A be a category of correspondences. Then the natural map

f : A(−, X × A1) → A(−, X)

is a motivic weak equivalence in the category of motivic spaces M.
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Proof. We follow an argument of [RØ08a, p. 694]. As in classical algebraic topology, an inclusion
of pointed motivic spaces g : A → B is an A1-deformation retract if there exist a map r : B → A
such that rg = idA and an A1-homotopy H : B ∧A1

+ → B between gr and idB which is constant
on A. Then A1-deformation retracts are motivic weak equivalences.

There is an obvious map r :A(−, X) →A(−, X×A1) such that fr = 1. Since Sm/k naturally
acts on A, it follows that A(−× A1, X × A1) is an A-presheaf.

There is a natural isomorphism

Hom(A(−, X × A1),A(−× A1, X × A1)) ∼= A(X × A1 × A1, X × A1),

where the Hom-set on the left is taken in the category of A-presheaves. Consider the functor
ρ : Sm/k → A. Denote by α the obvious map A1 × A1

→ A1. We set h = ρ(1X × α); then h
uniquely determines a morphism of A-presheaves

h′ : A(−, X × A1) → A(−× A1, X × A1).

This morphism can be regarded as a morphism in M, denoted by the same letter. By adjointness
h′ uniquely determines a map in M,

H : A(−, X × A1) ∧ A1
+ → A(−, X × A1).

Then H yields an A1-homotopy between the identity map and rf . We see that f is a motivic
weak equivalence, as required. 2

By the general localization theory of compactly generated triangulated categories [Nee96]
one can localize D(Sh(A)) with respect to the localizing subcategory L generated by complexes
of the form

· · ·→ 0 → A(−, X × A1)nis
prX−−→ A(−, X)nis → 0 → · · · , X ∈ Sm/k.

The resulting quotient category D(Sh(A))/L is denoted by DA1(Sh(A)).
If we denote by DM eff

A (k) the full subcategory of D(Sh(A)) consisting of the complexes with
strictly A1-invariant homology sheaves, then, similarly to a theorem of Voevodsky [Voe00a], the
composite functor

DM eff
A (k) ↪→ D(Sh(A)) → DA1(Sh(A))

is an equivalence of triangulated categories whenever A is a strict V -category of correspondences.
Moreover, the functor

C∗ : D(Sh(A)) → D(Sh(A)), X 7→ Tot(X(−×∆•))

lands in DM eff
A (k). The kernel of C∗ is L and C∗ is left adjoint to the inclusion functor

i : DM eff
A (k) ↪→ D(Sh(A))

(see [Voe00a] for details or [GP14a, Theorem 3.5]).
Let (Gm, 1) ∈M denote Gm pointed at 1 and let GAm be the sheaf

Coker(A(−, pt)nis → A(−,Gm)nis)

induced by the map pt 7→ 1 ∈ Gm in Sm/k. Regarding it as a complex concentrated in zeroth
degree, we have an endofunctor

−�GAm : DA1(Sh(A)) → DA1(Sh(A)),
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induced by the action of Sm/k on A. In more detail, by [AG16, Proposition 3.4], Ch(Sh(A))
is a Grothendieck category with generators of the form {DnA(−, U)nis}n∈Z,U∈Sm/k. Here
DnA(−, U)nis is the complex which is A(−, U)nis in degrees n and n − 1 and 0 elsewhere, with
interesting differential being the identity map. Every complex X ∈ Ch(Sh(A)) is written as a
colimit of generators,

X = colim(DnA(−,U)nis→X)D
nA(−, U)nis.

We set
X �GAm := colim(DnA(−,U)nis→X)D

nA(−, U ∧G∧1
m )nis,

where the sheaf A(−, U ∧G∧1
m )nis := Coker(A(−, U × pt)nis → A(−, U ×Gm)nis).

Stabilizing DA1(Sh(A)) in the Gm-direction with respect to this endofunctor, we arrive at
the category Dst

A1(Sh(A)). If A is a strict V -category of correspondences, we can likewise stabilize
DM eff

A (k) in the Gm-direction. The resulting category is denoted by DMA(k). The triangulated
equivalence C∗ : DA1(Sh(A)) → DM eff

A (k) extends to a triangulated equivalence

C∗ : Dst
A1(Sh(A)) → DMA(k).

Given a category of correspondences A and p > 0, we shall write Dst
A1(Sh(A))[p−1]

(respectively, Dst
A1(Sh(A))Q) to denote the category Dst

A1(Sh(A ⊗ Z[1/p]))(k) (respectively,
Dst

A1(Sh(A⊗Q))(k)). Note that A⊗ Z[1/p] and A⊗Q are categories of correspondences.

Definition 2.5. We say that a category of correspondences A is symmetric monoidal if the
usual product of schemes defines a symmetric monoidal structure on A.

The categories Cor, C̃or, K⊕0 are examples of symmetric monoidal V -categories (see [CF14,
DF17, Sus03, SV00, Wal96] for more details). Anaive is obviously symmetric monoidal.

Given a symmetric monoidal category of correspondences A, a theorem of Day [Day70]
implies that the category of A-presheaves PSh(A) is a closed symmetric monoidal category with
a tensor product defined as

X ⊗ Y =

∫ (U,V )∈A×A
X(U)⊗ Y (V )⊗A(−, U × V ).

The monoidal unit equals A(−, pt) with pt = Spec k.
The tensor product is then extended to a tensor product ⊗̃ on Sh(A). Namely, for all F,

G ∈ Sh(A) we set F ⊗̃G to be the sheaf associated with the presheaf F ⊗ G defined above.
With this tensor product Sh(A) is a closed symmetric monoidal category with A(−, pt)nis a
monoidal unit. Likewise, ⊗̃ is extended to chain complexes Ch(Sh(A)), which also defines a
closed symmetric monoidal structure on the derived category D(Sh(A)) with respect to the

derived tensor product ⊗̃L (we also refer the reader to [SV00, § 2] and [CD09, Example 3.3]). It
is straightforward to show that the localizing subcategory L of D(Sh(A)) defined above is closed

under the derived tensor product ⊗̃L. As a result, one obtains a symmetric monoidal product
on Dst

A1(Sh(A)) (and on DM eff
A (k), DMA(k) if A is a strict V -category).

Remark 2.6. Let A be a symmetric monoidal strict V -category of correspondences. With a little
extra care we describe the tensor product in DMA(k) explicitly as follows. The endofunctor
− � GAm : Ch(Sh(A)) → Ch(Sh(A)) equals −⊗̃GAm. DMA(k) is equivalent to the homotopy
category of the symmetric GAm-spectra associated to a monoidal motivic model category structure
on Ch(Sh(A)). We also refer the reader to [DF17], where a monoidal model structure is defined
in the case of MW -correspondences.
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3. The additive motivic sphere spectrum SA

Let SpS1,Gm
(k) denote the category of symmetric (S1,Gm)-bispectra, where the Gm-direction is

associated with the pointed motivic space (Gm, 1). It is equipped with a stable motivic model
category structure [Jar00]. Denote by SH(k) its homotopy category. The category SH(k) has
a closed symmetric monoidal structure with the motivic sphere spectrum S as monoidal unit
(see [Jar00] for details). Given p > 0, the category SpS1,Gm

(k) has a further model structure
whose weak equivalences are the maps of bispectra f : X → Y such that the induced map of
bigraded Nisnevich sheaves f∗ : πA

1

∗,∗(X)⊗Z[1/p] → πA
1

∗,∗(Y )⊗Z[1/p] is an isomorphism. In what
follows we denote its homotopy category by SH(k)[p−1]. The category SH(k)Q is defined in
a similar fashion. The corresponding classes of weak equivalences are also called p−1-stable/Q-
stable motivic weak equivalences. We also refer the reader to [RØ08b, Appendix A] for general
localization theory of motivic spectra.

It is worth mentioning that any other kind of motivic spectra or motivic functors in the sense
of [DRØ03] together with the stable motivic model structure lead to equivalent definitions of
SH(k)[p−1] and SH(k)Q, respectively.

The isomorphism tw : (Gm, 1) ∧ (Gm, 1)
∼=−→ (Gm, 1) ∧ (Gm, 1) permuting factors is an

involution, that is, tw2 = id. It gives an endomorphism ε : S → S such that ε2 = id. If we
denote by SH(k)[2−1] the stable motivic homotopy theory with Z[1/2]-coefficients, then

ε+ = −ε− 1

2
and ε− =

ε+ 1

2

are two orthogonal idempotent endomorphisms of S[2−1] such that ε+ +ε− = id and ε = ε−−ε+.
It follows that

S[2−1] = S+ ⊕ S−,

where S+ (respectively, S−) corresponds to the idempotent ε+ (respectively, ε−).
By [Mor03, § 6] the stable algebraic Hopf map η : S → S−1,−1 satisfies ηε+ = 0, ηε = η in

SH(k)[2−1]. Moreover,

S− ↪→ S[2−1]
η−→ S−1,−1[2−1]� S−1,−1

−

is an isomorphism in SH(k)[2−1], denoted by the same letter η. In particular, there is an
isomorphism

S− ∼= S[η−1, 2−1] = hocolimSH(k)[2−1](S
η−→ S−1,−1 η−→ S−2,−2 η−→ · · ·).

The decomposition S[2−1] = S+⊕S− of the monoidal unit of SH(k)[2−1] implies SH(k)[2−1]
is a product of symmetric monoidal triangulated categories

SH(k)[2−1] = SH(k)+ × SH(k)−,

where S+ and S− are monoidal units for SH(k)+ and SH(k)−, respectively.
Consider a category of correspondences A. There is a natural triangulated functor

F : SH(k) → Dst
A1(Sh(A)).

In more detail, there is an adjoint pair [GP12, § 6]

SHS1(k)� Ho(ModAEM),
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where ModAEM is the category of AEM-modules equipped with the stable projective motivic
model structure over the Eilenberg–Mac Lane spectral category AEM associated with A. Also,
there is a zig-zag of triangulated equivalences between Ho(ModAEM) and DA1(Sh(A)). Then
the resulting functor

SHS1(k) → DA1(Sh(A))

is naturally extended to Gm-spectra in both categories.
The functor F sends each bispectrum Σ∞S1Σ∞Gm

X+, X ∈ Sm/k, to a Gm-spectrum isomorphic
to

A(X)∞Gm
:= (A(−, X)nis,A(−, X ∧G∧1

m )nis,A(−, X ∧G∧2
m )nis, . . .) ∈ Dst

A1(Sh(A)).

Here each entry is a complex in degree 0, each A(−, X ∧ G∧nm )nis is a sheaf associated to the
presheaf

A(−, X ×G∧nm )) = A(−, X ×G×nm ))

/ n∑
s=1

(is)∗A(−, X ×G×n−1
m )),

where the natural additive functors is : A(−, X×G×(`−1)
m ) → A(−, X×G×`m ) are induced by the

embeddings is : G×(`−1)
m → G×`m of the form

(x1, . . . , x`−1) 7−→ (x1, . . . , 1, . . . , x`−1),

in which 1 is the sth coordinate.
Note that F factors through the stable A1-derived category DA1(k) := Dst

A1(Sh(Anaive)) in
the sense of Morel [Mor04] (see also [CD12, § 5.3]). In what follows we shall denote by HA1Z its
monoidal unit. Note that HA1Z is the image of S under the canonical functor

SH(k) → DA1(k).

As above, one has decompositions

HA1Z[2−1] = HA1Z+ ⊕HA1Z−, DA1(k)[2−1] = DA1(k)+ ×DA1(k)−.

In what follows we shall write SA to denote the spectrum A(pt)∞Gm
and call it the additive

motivic A-sphere spectrum. Taking the Eilenberg–Mac Lane S1-spectra for each sheaf A(−, X ∧
G∧nm )nis (see, for example, [Mor06, § 3.2]), we can regard SA as an ordinary (S1,Gm)-bispectrum
(and denote it by the same letter if there is no likelihood of confusion).

The canonical triangulated functor

F : SH(k) → Dst
A1(Sh(A))

takes the ordinary motivic sphere S to a spectrum isomorphic to SA. F (η) induces a morphism

ηA : SA → (SA)−1,−1.

We also set

SA[η−1
A ] := hocolimDst

A1 (Sh(A))(SA
ηA−→ (SA)−1,−1 ηA−→ (SA)−2,−2 ηA−→ · · ·)

and SA− ∼= F (S−), SA+ ∼= F (S+). Then we have the following relations in Dst
A1(Sh(A)):

SA[2−1] = SA+ ⊕ SA− and SA− ∼= SA[η−1
A , 2−1].

As above, ηA annihilates SA+ and is an isomorphism on SA−.
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Remark 3.1. Following an equivalent description of DMA(k) over a symmetric monoidal strict
V -category of correspondences in Remark 2.6 in terms of GAm-symmetric spectra (in this case
Dst

A1(Sh(A)), DMA(k) are canonically equivalent), the additive motivic A-sphere spectrum SA
is nothing but the symmetric sequence

(A(−, pt),GAm,GAm ⊗̃ GAm, . . . , (GAm)⊗̃n, . . .),

where Σn acts on (GAm)⊗̃n by permutation. It is a commutative monoid in the category of
symmetric sequences in Ch(Sh(A)) (see [Hov01, § 7]). Moreover, the motivic model category
SpΣ(Ch(ShA),GAm) of symmetric GAm-spectra associated with the motivic model category
structure on Ch(ShA) is the category of modules in the category of symmetric sequences over
the commutative monoid SA. The homotopy category of SpΣ(Ch(ShA),GAm), which is equivalent
to DMA(k), is a closed symmetric monoidal category with SA a monoidal unit.

Definition 3.2. Let A be a category of V -correspondences. Following [Voe00b, SV00, Sus03],
the A-motive of a smooth algebraic variety X ∈ Sm/k, denoted by MA(X), is the complex
associated to the simplicial Nisnevich sheaf

n 7−→ A(−×∆n, X)nis, ∆n = Spec k[t0, . . . , tn]/(t0 + · · ·+ tn − 1).

Lemma 3.3. Let A be a strict category of V -correspondences and X a motivic S1-spectrum such
that its presheaves π∗(X ) of homotopy groups are homotopy invariant A-presheaves. Then every
Nisnevich local fibrant replacement Xf of X is motivically fibrant.

Proof. Since A is a strict category of V -correspondences, the sheaves π∗(X )nis are strictly A1-
invariant. Our claim now follows from [Mor06, Theorem 6.2.7]. 2

Remark 3.4. It is worth mentioning that Lemma 3.3 does not depend on Morel’s connectivity
theorem [Mor06, Theorem 6.1.8]. Indeed, it easily follows for connected spectra from the Brown–
Gersten spectral sequence. Then we use the fact that Xf = hocolimn→−∞(X>n)f , where X>n is
the naive nth truncation of X .

The spectrum A(X)∞Gm
is motivically equivalent to the spectrum

MGm
A (X) := (MA(X),MA(X ∧G∧1

m ),MA(X ∧G∧2
m ), . . .)

consisting of complexes of Nisnevich A-sheaves associated with the simplicial sheaves n 7−→
A(−×∆n, X ∧G∧qm )nis.

Definition 3.5. LetA be a category of V -correspondences. The bivariant A-motivic cohomology
groups are defined by

Hp,q
A (X,Y ) := Hp

nis(X,A(−×∆•, Y ∧G∧qm )nis[−q]),

where the right-hand side stands for Nisnevich hypercohomology groups of X with coefficients
in A(−×∆•, Y ∧G∧qm )nis[−q] (the shift is cohomological).

Following [GP18], we say that the bigraded presheaves H∗,∗A (−, Y ) satisfy the cancellation
property if all maps

βp,q : Hp,q
A (X,Y ) → Hp+1,q+1

A (X ∧Gm, Y )

induced by the structure maps of the spectrum MGm
A (Y ) are isomorphisms.
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Given Y ∈ Sm/k, write

MGm
A (Y )f := (MA(Y )f ,MA(Y ∧G∧1

m )f ,MA(Y ∧G∧2
m )f , . . .),

where each MA(Y ∧ G∧nm )f is a fibrant Nisnevich local replacement of MA(Y ∧ G∧nm ). It is
important to note that each MA(Y ∧G∧nm )f can be constructed within Ch(Sh(A)) whenever A
is a strict category of V -correspondences (this can be shown similarly to [GP12, Theorem 5.12]).
Observe as well that A(Y )∞Gm

is motivically equivalent to MGm
A (Y )f .

Lemma 3.6. Suppose A is a strict V -category of correspondences. The bigraded presheaves
H∗,∗A (−, Y ) satisfy the cancellation property if and only if MGm

A (Y )f is motivically fibrant as
an ordinary motivic bispectrum.

Proof. Using Lemma 3.3, this is proved similarly to [GP18, Lemma 4.5]. 2

Corollary 3.7. Suppose A is a strict V -category of correspondences satisfying the cancellation
property. Then the presheavesH∗,∗A (−, Y ) are represented in SH(k) by the bispectrumMGm

A (Y )f .
Specifically,

Hp,q
A (X,Y ) = SH(k)(X+, S

p,q ∧MGm
A (Y )f ), p, q ∈ Z,

where Sp,q = Sp−q ∧ (Gm, 1)∧q.

Under the assumptions of Corollary 3.7 we can compute SA[η−1
A ] up to an isomorphism in

Dst
A1(Sh(A)) as follows:

SA[η−1
A ] ∼= hocolimDMA(k)(M

Gm
A (pt)f −→ Ω(Gm,1)(M

Gm
A (pt)f ) −→ Ω(Gm,1)∧2(MGm

A (pt)f ) −→ · · ·).

Here the maps of the colimit are induced by ηA. Denote the right-hand side by MGm
A (pt)f [η−1].

This is termwise a spectrum,

MGm
A (pt)f [η−1] = (Ω∞(Gm,1)(MA(pt)f ),Ω∞−1

(Gm,1)(MA(pt)f ),Ω∞−2
(Gm,1)(MA(pt)f ), . . .),

where each

Ω∞−n(Gm,1)(MA(pt)f ) := hocolimDMeff
A (k)(MA(G∧nm )f −→ Ω(Gm,1)(MA(G∧nm )f ) → · · ·).

Since the structure maps of MGm
A (pt)f [η−1] are schemewise equivalences by the cancellation

property, it follows from the construction of MGm
A (pt)f [η−1] that all homotopy sheaves

πA
1

i,j (MGm
A (pt)f [η−1]) are concentrated in weight 0 only. By [Mor03, Lemma 4.3.11], the canonical

map of sheaves

πA
1

n (Ω(Gm,1)(Ω
∞−n
(Gm,1)(MA(pt)f ))) → πA

1

n (Ω∞−n(Gm,1)(MA(pt)f ))−1, n ∈ Z,

is an isomorphism, hence the composite map of sheaves is an isomorphism for all n > 0

βn : πA
1

−n,−n(MGm
A (pt)f [η−1]) → πA

1

−n−1,−n−1(Ω(Gm,1)M
Gm
A (pt)f [η−1])

→ (πA
1

−n−1,−n−1(MGm
A (pt)f [η−1]))−1,

where the left map is induced by the structure map.
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Denote by WA the strictly A1-invariant sheaf πA
1

0,0(MGm
A (pt)f [η−1]). If we regard it as a

complex concentrated in zeroth degree, then the collection of complexes

WAGm
:= (WA,WA,WA, . . .),

together with isomorphisms β0 : WA → (WA)−1, is an object of DMA(k), which is A1-local

as an ordinary bispectrum (after taking the Eilenberg–Mac Lane spectrum of each sheaf WA).

Notice that the homotopy module of WAGm
in the sense of [Mor03, Definition 5.2.4] is given by

(M∗, µ∗) with each Mn =WA and µn = β0, n ∈ Z. There is a canonical morphism of spectra

H : MGm
A (pt)f [η−1] →WAGm

, (1)

induced by taking the zeroth homology sheaf of each complex Ω∞−n(Gm,1)(MA(pt)f ).

Let W be the Nisnevich sheaf of Witt rings on Sm/k. Following [ALP17, p. 380], we take

the model W := KMW
0 /h. The isomorphism W ∼= πA

1

n>0,n>0(S) gives the canonical isomorphism

of sheaves ε : W ∼= Hom((Gm, 1),W ). More precisely, it takes w ∈ W (U) to p∗1(η · [t]) · p∗2(w) ∈
W (U ∧ (Gm, 1)), where t is the canonical unit on Gm and [t] ∈ KMW

1 (Gm) the corresponding

section.

Definition 3.8. Suppose A is a strict V -category of correspondences satisfying the cancellation

property and R a flat Z-algebra. We say that the spectrum SA[η−1
A ] is of Witt type with R-

coefficients if the zeroth cohomology sheaf WAR = πA
1

0,0(MGm
A (pt)f [η−1]) ⊗ R of the complex

Ω∞(Gm,1)(MA(pt)f )⊗R is the only non-zero cohomology sheaf (the other cohomology sheaves are

required to be zero) andWAR is isomorphic to the Nisnevich sheaf WR = W ⊗R. We also require

the diagram

WAR
β0 //

∼=
��

(WAR )−1

∼=
��

WR ε
// (WR)−1

to be commutative. If R = Z then we just say that SA[η−1
A ] is of Witt type.

Lemma 3.9. Suppose A is a strict V -category of correspondences satisfying the cancellation

property and R a ring of fractions of Z. If the spectrum SA[η−1
A ] is of Witt type with R-coefficients

then it is isomorphic in SH(k) to the bispectrum

WGm
R := (WR,WR, . . .),

in which every structure map is induced by ε.

Proof. This immediately follows from Definition 3.8 and the observation that the morphism of

spectra (1) is a motivic equivalence. 2

We are now in a position to prove the main result of this section.
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Theorem 3.10. Suppose A is a strict V -category of correspondences satisfying the cancellation

property.

(1) If the spectrum SA[η−1
A ] is of Witt type with Q-coefficients then the canonical morphism

S− ⊗Q → SA− ⊗Q

is an isomorphism in SH(k).

(2) If the spectrum SA[η−1
A ] is of Witt type with Z[1/2]-coefficients then the canonical

morphism

HA1Z− → SA−

is an isomorphism in SH(k).

Proof. (1) It follows from [ALP17] that the composite morphism

S− ⊗Q → SA− ⊗Q → WGm
Q

is an isomorphism in SH(k). By Lemma 3.9 the right morphism is an isomorphism in SH(k),

and hence so is the left one.

(2) It follows from [Bac18, Proposition 37] that the composite morphism

HA1Z− → SA− → WGm [2−1]

is an isomorphism in SH(k). By Lemma 3.9 the right morphism is an isomorphism in SH(k),

and hence so is the left one. 2

4. The Milnor–Witt sphere spectrum SMW

Throughout this section k is an infinite perfect field with char k 6= 2. We refer the reader to [CF14]

for basic facts and definitions on the category of finite Milnor–Witt correspondences C̃or. It is

a strict V -category of correspondences by [DF17]. It follows from [FØ17] that C̃or has the

cancellation property. We denote the additive sphere spectrum associated with C̃or by SMW.

By [CF14, Proposition 5.11] C̃or(−, Y ) is a Zariski sheaf, but not a Nisnevich sheaf

in general [CF14, Example 5.12]. However, C̃or(−, pt) is the Nisnevich sheaf KMW
0 [CF14,

Example 4.5], which is homotopy invariant by [Fas08, Corollaire 11.3.3]. Since C̃or is a strict

additive V -category of correspondences by [DF17], we see that the Nisnevich sheaf C̃or(−, pt)
is strictly homotopy invariant. In particular, the normalized complex MMW(pt) associated to

the simplicial sheaf C̃or(− × ∆•, pt) has only one non-trivial homology sheaf KMW
0 . It follows

from [CF14, Proposition 5.34] that πA
1

0 (Hom((Gm, 1)∧n,MMW(pt))) is isomorphic to the sheaf

W of Witt rings. Thus the spectrum SMW[η−1] is of Witt type. Theorem 3.10 now implies the

following result.

Proposition 4.1. The canonical morphisms

S− ⊗Q → SMW
− ⊗Q and HA1Z− → SMW

−

are isomorphisms in SH(k).
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It follows from properties of finite Milnor–Witt correspondences [CF14] that SMW
+ is

isomorphic to SCor[2−1] in DMMW(k)[2−1] := DM
C̃or

(k)[2−1]. Thus we have a splitting,

SMW[2−1] ∼= SCor[2−1]⊕ SMW
− .

A theorem of Cisinski and Déglise [CD12, Theorem 16.2.13] shows that the canonical map
S+ ⊗Q → SCor ⊗Q is an isomorphism in SH(k). Combining this with Proposition 4.1, we have
proved the following theorem, which is the main result of the section.

Theorem 4.2. Given an infinite perfect field k of characteristic not 2, the canonical morphism
of bispectra

S⊗Q → SMW ⊗Q
is an isomorphism in SH(k).

Let H∗,∗A1 (X) be the cohomology theory represented in SH(k) by the bispectrum HA1Z.
The following statement is a consequence of the preceding theorem and a result of Déglise and
Fasel [DF17, Corollary 4.2.6],

Corollary 4.3. Given an infinite perfect field k of characteristic not 2, n > 0 and X ∈ Sm/k,
there is a natural isomorphism

H2n,n
A1 (X)⊗Q ∼= C̃Hn(X)⊗Q,

where the right-hand side is the nth rational Chow–Witt group of X. In particular, if −1 is a
sum of squares in k, then H2n,n

A1 (X)⊗Q ∼= CHn(X)⊗Q, where CHn(X)⊗Q is the nth rational
Chow group of X.

5. Reconstructing SH(k)Q from finite Milnor–Witt correspondences

In this section we prove the main result of the paper stating that SH(k)Q is recovered
as DMMW(k)Q whenever the base field k is infinite perfect of characteristic not 2. To this
end, we need to extend Röndigs and Østvær’s theorem [RØ08a] to preadditive categories of
correspondences. Throughout this section A is a category of correspondences.

Following [RØ08a, § 2], define the category MA of motivic spaces with A-correspondences as
all contravariant additive functors from A to simplicial abelian groups. A scheme U in Sm/k
defines a representable motivic space A(−, U) ∈ MA. Let U : MA → M denote the evident
forgetful functor induced by the graph Sm/k → A. It has a left adjoint ZA : M → MA defined
as the left Kan extension functor determined by

ZA((U ×∆n)+) = A(−, U)⊗ Z(∆n).

If X is a motivic space, let XA be short for ZA(X).
Similarly to [RØ08a, § 2.1], we define a projective motivic model category structure on MA.

This model category is denoted by MAmot. The projective motivic model category of motivic
spaces is denoted by Mmot. We have a Quillen pair

ZA : Mmot �MAmot : U .
Using Definition 2.3(1) and Lemma 2.4, the proof of the following lemma literally repeats [RØ08a,
Lemma 9].

Lemma 5.1. A map between motivic spaces with A-correspondences is a motivic weak
equivalence in MAmot if and only if it is so when considered as a map between ordinary motivic
spaces.
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Let ι : pt = Spec k → Gm be the embedding ι(pt) = 1 ∈ Gm. The mapping cylinder yields a
factorization of the induced map

Spec k+ ↪→ Cyl(ι)
'−→ (Gm)+

into a projective cofibration and a simplicial homotopy equivalence in M. Let G denote the
cofibrant pointed presheaf Cyl(ι)/ Spec k+ and T := S1 ∧G.

Following [RØ08a, § 2.4], we define a motivic spectrum

HA = (U(pt+),U(TA),U((T∧2)A), . . .).

The structure maps are induced by morphisms

αT : (T∧n)A → HomMA(TA, (T∧n+1)A)

(recall that Sm/k acts on A).
Given a symmetric monoidal category of correspondences A, a theorem of Day [Day70]

implies that MA is a closed symmetric monoidal category with a tensor product defined as

X � Y =

∫ (U,V )∈A×A
X(U)⊗ Y (V )⊗A(−, U × V ).

As an example, A(−, U) � A(−, V ) = A(−, U × V ). The monoidal unit equals A(−, pt) with
pt = Spec k. Similarly to [DRØ03, Example 3.4], HA is a commutative motivic symmetric ring
spectrum.

Suppose A is a symmetric monoidal category of correspondences. Repeating the proof
of [RØ08a, Lemma 10] word for word, the projective motivic model structure on MAmot is
symmetric monoidal. Following [Hov01, RØ08a], one can define the stable monoidal model
category of symmetric T -spectra MSSA associated to MAmot (with projective model structure).
The homotopy category of MSSA is a model for Dst

A1(Sh(A))(k). It is also a model for DMA(k)
whenever A is a strict V -category of correspondences (for this, repeat the proof of [RØ08a,
Theorem 11] word for word).

Below we shall need the following theorem proved by Riou in [LYZ13, Appendix B] (see also
the proof of [HKØ17, Theorem 5.8]).

Theorem 5.2 (Riou). Let k be a perfect field. Let p denote the caracteristic exponent of k
(i.e. p > 0 or p = 1 if the characteristic of k is zero). Then, for any smooth finite type k-scheme
U , the suspension spectrum Σ∞T U+ is strongly dualizable in SH(k)[1/p].

We are now in a position to prove the Röndigs–Østvær theorem for A-correspondences.
Notice that in all known examples a V -category of correspondences is strict whenever the base
field k is (infinite) perfect (of characteristic not 2 if A = C̃or). We also remind the reader that
the category SH(k)[p−1] is defined on p. 1430. It is the homotopy category of the stable model
category of motivic functors with weak equivalences being p−1-stable motivic equivalences.

Theorem 5.3 (Röndigs and Østvær). If k is a perfect field of exponential characteristic p
and A is a symmetric monoidal category of correspondences, then the homotopy category
of ModHAZ[1/p] (respectively, ModHAQ) is equivalent to Dst

A1(Sh(A))(k)[1/p] (respectively,
Dst

A1(Sh(A))(k) ⊗ Q). The equivalence preserves the triangulated structure. In particular,
Ho(ModHAZ[1/p]) (respectively, Ho(ModHAQ)) is equivalent to DMA(k)[1/p] (respectively,
DMA(k)⊗Q) if A is a symmetric monoidal strict V -category of correspondences.
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Proof. We verify the theorem for categories with Z[1/p]-coefficients, because the proof of the
statement for categories with rational coefficients repeats that for Z[1/p]-coefficients word for
word. The proof of the theorem for categories with Z[1/p]-coefficients is the same with the
original Röndigs–Østvær theorem [RØ08a]. The only difference is that we shall have to deal
somewhere with p−1-stable weak equivalences of motivic functors instead of ordinary stable
weak equivalences.

We must show that the canonical pair of adjoint (triangulated) functors

Φ : ModHAZ[1/p] �MSSAZ[1/p] : Ψ

is a Quillen equivalence (Ψ forgets correspondences).
Similarly to [RØ08a, Lemma 43], it suffices to prove that the unit of the adjunction

HAZ[1/p] ∧ U+ → ΨΦ(HAZ[1/p] ∧ U+) (2)

is a stable motivic weak equivalence of motivic symmetric spectra for every smooth scheme U .
Note that ΨΦ(HAZ[1/p] ∧ U+) is the symmetric spectrum (A(−, U) ⊗ Z[1/p], (U+ ∧ T )A⊗Z[1/p],

(U+ ∧ T∧2)A⊗Z[1/p], . . .).
By Theorem 5.2, U+ is dualizable in SH(k)[p−1] for every k-smooth scheme U . Suppose X

is a motivic functor in the sense of [DRØ03] and B is a cofibrant finitely presentable motivic
space such that −∧B is dualizable in SH(k)[p−1]. When X preserves motivic weak equivalences
of cofibrant finitely presentable motivic spaces, then the evaluation of the assembly map

X ∧B → X ◦ (− ∧B)

is a p−1-stable weak equivalence between motivic symmetric spectra by [RØ08a, Corollary 56]
(though [RØ08a, Corollary 56] is proved within an ordinary stable motivic model structure of
motivic functors, it is also true within the p−1-stable model structure). We use here the notation
and terminology of [DRØ03]. Recall that motivic functors give a model for motivic symmetric
spectra, and hence for SH(k) [DRØ03].

Consider a motivic functor associated with HA (denoted by the same letters)

HA : cM ↪→ M ZA−−→ MA U−→ M.

Here cM is the full subcategory of M of cofibrant finitely presentable motivic spaces. ZA :
Mmot → MAmot is a left Quillen functor, hence it preserves motivic weak equivalences between
cofibrant motivic spaces. By Lemma 5.1, U preserves weak equivalences in MAmot. It follows that
HA preserves motivic equivalences of cofibrant finitely presentable motivic spaces. Hence,

HA ∧ U+ → HA ◦ (− ∧ U+)

is a p−1-stable weak equivalence between motivic symmetric spectra by [RØ08a, Corollary 56].
Similarly,

HAZ[1/p] ∧ U+ → HAZ[1/p] ◦ (− ∧ U+) (3)

is a p−1-stable weak equivalence between motivic symmetric spectra. Obviously,

πA
1

∗,∗(HAZ[1/p] ◦ (− ∧ U+)) ∼= πA
1

∗,∗(HAZ[1/p] ◦ (− ∧ U+))⊗ Z[1/p].

This is because fibrant replacements of the T -spectrum HAZ[1/p] ◦ (Sk ∧ U+), where Sk is the

motivic sphere spectrum, can be computed in MSSAZ[1/p] .
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We claim that

πA
1

∗,∗(HAZ[1/p] ∧ U+) ∼= πA
1

∗,∗(HAZ[1/p] ∧ U+)⊗ Z[1/p].

Indeed, this follows from an isomorphism in SH(k),

HAZ[1/p] ∧ U+
∼= hocolim(HA p−→ HA p−→ HA p−→ · · ·) ∧ U+

∼= hocolim(HA ∧ U+
p−→ HA ∧ U+

p−→ · · ·).

We see that (3) is not only a p−1-stable weak equivalence between motivic symmetric spectra,
but also an ordinary stable motivic equivalence.

Ordinary symmetric T -spectra are obtained from motivic spaces by evaluating them at
spheres S0, T, T∧2, . . . (see [DRØ03, § 3.2]). The evaluation of the motivic space HAZ[1/p] ∧ U+

is the symmetric T -spectrum

(U(pt+),U(TAZ[1/p]),U((T∧2)AZ[1/p]), . . .) ∧ U+.

The evaluation of the motivic space HAZ[1/p] ◦ (− ∧ U+) is the symmetric T -spectrum

ΦΨ(HAZ[1/p] ∧ U+) = (U(AZ[1/p](−, U)),U((U+ ∧ T )AZ[1/p]),U((U+ ∧ T∧2)AZ[1/p]), . . .).

Furthermore, the evaluation of the morphism (3) is the morphism (2). We see that the
morphism (2) is a stable motivic equivalence of motivic symmetric spectra, as was to be
shown. 2

Remark 5.4. Very recently Elmanto and Kolderup [EK17] have suggested another approach to

the Röndigs–Østvær theorem for A = C̃or that uses Lurie’s ∞-categorical version of the Barr–
Beck theorem.

Theorem 5.5 (Reconstruction). If k is an infinite perfect field with char k 6= 2, then SH(k)Q is
equivalent to DMMW(k)Q. The equivalence preserves the triangulated structure.

Proof. SH(k)Q is equivalent to DA1(k)Q (see [Mor04]). By Theorem 5.3, the latter is equivalent
to the homotopy category of SAnaive ⊗ Q-modules. SAnaive ⊗ Q is motivically equivalent to the
commutative monoid spectrum S ⊗ Q. By [SS00, Theorem 4.3], the homotopy category of
SAnaive ⊗Q-modules is equivalent to the homotopy category of S⊗Q-modules. By Theorem 4.2,
S ⊗ Q is motivically equivalent to the commutative monoid spectrum SMW ⊗ Q. By [SS00,
Theorem 4.3], the homotopy category of S⊗Q-modules is equivalent to the homotopy category
of SMW ⊗Q-modules. We see that SH(k)Q is equivalent to the homotopy category of SMW ⊗Q-
modules. By Theorem 5.3, the latter category is triangle equivalent to DMMW(k)Q, as was to
be shown. 2

Remark 5.6. The triangulated equivalence of Theorem 5.5 is in fact symmetric monoidal. The
main point here is that the natural functor between categories of correspondences Anaive → C̃or
is extended to a symmetric monoidal triangulated functor DA1(k) → DMMW(k) (see also [DF17,
Section 3.3]). Consider a commutative diagram of natural triangulated functors

DMMW(k)Q //

��

DA1(k)Q

��
Ho(Mod−SMW ⊗Q) // Ho(Mod−Snaive ⊗Q)
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The proof of the preceding theorem implies that the lower and the vertical functors are
equivalences. We see that the upper functor is an equivalence. It is right adjoint to the functor
DA1(k)Q → DMMW(k)Q. It follows that the latter functor is an equivalence, too. It is plainly
symmetric monoidal.

6. Comparing motivic complexes with framed and MW -correspondences

In this section we apply the reconstruction theorem (Theorem 5.5) to compare rational motives
with framed and Milnor–Witt correspondences respectively. Throughout this section the base
field k is infinite perfect of characteristic different from 2.

It is shown in [GP14b] that the suspension bispectrum Σ∞S1Σ∞G X+ ∈ SH(k) of a k-smooth
algebraic variety X is stably equivalent to the bispectrum

MG
fr(X) = (Mfr(X),Mfr(X ×G∧1

m ),Mfr(X ×G∧2
m ), . . .),

each term of which is a twisted framed motive of X. Since the functor Z̃ : X 7→ Z̃[X ] respects
stable weak equivalences of bispectra, it follows that the bispectrum Z̃[Σ∞S1Σ∞G X+] ∈ SH(k) is
stably equivalent to the bispectrum

ZMG
fr(X) = (ZMfr(X),ZMfr(X ×G∧1

m ),ZMfr(X ×G∧2
m ), . . .).

By [GPN16, Theorem 1.2], the latter bispectrum is stably equivalent to the bispectrum

LMG
fr(X) := (LMfr(X), LMfr(X ×G∧1

m ), LMfr(X ×G∧2
m ), . . .)

consisting of twisted linear framed motives in the sense of [GP14b]. If we take a levelwise
Nisnevich local fibrant replacement of LMfr(X ×G∧nm ), we get a bispectrum

LMG
fr(X)f := (LMfr(X)f , LMfr(X ×G∧1

m )f , LMfr(X ×G∧2
m )f , . . .),

where each LMfr(X × G∧nm )f is a Nisnevich local fibrant replacement of the S1-spectrum
LMfr(X × G∧nm ). It follows from the cancellation theorem for linear framed motives [AGP16]
that LMG

fr(X)f is a motivically fibrant bispectrum. In particular, (S ∧ X+) ⊗ Q is computed
locally in the Nisnevich topology as the bispectrum

LMGm
fr (X)⊗Q = (LMfr(X)⊗Q, LMfr(X ×G∧1

m )⊗Q, . . .)

consisting of twisted rational linear framed motives of X. Each S1-spectrum LMfr(X ×G∧nm ) is
the Eilenberg–Mac Lane spectrum associated with the simplicial Nisnevich sheaf ZF (− × ∆•,
X×G∧nm ) defined in terms of the category of linear framed correspondences ZF∗(k) and stabilized
in the σ-direction (see [GP14b] for details).

It is natural to compare twisted complexes defined by various categories of correspondences.
There is constructed a functor in [DF17],

F : Fr∗(k) → C̃or.

It induces morphisms of twisted complexes

fn : ZF (−×∆•, X ×G∧nm ) → C̃or(−×∆•, X ×G∧nm )nis, n > 0.

A question, originally due to Calmès and Fasel, is whether the fn are quasi-isomorphisms of
complexes of Nisnevich sheaves. The following theorem answers this question in the affirmative
with rational coefficients.
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Theorem 6.1 (Comparison). Given an infinite perfect field of characteristic not 2 and a
k-smooth scheme X, each morphism of complexes of Nisnevich sheaves

fn : ZF (−×∆•, X ×G∧nm )⊗Q → C̃or(−×∆•, X ×G∧nm )nis ⊗Q, n > 0,

is a quasi-isomorphism.

Proof. We defined the bispectrum MGm
MW(X) on p. 1432. Taking levelwise Nisnevich local

fibrant replacements, we get a bispectrum MGm
MW(X)f . The canonical morphism of bispectra

Σ∞S1Σ∞G X+ → MMW(X)f factors as

Σ∞S1Σ∞G X+
`

→ LMGm
fr (X)f

F
→ MGm

MW(X)f .

As we have shown above, the left arrow is rationally a stable motivic equivalence. F is a
map between fibrant bispectra which are both locally given by twisted complexes with linear
framed and finite Milnor–Witt correspondences, respectively. It follows that the morphisms of
the corollary are quasi-isomorphisms if and only (F ◦ `) ⊗ Q is an isomorphism in SH(k). But
the latter follows from Theorem 5.5. 2

Remark 6.2. Bachmann and Ananyevskiy recently pointed out to the author that Theorem 6.1
cannot be true with integer coefficients even for X = pt. Moreover, it is not true with Z[1/p1, . . . ,
1/ps]-coefficients for any finite collection of primes p1, . . . , ps. Therefore the quasi-isomorphism
of the comparison theorem is genuinely rational.

7. Concluding remarks

The methods developed in the previous sections should also be applicable to compute SH(k)Q
in terms of the hypothetical category of ‘Hermitian correspondences’ Kh

0 . Its objects are
those of Sm/k and morphisms are given by certain bimodules with duality with/without
coefficients in some line bundles. Kh

0 is expected to be a symmetric monoidal strict V -category
of correspondences satisfying the cancellation property. It is also expected that

SK
h
0 [2−1] ∼= WGm

Z[1/2] ⊕ SK
⊕
0 [2−1].

Suslin’s theorem [Sus03] together with [ALP17, Theorem 3.4] and [CD12, Theorem 16.2.13] then

would imply that S⊗Q is isomorphic to SKh
0 ⊗Q. The proof of Theorem 5.5 would then be the

same for showing that SH(k)Q is equivalent to DMKh
0
(k)Q.

The Suslin theorem [Sus03] comparing Grayson’s cohomology with motivic cohomology is
then extended to finite Milnor–Witt correspondences as follows. It states that there is a natural
functor between categories of V -correspondences

Kh
0 → C̃or

such that the induced morphism of twisted complexes of Nisnevich sheaves

Kh
0 (−×∆•,G∧nm )nis → C̃or(−×∆•,G∧nm )nis

is locally a quasi-isomorphism (at least over infinite perfect fields of characteristic not 2). The
extension of the Suslin theorem should be reduced to the original Suslin theorem.

We invite the interested reader to construct the category of ‘Hermitian correspondences’ Kh
0

with the desired properties.
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